
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

8

A JADE Implemented Mobile Agent Based Host Platform Security
Parul Ahuja

1*
, Vivek Sharma

2

1. Scholar in Computer Science & Engg., JMIT, Kurukshetra University, Radaur, YamunaNagar-135001,

Haryana, India. Ph: +919729304478.

2. Assistant Professor & Head, Department of Computer Science & Engg., JMIT, Kurukshetra University,

Radaur, YamunaNagar-135001, Haryana, India.

* E-mail of the corresponding author: parulahuja89@gmail.com

Abstract:

 Mobile agent paradigm relies heavily on security of both the agent as well as its host platform. Both of the entities

are prone to security threats and attacks such as masquerading, denial-of-service and unauthorized access. Security

fissures on the platform can result in significant losses. This paper produced a Robust Series Checkpointing

Algorithm (SCpA) implemented in JADE environment, which extends our previous work, keeping in mind the

security of mobile host platforms. The algorithm is Series Check-pointing in the sense that layers are placed in series

one after the other, in the framework, to provide two-level guard system so that if incase, any malevolent agent

somehow able to crack the security at first level and unfortunately managed to enter the platform; may be trapped at

the next level and hence block the threat. The work also aimed to evaluate the performance of the agents’ execution,

through graphical analysis. Our previous work proposed successfully a platform security framework (PSF) to secure

host platform from various security threats, but the technical algorithm realization and its implementation was

deliberately ignored, which has now been completed.

Keywords: Mobile Agent, Security, Reputation Score, Threshold Value, Check-points, Algorithm.

1. Introduction

Mobile agents are the software programs capable of migrating from one host to another host in a network, at any

time, at any place of their own choice [4]. An agent is typically identified with a unit of execution. A unit of

execution usually carries the following information: the code (governing its behavior), the data (associated with it

and necessary for its computation), and its execution state (e.g. program counter and call stack). Mobile agent

systems allow migration of either the whole unit or a part (one of the above three constituents) of it. The state of the

running program at one host is saved, then migrated to the new host, and then resumed the execution there allowing

the program to continue from where it left off to be shifted [7, 1].

It has been suggested that mobile agent technology, amongst other technologies, can help to reduce network traffic

and to overcome network latencies [3], [11]. However, an agent’s ability to migrate does introduce significant

security concerns. Mobile agent systems have not only incorporated security issues that have often incurred in

conventional distributed systems, it also possesses some new security threats. Security threats in mobile agent

systems are classified into four main categories: agent-to-platform, platform-to-agent, agent-to-agent, and

others-to-agent platform. To reduce the risks of these threats, different security requirements [2], [8], [5], [4] such as

confidentiality, integrity, availability, accountability, anonymity, non-repudiation; the mobile agent paradigm needs

to be satisfied.

This paper is an extension of our previous work in which, we proposed an architecture for the Platform Security

Framework (PSF) [6]. The framework was designed to protect the agent hosting platform from various security

threats. However, the authors remained silent about the practical implementation of the framework algorithm which

was left off as future work. Thus, the focus of this paper is to practically implement the algorithm in the JADE

(Java Agent Development Framework) environment and presenting a result analysis of the agents’ execution.

The paper is structured as follows. Section 2 provides a brief overview of the PSF architecture proposed in our

earlier work. Section 3 explores the work of the eminent researchers in the area of agent technology and

establishment of various security mechanisms & techniques. Section 4 presents the extension of the PSF Architecture

towards the creation of the practical security algorithm namely, Series Check-pointing Algorithm (SCpA); presenting

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

9

its implementation scenario in the real JADE (a framework meant for agent development in java language)

environment. Section 5 shows the result evaluation and performance through graphical analysis. Section 6 concludes

the paper.

2. Background

This section presents PSF architecture in brief. The proposed PSF focuses on detecting the un-trusted & malevolent

mobile agents requesting platform access and then preventing the agent’s computing platform from vulnerable to

attacks such as includes masquerading, denial of service and unauthorized access. As is evident from literature [12],

that a Digitally Signed Trust Certificate (DSTC) is issued to an agent at the time of registration, therefore, in order to

establish initial trust level and prove its authenticity, every mobile agent is assumed to get registered with Central

Certificate Authority (CCA). A mobile agent is able to access and provide services, only after the registration

process. PSF comprises of two layers namely Authentication & Authorization Layer (AAL), and Supervision &

Filtration Layer (SFL) respectively. Every incoming request for platform access first goes to AAL for authentication

and privilege authorization. Once AAL approves the agent, it enters in Supervision & Filtration Layer (SFL) [6].

This is shown in figure 1.

Figure 1: Architecture of the Proposed Platform Security Framework (PSF) [6]

Interface Agent

Match

List_of_Trusted

_Entities

FIPA, IBM,

MSoft, HCL,

MOTOROLA,

DELL, etc…

Reputation

Review

Reputation_

Buffer

Own_Platform

_History_Repu

Path_History_

Reputation_

Privileges

assigned based on

reputation history

Master

Controlling

Agent

Rejected

agents

Malevolen

t _Agent_

Buffer

Monitors

current status

Activity_

Record_

Buffer

MA1 MA2 MA3 MAn

Execution Area

Foreign Platform (Pf)

AAL Layer

SFL Layer

V.M. 1 V.M. 2 V.M. 3 V.M. n

Home platform (Ph) Mobile Agent

1

2

4 5(a) 5(b) 6(a) 6(b)

7

12

9

10

11

3(a)

3(b)

8

Sends reputation

score for the

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

10

Any Guest Agent (GA) can access the platform, its resources, or can perform any task, only after passing through

security checks in these two layers. These layers acts as guards on the platform to prevent the security breaches,

since if one layer fails, other can compensate the fault tolerance. An agent sends request from its own home platform

to the foreign platform of whom it wants access. The foreign platform performs the security checks by activating the

Test Agents (IA & MCA) in the AAL & SFL Layers.

The list-checking act and cross validation checks isolates the mechanism from literature and ensures the blocking of

masquerading attack. IA either grants permission to the agent or deny the access on the basis of the results obtained

from validation checks computation. AAL also assigns privileges to the accepted agents by concerning the history

buffers (OPHRB & PHRB) maintained at IA. IA at the AAL layer then forwards the confirmed, trusted and

authorized agents down to the SFL layer, where MCA assigns separate execution area to each agent and monitor

their activities as a check for any misconduct or misbehaviour.

3. Related Work

This section explores the work of researchers in the fields of mobile agent and their hosting platform security and

highlighted the areas of potential scope for research.

In our earlier recent research work [9], we had explored the available literature in detail and provided a brief

overview of the recent researches & developments associated with the field of mobile agents, highlighted various

security threats, also touching the weakest hot-spots of the field which needs to be nurtured. Many Researchers [20,

21, 22] have made fabulous developments; proposed various models, theories; introduced new technologies,

techniques and frameworks, in the field of mobile agents. The authors in [13] proposed a path based security

technique for mobile agents, but the fast growth in the technology suggested the extensions to support a finer

granularity of trust levels. The authors in [14] proposed a mobile agent technology for the management of networks

and distributed systems as an answer to the scalability problems of the centralized paradigm and sufficiently

addressed the issues such as security mechanism and fault tolerance, but was surrounded by various issues such as

extensive testing and practical evaluation of MAP in real-world monitoring applications by research engineers in

order to identify potential deficiencies and derive methods for improving the MAP’s performance.

Similarly, the authors in [15] introduced the mobile agent technology based on quantitative hierarchical network

security situational assessment model designed for large-scale network and evaluated the whole network security

situation for future prediction. But the technical realization of the quantitative model for further prediction had not

been discussed which degrades the quality aspects of the model. Literature [16] has elaborated the performance of

Mobile agent systems compared with other cryptosystems over various parameters using Antecedence Graph

Approach.

Literature review [11, 23, 10, 24] brought up the fact that although many attempts have been made to provide

security in MASs (Mobile Agent Systems) communication and establishing trust among the agents, many rigid

technologies developed to support security; but as the wheel of the technology spins every time, so the area always

needs further refined researches in every approach we take.

4. Proposed Work Implementation And Simulation

We have implemented our security framework in JADE environment. JADE [18, 19] is a software Framework that is

FIPA compliant and is fully implemented in java language. It simplifies the implementation of multi-agent systems

through a middle-ware that complies with the FIPA [17] specifications and through a set of graphical tools that

supports the debugging and deployment phases. The agent platform can be distributed across machines (which not

even need to share the same OS) and the configuration can be controlled via a remote GUI. The configuration can be

even changed at run-time by moving agents from one machine to another one, as and when required. JADE is

completely implemented in Java language and the minimal system requirement is the version 1.4 of JAVA (the run

time environment or the JDK) and the latest version of JADE is JADE 4.1.1.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

11

4.1 Simulating the Agent Platform

We have developed a stand alone prototype of real implementation, instead of actual implementation. Step-wise

understanding the implementation of PSF-SCpA in JADE environment through partial code segments is as follows:

4.1.1 The incoming Guest Agent requests for access and simultaneously shows DSTC or other certificates obtained

from CCA.

4.1.2 This request is entertained by the IA in the AAL Layer. The IA in AAL asked the GA to enter its signature

value. (figure 2).

4.1.3

Figure 2: Agent Authentication

4.1.4 IA then match the GA’s identity against the LTE maintained in its Buffers.(figure 3).

4.1.5 On getting optimistic result after the signature matching test, the agent is considered as ‘trusted’ ; And

‘untrusted’, otherwise. (figure 3).

4.1.6 The Pf sends validation-check message to the Ph, of which the GA claims to be belonged. (Figure 3).

 Figure 3: Agent Authorization

InputStreamReader ir = new InputStreamReader(System .in);

BufferedReader br = new BufferedReader(ir);

System.out.println("Incoming Guest Agent is being t ested by

INTERFACE AGENT present in AAL Layer of this

platform..");

Sys tem.out.println("Please enter your signature value and

if (s != null && s != "")

{if (signatures.contains(s)){

System.out.println("Valid Signature");

System.out.println("going to match agent name.Pleas e

wait...");

if (preDefinedSignature.containsKey(agentName))

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

12

4.1.6 If the GA prooves out to be a ‘valid agent’, then Pf grants it access permission and performs ‘handshaking’;

And dismissed permission & deny for access, otherwise. figure 4 shows the code for denied access.

Figure 4: Permission Dismissed & Access Denied

4.1.7 The GA is assigned privileges alongwith the threshold value by IA, and then enters in the SFL Layer. (figure 5).

Figure 5: Entry In SFL Layer After Privilege Assignment

4.1.8 The MCA in the SFL Layer assigns separate execution area to each agent and monitors the current activity

status of each agent.

4.1.9 All the buffers and tables are updated after the session termination.

4.1.10 On successful completion and termiation of the session, the reputation score of the GA is incremented by 1;

And decremented by -1, otherwise.

4.1.11 The platform finally prepares IA and MCA in both layers for the next session and reset all the parameters.

5. Result Evaluation And Performance Analysis

The proposed PSF-SCpA outperforms in the security scan mechanism and proves efficient than other existing

security techniques. The mechanism follows ‘shades-of-grey policy’ to achieve perfect security of the host platform.

According to the policy, the mechanism doesn’t handshake any agent immediately after knowing it trusted, nor it

concludes any agent malevolent and terminates its session by knowing it un-trusted. It further investigates and

if (preDefinedSignature.containsKey(agentName))

{System.out.println("signatures are valid but doesn 't match the

Incoming Agent's Identity. Masquerade agent trying to access

platform. Access denied..!!");

System.out.println("Please try again");

}else{System.out.println("Invalid Signature. Masque rading attack

attempted by unauthentic agent is blocked by IA. Ac cess

denied...!!");

System.out.println("Agent has been initialized and assigned the

handshaking permissions ");

System.out.println("Following are the details of in coming Agent:");

System.out.println("Incoming Agent name:"+ tt.getAg entName());

System.out.println("Permissions assigned:" +accessC ode

.get(tt.getAccessCode()));

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

13

searches for the whole spectrum to grant privileges to the agent, i.e. it carries validation checks by cross-checking

with the GA’s home platform, to get the accurate identity status of incoming guest agent. In this way, an agent is not

prone to be denied for access by mistakenly grading it bad, and nor it is provided access to the services for which it is

not entitled. The ‘cross validation-check’ activity of PSF isolates it from other techniques and proves better.

Furthermore, the ‘reputation score’ mentioned in the mechanism is actually a performance parameter. The

performance of any agent can be depicted from the RS value. After the computation of RS at SFL Layer, this

information is returned back to the AAL Layer so that IA could decide the level of privileges to be assigned to GA’s

in the next session.

The code may be replicated for any frequency of agents according to the application requirement. To analyze the

efficiency of the security framework, we need a large number of agents starving for access, to be bombarded on the

platform. The above setup is run for gaining insight into the performance against some of the earlier developed security

mechanisms and technologies, such as AG based Non-Checkpointing approach (NCpA) [16] and Parallel

Check-pointing algorithm (PCpA) [16], and our own proposed platform security framework (PSF) i.e. a robust two

layered Series Check-Pointing Algorithm (SCpA).

5.1 Graphical Results Using Performance Metrics

The agents’ execution is simulated in JADE environment using API of JGraphT library developed in Java

programming language and the comparative analysis is made between the proposed PSF-SCpA (Architectural &

Algorithmic approach) framework and other existing techniques, for securing mobile agent hosting platform against

security threats. The evaluated results are compared through graphical analysis.

The performance & efficiency of the proposed PSF is mainly determined by the following three metrics: the

identifying time, the waiting time and the total application message overhead. We vary the number of mobile agents

from 10 to 100 to see the corresponding changes of these performance metrics. The graphical comparison is as follows:

5.1.1 Average Identifying Time:

It is the time which is required to determine that, which and how many mobile agents should go through

security-checks placed in series in the framework.

Figure 6: Average Identifying Time Comparison

The average identifying time is an important performance metric, especially for certain time critical applications. Fig.

6 illustrates the average identifying time comparison for NCpA (means when no security is implied), PCpA and PSF

(SCpA). We observe that though, the time is increasing with increase in the number of mobile agents, but still our

proposed PSF takes less time to identify malevolent MA’s (GA’s) as compared to other previously existing techniques.

This is because, with in the two layers of the PSF, are the two test agents or base agents (IA & MCA) which remains

active all the time and continuously monitors, controls, manages and maintain all records on the platform. All the

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

14

buffers are readily & timely updated and hence the latest information in the framework flows within a few seconds to

IA & MCA so that they can act accordingly and dealt well with GA’s.

5.1.2 Average Waiting Time:

The average time which a MA (GA) waits in response from PSF’s guards involved in maintaining and securing the

platform. The waiting time is proportional to MA-to-Platform, Platform-to-MA and MA-to-MA message latency.

Latency is the time span from the sending of message from one agent to the receipt of message from other agent. Rise

in the latency time may leads to hikes in the waiting time y-axis.

Figure 7: Average Waiting Time Comparison

The figure 7 shows that average waiting time decreases with the constant increase in the frequency of incoming mobile

agents. The effect is similar in PCpA but PSF’s slope is even much lower than others. The waiting time is less in our

PSF because the security layers are arranged in series. Any GA who arrives at the platform passes through these layers

in sequence one by one. Each layer intakes and entertains one agent at a time and hence the processing time is reduced

which further minimize waiting.

5.1.3 Total Application Message Overhead:

The message overhead includes the request and reply messages from MA (GA) to platform and vice-versa.

Figure 8: Total Application Message Overhead Comparison

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

15

The figure 8 above illustrates the total application message overheads as a function of number of mobile agents. From

figure 8, we can see that, though the message overhead increases with the increase in number of mobile agents but

comparative to other existing techniques, is reduced to greater extent after implying PSF (SCpA) for securing host

platform. The reason lies in the occurrence of threshold events, which exempts the execution timely and hence reduced

the unnecessary message exchanges. The worst case is that it increases slowly instead it should not, and the best-case is

that the overall slope did not hiked so high and remained closer to the horizontal axis.

6. Conclusion

The two layered phenomenon provided by the PSF-SCpA is very active & flexible in securing the host platform. The

‘cross validation-check’ activity of PSF isolates it from other techniques and proves better. The use of ‘reputation

score’ enables the platform to estimate the character status of an agent for future interactions. Since, the agent

technology advances continuously and has made significant contributions in the area of code mobility and security, it

would not be wise to ignore this fact and try to reinvent the wheel every time in every new approach we take. So, the

proposed framework may be extended to include the datum of the buffers: PHRB, ARB & MAB. The SCpA

prototype implementation may be extended to include the rollback of the reputation score to the AAL layer, for

further security processes. By integrating solutions already tested in other domains of the framework, we can build

on the top of these and provide more sophisticated approach, which may tackle the ever increasing complex security

attacks.

References

[1] Martin L.Griss, Ph.D. (2001), “Software Agents as Next Generation Software Components”, In

Component-Based Software Engineering: Putting the Pieces Together, Addisson-Wesley publications, May

2001.

[2] Wayne Jansen and Tom Karygiannis (1999), “Mobile Agent Security”, In NIST Special Publication, Vol.

800, issue-19, pp. 39, 1999.

[3] Gian Pietro Picco (2001), “Mobile agents: an introduction”, In Microprocessors and Microsystems, Vol. 25,

pp. 65-74, 2001, Milan, Italy.

[4] Mousa Alfalayleh, and Lijilana Brankovic (2005), “An Overview of Security Issues and Techniques in

Mobile Agents”, In International Federation for Information Processing (IFIP), Vol. 175, pp. 59-78, October

2005.

[5] S.M. Sarwarul Islam Rizvi, Zinat Sultana, Bo Sun, and Md. Washiqul Islam (2010), “Security of Mobile

Agent in Ad hoc Network using Threshold Cryptography”, In World Academy of Science, Engineering and

Technology 70- 2010.

[6] Aarti Singh and Parul Ahuja (2012), “Robust Algorithm for Securing an Agent Hosting Platform”, In

International Journal of Advancements in Technology (IJoAT), Vol. 3, Issue 2, April 2012.

[7] Nick Jennings and Michael Wooldridge (1996), “Software Agents”, IEE Review, January 1996, pp. 17-20.

[8] Priyanka Dadhich, Dr. Kamlesh Dutta, and Prof.(Dr.) M.C. Govil (2010), “Security Issues in Mobile

Agents”, In International Journal of Computer Applications(0975-8887), Vol. 11, Issue 4, December 2010.

[9] Parul Ahuja and Vivek Sharma (2012), “A Review on Mobile Agent Security”, In International Journal of

Recent Technology and Engineering (IJRTE), ISSN: 2277-3878, Volume-1, Issue-2, June, 2012.

[10] Li An, Qiangfeng Jiang, Xiaoping Luo, and Zhaohui Ren (2002), “Protecting Mobile Agents Against

Malicious Hosts”, In CS685-002 Term Paper, Spring 2002.

[11] Niklas Borselius (2002), “Mobile agent security”, In IEEE Journal of Electronics & Communication

Engineering , Vol. 14, issue 5,pp. 211-218, October 2002.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

16

[12] Aarti Singh, Dimple Juneja, and A.K. Sharma (2011), “Elliptical Curve Cryptography Based Security

Engine for Multiagent Systems Operating in Semantic Cyberspace”, In International Journal of Research

and Review in Computer Science (IJRRCS), Vol. 2, No. 2, April 2011.

[13] G. Knoll, N. Suri, and J.M. Bradshaw (2002), “Path-based Security for Mobile Agents”, Electronic Notes in

Theoretical Computer Science, Vol. 58, Issue 2 , pp. 16, 2002.

[14] D. Gavalas, G.E. Tsekouras, C. Anagnostopoulos (2009), “A mobile agent platform for distributed network

and systems management”, In Journal of Systems and Software Vol. 82, Issue 2, pp. 355-371, 2009.

[15] C. Xiaorong, L. Su, L. Mingxuan (2012), “Research of Network Security Situational Assessment

Quantization Based on Mobile Agent”, Vol. 25, pp. 1701–1707, International Conference on Solid State

Devices and Materials Science, April 1-2, 2012.

[16] R. Singh and M. Dave (2011), “Antecedence Graph Approach to Checkpointing for Fault Tolerance in

Mobile Agent Systems”, IEEE Transactions On Computers, 2011.

[17] http://www.fipa.org (1997), “Foundation for Intelligent Physical Agents, Specifications”, 1997.

[18] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa (2001), “Developing Multi-agent Systems with

JADE”, University of Parma, In Springer-Verlag Berlin Heidelberg, pp. 89–103, 2001.

[19] Aarti Singh, Dimple Juneja, and A.K. Sharma (2011), “Agent Development Toolkits”, In International

Journal of Advancements in Technology (IJoAT), Vol. 2, No. 1 (January 2011).

[20] S. M.. Moussa, G.A. Agha (2010), “Integrating Encrypted Mobile Agents with Smart Spaces in a

Multi-agent Simulator for Resource Management”, Journal of Software, Vol 5, No 6, 630-636, Jun 2010.

[21] A. Saxena and B. Soh (2005), “Authenticating Mobile Agent Platforms Using Signature Chaining Without

Trusted Third Parties”, In IEEE International Conference on e-Technology, e-Commerce, and e-Services,

pp.282-285, 29 March - 1 April 2005, Hong Kong, China.

[22] M. Soriano and D. Ponce, Technical University of Catalonia (2002), “A Security and Usability Proposal for

Mobile Electronic Commerce”, IEEE Communications Magazine, developed as part of the project

ACIMUT CICYT TIC2000-1120-C03-03. August 2002.

[23] William M. Farmer, Joshua D. Guttman, and Vipin Swarup (1996), “Security for Mobile Agents: Issues and

Requirements”, In Proceedings of the 19th National Information Systems Security Conference,Vol. 2, pp.

591-597. National Institute of Standards and Technology,Baltimore, Maryland, October 1996.

[24] O.A. Ojesanmi and Ajai Crowther (2010), “Security Issues in Mobile Agents”, In International Journal of

Agent Technologies and Systems, Vol. 2, Issue 4, pp. 39-55, October-December 2010.

Parul Ahuja has done B.Tech (CSE) in Honours and is pursuing M.Tech (CSE)

Dissertation from Kurukshetra University. Her research work is in the field of Agent

Technology. She has published technical and review papers in national / international

journals. Her specialization among programming languages includes C, C++ and java; and

among databases includes Oracle 9i. She has also keen interest in the fields of network

management & security, mobile computing, internet fundamentals, data structures and

design & analysis of algorithm. She has delivered seminars on various technologies such as

mobile IP, cloud computing, and android technology.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

17

Vivek Sharma has done B.Tech (CSE) & M.Tech (CSE) from Kurukshetra University

and achieved gold medallist during his graduation. His publications includes the field of

wi-fi protocols, mobile sensor networks in health care. His specialization is in object

oriented programming languages. His research area is in mobile networks. He is a

member of CSI (Computer Society of India).

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

18

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

19

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

