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Abstract 

This paper constructing a measurement system for determining the efficiency of the distributed system. This efficiency 

depends on many parameters like number of terminals, number of customers and kind of information, number of 

nodes, and number of messages. It is found that the efficiency depends strongly on number of messages sent or 

received inside the distributed system, as the number of messages increased the efficiency decreased.  
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1. Introduction 

 Distributed systems are a mean to decrease the time needed to perform some task and software errors arise from a 

number of different problems, such as incorrect or incomplete specifications, coding errors, and faults and failures in 

the hardware, operating system or network. Model checking is an important technology which is finding increasing 

use as a means of reducing software errors. Unfortunately, despite impressive recent advances, the size of systems for 

which model checking is feasible remains rather limited. This weakness is particularly critical in the context of 

distributed systems: concurrency and asynchrony result in inherent non-determinism that significantly increases the 

number of states to be analyzed and this affects the distributed systems efficiency. As a result, most system builders 

continue to use testing as the major means to identify bugs in their implementations. There are, however, two 

problems with software testing. First, testing is generally done in an ad hoc manner: the software developer must 

hand translate the requirements into specific dynamic checks on the program state. Second, test coverage is often 

rather limited, covering only some execution paths. To mitigate the first problem, software often includes dynamic 

checks on a system’s state in order to identify problems at run-time. Recently, there has been some interest in 

run-time verification and monitoring techniques, which provide a little more rigor in testing by automatically 

synthesizing monitors from formal specifications. These monitors may then be deployed off-line for debugging or 

on-line for dynamically checking that safety properties are not being violated during system execution. 

Unfortunately, testing or runtime monitoring of distributed systems involves considerable overhead: for every event 

(sending of a message, receiving of a message, or a local state update), each process sends a message about the event 

to a central monitor. The central monitor constructs and analyzes a computation lattice  of the global states out of 

the collected events. Passing messages to a central monitor at every event and constructing a global computation 

lattice, which can be exponential in size in the number of events, leads to severe communication and computation 

overhead. The  distributed systems may be effectively monitored at runtime against formally specified safety 

requirements by distributing the task of monitoring among the processes involved in the distributed computation. 

Effective monitoring means not only linear efficiency, but also decentralized monitoring where few or no additional 

messages need to be passed for monitoring purposes. 

Many researches dealt with such problem, Santhi B et al. (2010)  presented  novel algorithms for energy efficient 
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scheduling of Directed Acyclic Graph (DAG) based applications on Dynamic Voltage Scaling (DVS) enabled 

systems. Experimental results show that our proposed algorithms give better results than the existing algorithms.  

Byung-G, 2006, considered replication strategies for storage systems that aggregate the disks of many nodes spread 

over the Internet. Maintaining replication in such systems can be prohibitively expensive, since every transient 

network or host failure could potentially lead to copying a server's worth of data over the Internet to maintain 

replication levels. They also names the following insights in designing an efficient replication algorithm emerge from 

the paper's analysis. First, durability can be provided separately from availability; the former is less expensive to 

ensure and a more useful goal for many wide-area applications. Second, the focus of a durability algorithm must be 

to create new copies of data objects faster than permanent disk failures destroy the objects; careful choice of policies 

for what nodes should hold what data can decrease repair time. Third, increasing the number of replicas of each data 

object does not help a system tolerate a higher disk failure probability, but does help tolerate bursts of failures. 

Finally, ensuring that the system makes use of replicas that recover after temporary failure is critical to efficiency. 

Based on these insights, the paper proposes the Carbonite replication algorithm for keeping data durable at a low cost. 

A simulation of Carbonite storing 1 TB of data over a 365 day trace of Planet Lab activity shows that Carbonite is 

able to keep all data durable and uses 44% more network traffic than a hypothetical system that only responds to 

permanent failures. In comparison, Total Recall and D-Hash require almost a factor of two more network traffic than 

this hypothetical system.  

Koushik S., et al. 2004, described an efficient decentralized algorithm to monitor the execution of a distributed 

program in order to check for violations of safety properties. The monitoring is based on formulas written in PT-DTL, 

a variant of past time linear temporal logic that we define. PT-DTL is suitable for expressing temporal properties of 

distributed systems. Specifically, the formulas of PT-DTL are relative to a particular process and are interpreted over 

a projection of the trace of global states that represents what that process is aware of. A formula relative to one 

process may refer to the local states of other processes through remote expressions and remote formulas. In order to 

correctly evaluate remote expressions, they introduced the notion of knowledge vector and provide an algorithm 

which keeps a process aware of other processes’ local states, if those states may affect the validity of a monitored 

PT-DTL formula. Both the logic and the monitoring algorithm are illustrated through a number of examples. Finally, 

they described an implementation of the algorithm in a tool called DIANA. 

 

1.1 Distributed systems  

 

A distributed system is a collection of k processes (p1, . . . , pk), each with its own local state. The local state of a 

process is given by the values bound to its variables. Note that there are no global or shared variables. Processes 

communicate with each other using asynchronous messages whose order of arrival is indeterminate. The 

computation of each process is abstractly modeled by a set of events, and a distributed computation is specified by a 

partial order on the events. There are three types of events: 

(1) internal events change the local state of a process; 

(2) send events occur when a process sends a message to another process; and 

(3) receive events occur when a message is received by a process.  

Figure 1 represents a simulation to some distributed system. 
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Figure 1 simulation of  a distributed system 

The time, T,  needed for some distributed system to perform some task can be calculated as: 

T= f (T{NO.(P, E, M)})                                                         (1) 

where: No. number of, P: number of processes, E: no. of nodes, M: number of messages. 

2. Results and discussion  

The time needed to perform some given task for a distributed system is adopted to measure the efficiency of such 

system. From equation (1) the time needed to perform some task is given as: 

T=T1+T2+T3+T4                                                                (2) 

Where: T1: time needed for the event to processed internally ( inside the process), T2: the time needed to send a 

message M and/or receiving it. T3: the time needed to process the task inside the received node or process, and T4: 

the time needed to accomplish the task and display the result. 

But as we said the total time needed depends strongly on the construction of the distributed system, i. e. on the 

number of processes, P, nodes, N, and events or messages, M, so equation (2) can be rewritten as: 

 

T= PT1+2MT2+ NT3+T4                                                                     (3) 

Now to measure the efficiency of the studied distributed system let the desired time to perform the task is 900µs then 

the efficiency, η,  can be defined as: 

η=actual time/ desired time                                                                   (4)  

The number of processes here are assumed to be three, with 150 µs each, the time needed to send or receive a 

messages is 50µs, the time needed to perform the task inside the node is 100 µs, the time to accomplish the task is 

100 µs. So the efficiency is η=900/1300= 70%. 

It can be noticed that the efficiency depends on number of messages sent or received inside the distributed system. 

See figure 2 below. 
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Figure 2 efficiency of the distributed system vs. no. of messages. 

3. Conclusion 

It is clear that the efficiency of any distributed system depends strongly on the system composition, number of 

processes, number of events or nodes, no of messages, time needed to process the task, and the time to accomplish 

the task, as the number of such things increased the time needed becomes longer and so the efficiency decreases.   
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