
Computer Engineering and Intelligent Systems                                                                    www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.7, 2012

 

 

162 

Prediction of Stock Market Index Using Genetic Algorithm 

R. Lakshman Naik
1*
, D. Ramesh

1
, B. Manjula

1
, Dr. A. Govardhan

2
 

1. Department of Informatics, Kakatiya University, Warangal-506 009, Andhra Pradesh, India 

2. Department of CSE, JNT University (H), Hyderabad-500 085, Andhra Pradesh, India 

* E-mail of the corresponding author: lakshman.ramavathu@gmail.com 

 

Abstract 

The generation of profitable trading rules for stock market investments is a difficult task but admired problem. First 

stage is classifying the prone direction of the price for BSE index (India cements stock price index (ICSPI)) futures 

with several technical indicators using artificial intelligence techniques. And second stage is mining the trading rules 

to determined conflict among the outputs of the first stage using the evolve learning. We have found trading rule 

which would have yield the highest return over a certain time period using historical data. These groundwork results 

suggest that genetic algorithms are promising model yields highest profit than other comparable models and 

buy-and-sell strategy. Experimental results of buying and selling of trading rules were outstanding. 
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1. Introduction 

For a long time, stock market prediction is long esteemed desire of investors, speculators, and industries. Although 

several studies investigated to predict price movements in stock market, financial time series too complex and noisy 

to forecast. Many researchers predicted the price movements in stock market using artificial intelligence (AI) 

techniques during past decades  

Recent research tends to include novel factors and to hybridize several AI techniques. In (Y. Hiemstra, 1995) 

proposed fuzzy expert systems to predict stock market returns. He suggested that ANNs and fuzzy logic could 

capture the complexities of the functional mapping because they do not require the functional specification of the 

function to approximate. A more recent study of (K. Kohara, 1997) incorporated prior knowledge to improve the 

performance of stock market prediction. In (R. Tsaih, 1998) integrated the rule-based technique and the ANNs to 

predict the direction of the S&P 500 stock index futures on a daily basis. 

Previous research using AI techniques almost predicted the price of every trading day, week, and month. It is more 

important, however, to determine stock market timing, when to buy and sell stocks, than to predict the price 

movement for everyday because investors in stock market generally do not trade everyday. If investors trade their 

stocks everyday, they are charged to tremendous amount of fee for trade. Market timing is an investment strategy 

which is used for the purpose of obtaining the excess return. Traditionally excess return is achieved by switching 

between asset classes in anticipation of major turning points in stock market (G. Waksman, 1997). 

While rule-based technologies improved dramatically, many of stock market applications were less than successful. 
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For this reason, the trend toward automatic learning systems is particularly evident in the financial services sector. 

Advances in chaos theory provide the theoretical justification for constructing nonlinear models, which is typically 

the goal in machine learning. Previous studies on this issue suggest that artificial intelligence techniques such as 

artificial neural networks (ANN) have more frequent chances to detect nonlinear patterns in stock market (H. 

Ahmadi, 1990; K.Kamijo, 1990; T. Kimoto, 1990). ANN, however, has a drawback that the users of the model can 

not readily comprehend the final rules. 

We propose data mining approach using genetic algorithms (GA) to solve the knowledge acquisition problems that 

are inherent in constructing and maintaining rule-based applications for stock market. Although there are an infinite 

number of possible rules by which we could trade, but only a few of them would have made us a profit if we had 

been following them. This study intends to find good sets of rules which would have made the most money over a 

certain historical period. This paper tends to mine reasonable trading rules using genetic algorithms for India 

Cements stock price index (ICSPI) future. We have found trading rule which would have yield the highest return 

over a certain time period using historical data. Experimental results of buying and selling of trading rules were 

outstanding. 

  

2. Related Work 

In refer. (T. Kimoto, 1990) Used several learning algorithm and prediction method for the Tokyo stock exchange 

prices index (TOPIX) prediction system. This system used modular neural network that learned the relationships 

between various factors. The output of this system was the best timing for when to buy and sell stocks. They 

executed simulation of buy and sell stocks to evaluate the effect of system. In this study, vector curve, turn-over ratio, 

foreign exchange rate and interest rate were used as input variables. Trading profit using this system revealed more 

than that of “Buy and hold strategy”. 

In refer. (K.Kamijo, 1990) Classified the changing pattern of TOPIX to triangle pattern by use of candlestick chart. 

They have learned these patterns using the recurrent neural network. The test set of triangle was accurately classified 

in 15 out of 16 experiments. (H. Ahmadi, 1990) Tried to test the ‘Arbitrage pricing theory (APT)’ by ANN. This 

study used backpropagation neural network with generalized delta rule to learn relationship between the return of 

individual stocks and market factors. 

In refer. (R.R. Trippi, 1992) Executed daily prediction of up and down direction of S&P 500 Index Futures using 

ANN. Generating a composite recommendation for the current day's position. Input variables in this study were 

technical variables for the two-week period to the trading day, open, high, low, close price, open price and the price 

fifteen minutes after the market opening of the current trading day. The output variable was long or short 

recommendation. They performed composite rule generation procedure to generate rules for combining outputs of 

networks. They reported prediction accuracy was 45.3% - 52.8%. 

In refer. (L. S. Duke 1993) also executed daily prediction of German Government Bond Futures using feed-forward 

backpropagation neural network. In this study, they used opening range (obtained from the highest and lowest bids at 

the open), highest, lowest price, closing price, volume of traders, open Interest, industrial production, consumer 

prices, current account balance, unemployment rates, short and long term interest rates, wholesale price index, M3 

combined supply and benchmark bond yield as input variables. The following day's closing price was output. A result 



Computer Engineering and Intelligent Systems                                                                    www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.7, 2012

 

 

164 

of the network's predictions as compared to the actual movement was 53.94%. 

In refer. (David de la Fuent, 2006) have presented a work which also attempts to optimize the timing of an automated 

trader. They use GA to develop trading rules for short time periods, using Technical Indexes, such as RSI, as GA’s 

chromosome. They proposed the use of the developed rules on stocks of Spanish company. However, the description 

in that work was too preliminary to allow for a comparison with our system to be made. 

And also, in refer. (Cyril Schoreels, 2004) have presented a work which attempts to generate the buying and selling 

signals against 30 companies’ stocks in Germany (DAX30). They use combination of Technical Indexes applied to 

GA as well as (David de la Fuent, 2006), and then rank the stocks according with the strength of signals to 

restructure the portfolio. However, they don’t devise any criterion of profit cashing and loss cutting. 

 

3. Genetic Algorithm (GA): Proposed Model 

Application of GA in the context of data mining is generally for the task of hypothesis testing and refinement, where 

the user poses some hypothesis and the system first evaluate the hypothesis and seek to refine it. Hypothesis 

refinement, where the user poses some hypothesis and the system first evaluates the hypothesis and then seeks to 

refine it.  Hypothesis refinement is achieved by “seeding” the system with the hypothesis and then allowing some or 

all parts of it to vary.  One can use a variety of evaluation functions to determine the fitness of a candidate 

refinement.  The important aspect of the GA application is the encoding of the hypothesis and evaluation function 

for fitness. Another way to use data mining is to design a hybrid techniques by blending one of the know techniques 

with GA (Arun K. Punjari, 2001). 

GA is search algorithm based on the mechanics of natural selection and genetics and they combine survival of the 

fittest among string structures to form a search algorithm (L. Davis, 1991). GA is particularly suitable for 

multi-parameter optimization problems with an objective function subject to numerous hard and soft constraints. The 

main idea of GA is to start with a population of solutions to a problem, and attempt to produce new generations of 

solutions which are better than the previous ones. GA operates through a simple cycle consisting of the following 

four stages: initialization, selection, crossover, and mutation. Figure 1 shows the basic steps of proposed genetic 

algorithms model. 

In the initialization stage, a population of genetic structures (called chromosomes) that are randomly distributed in 

the solution space is selected as the starting point of the search. These chromosomes can be encoded using a variety 

of schemes including binary strings, real numbers or rules. After the initialization stage, each chromosome is 

evaluated using a user-defined fitness function. The goal of the fitness function is to numerically encode the 

performance of the chromosome. For real- world applications of optimization methods such as GA, the choice of the 

fitness function is the most critical step. 
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Fig.1. Basic steps of proposed model 

The mating convention for reproduction is such that only the high scoring members will preserve and propagate their 

worthy characteristics from generations to generation and thereby help in continuing the search for an optimal 

solution. The chromosomes with high performance may be chosen for replication several times whereas 

poor-performing structures may not be chosen at all. Such a selective process causes the best-performing 

chromosomes in the population to occupy an increasingly larger proportion of the population over time. 

Crossover causes to form a new offspring between two randomly selected ‘good parents'. Crossover operates by 

swapping corresponding segments of a string representation of the parents and extends the search for new solution in 

far-reaching direction. The crossover occurs only with some probability (the crossover rate). There are many 

different types of crossover that can be performed: the one-point, the two-point, and the uniform type. 

Mutation is a GA mechanism where we randomly choose a member of the population and change one randomly 

chosen bit in its bit string representation. Although the reproduction and crossover produce many new strings, they 

do not introduce any new information into the population at the bit level. If the mutant member is feasible, it replaces 

the member which was mutated in the population. The presence of mutation ensures that the probability of reaching 

any point in the search space is never zero. 

 

4. Trading Rule  

Although there are an infinite number of possible rules by which we could trade, it seems that only a few of them 

would have made a profit. To find the rule that would have yielded the most profit had it been used to trade stocks on 

a given set of historical data, firstly, we develop trading rules of this general form is as shown below. 

4.1. General form of trading rules 

If today’s value of the indicator 1 is greater than or equal to (less than) A1, 

And change since the last day’s value of the indicator 2 is Greater than or equal to (less than) A2, 

Calculate Fitness 

Initialize Population 

Problem Represent 

Selection 

Check Convergence 

Crossover & Mutation 

Data for Training 

Apply Trading rules 



Computer Engineering and Intelligent Systems                                                                    www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.7, 2012

 

 

166 

And last day’s value of the indicator 3 is greater than or equal to (less than) A3, 

And last day’s value of the indicator 4 is greater than or equal to (less than) A4, 

And last day’s value of the indicator 5 is greater than or equal to (less than) A5, 

And today’s value of the indicator 6 is greater than or equal to (less than) A6, 

Then buy, else sell 

There are five conditions that are evaluated for each trading day. If the all of five conditions are satisfied, then the 

model will produce ‘buy’ signal on that day, otherwise it will suggest ‘sell.’ A1 to A6 denotes the cutoff values. The 

cutoff values range from 0 to 1, and represent the percentage of the data source's range. For example, if RSI (relative 

strength index) ranges from 0 to 100, then a cutoff value of 0.0 would match a RSI of 0, a cutoff value of 1.0 would 

match a RSI of 100, and a cutoff value of 0.5 would match a RSI of 50. This allows the rules to refer to any data 

source, regardless of the values it takes on. We consider additional flexibility regarding the indicator component of 

the rule structure such as ‘today’s value,’ ‘last day’s value,’ and ‘change since the last day’s value.’ Translating this in 

its full form, for example, would yield the following statement: 

4.2. Trading rules 

If today’s value of ROC is greater than or equal to 30.0, 

   And change since the last day’s value of RSI is less than 60.0, 

   And last day’s value of stochastic %D is less than 51.0, 

   And last day’s value of A/D oscillator is less than 12.5, 

   And last day’s value of MACD is less than 14.9, 

   And today’s value of stochastic %K is less than 75.9, 

  Then buy else sell 

Above rule structure is summarized in Table 1. In Table 1, ‘which data’ means data source the rule refers to, and 

‘modifier’ means a modifier value that determines if the value itself should be examined, or if the last day's value or 

the change since the last day should be examined. There has been much debate regarding the development of trading 

system using historical data. We agree that the future is never exactly like the past; however, a common investment 

approach is to employ systems that would probably have worked well in the past and that seem to have a reasonable 

chance of doing well in the future. So, we define a goal of the system as finding a rule which would have yielded the 

highest return over a certain time period. 

In setting up the genetic optimization problem, we need the parameters that have to be coded for the problem and an 

objective or fitness function to evaluate the performance of each string. The parameters that are coded are the cell 

values of Table 1. The varying parameters generate a number of combinations of our general rules. The task of 

defining a fitness function is always application specific. In this case, the objective of the system is to find a trading 

rule which would have yielded the highest return over a certain time period. We apply the trading profit to the fitness 

function for this study. 
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Table 1: Trading rules 

Rule number Which data Less than/ greater than or equal to Cutoff value Modifier 

1 INTi1 1 or 2 A1 1,2 or 3 

2 INTi2 1 or 2 A2 1,2 or 3 

3 INTi3 1 or 2 A3 1,2 or 3 

4 INTi4 1 or 2 A4 1,2 or 3 

5 INTi5 1 or 2 A5 1,2 or 3 

6 INTi6 1 or 2 A6 1,2 or 3 

Description: INTij  (i=1,2,..n, j=condition number) 

1=Less than/ 2= greater than or equal to 

Cutoff Aj (j=condition number) 

1=today’s value, 2=last day’s, 3=change since the last day 

 

4.3. Data and Variables 

The research data used in this study is India cements stock price index (ICSPI) from September, 2011 through April, 

2012. Futures are the standard forms that decide the quantity and price in the certified market (trading place) at 

certain future point of time (delivery date). General functions of futures market are supplying information about 

future price of commodities, function of speculation and hedging. Being different from the spot market, futures 

market does not have continuity of price data. That is because futures market has price data by contract. So, in 

futures market analysis, nearest contract data method is mainly used and incorporated in this research. We collected a 

sample of 160 trading days. Data has been collected from Yahoo finance and Money control web site. 

 

5. Experimental Result 

To find the profitable trading rules, in this paper GA model was proposed in the previous section. We use 100 

chromosomes in the population for this study. The crossover and mutation rates are changed to prevent the output 

from falling into the local optima. The crossover rate ranges 0.5 - 0.7 and the mutation rate ranges 0.05 - 0.12 for this 

experiment. We extract six trading rules by genetic search process. The derived rules are alternatively good trading 

rules although there is minor difference in simulated performance. Each of rules consists of conditions referring input 

factors. These processes and simulation are done by the genetic algorithms software package (evolver). Trading 

profit earned from simulation results are summarized in Table 2 
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Table 2: Summarized Results 

Trading rules Accumulated amount ( Assume initial investment of 10,000) 

Training 

(Sep 2011 –Dec  2011)  

Profit (%) Validation  

(Jan 2012 – April 2012) 

Profit (%) 

Buy-Sell  3856 -61.44 7364  -26.36 

Rule 1 12178 21.17 13740 37.4 

Rule 2 12716 27.16 12357 23.57 

Rule 3 12730 27.3 12100 21.00 

Rule 4 12176 21.76 14893 48.93 

Rule 5 12273 22.73 14753 47.53 

Rule 6 13042 30.42 15437 54.37 

While the underlying index decreased more than 61% during the training period, we could find rules that would have 

yielded the high level of profit had it been used to trade stocks on a given set of historical data. The rules derived by 

learning training data using GA are applied validation (holdout) samples to verify the effectiveness of the proposed 

approach. While the underlying index decreased about 26% during the validation period, the trading strategies 

followed by the derived rules earn 21% to 54% of trading profit during the period. These preliminary results shows 

that GA is promising model yields highest profit than other comparable models and buy-and-sell strategy. However, 

trading rules generated by GA produce predictions only when the rules are fired. Each of the rules extracted produces 

predictions less than 18% of time 

5.1.  Performance of Simulation Results 

While the underlying index increased about 37.4% during the validation period, the trading strategies followed by 

the derived rule 1 earn 21.17 % to 37.4% of trading profit during the period. The rule 1 extract produces predictions 

less than 12% of time 

  

While the underlying index decreased about 23.57% during the validation period, the trading strategies followed by 

the derived rule 2 earn 27.16% to 23.57 %  of trading profit during the period. The rule 2 extract produces 

predictions less than 15% of time 

While the underlying index decreased about 21% during the validation period, the trading strategies followed by the 
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derived rule 3 earn 27.3% to 21.0 %  of trading profit during the period. The rule 3 extract produces predictions less 

than 15% of time 

  

While the underlying index increased about 48.93% during the validation period, the trading strategies followed by 

the derived rule 4 earn 21.76 % to 48.93% of trading profit during the period. The rule 4 extract produces predictions 

less than 18% of time 

While the underlying index increased about 47.53% during the validation period, the trading strategies followed by 

the derived rule 5 earn 22.73 % to 47.53% of trading profit during the period. The rule 5 extract produces predictions 

less than 17% of time 

  

While the underlying index increased about 54.37% during the validation period, the trading strategies followed by 

the derived rule 6 earn 30.42 % to 54.37% of trading profit during the period. The rule 6 extract produces predictions 

less than 18% of time 

While the underlying index decreased more than 61% during the training period, we could find rules that would have 

yielded the high level of profit had it been used to trade stocks on a given set of historical data. The rules derived by 

learning data using GA are applied validation (holdout) samples to verify the effectiveness of the proposed approach. 

While the underlying index decreased about 26% during the validation period, 
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6. Conclusion 

In this paper we mine reasonable trading rules using GA for India Cements Stock Price Index (ICSPI). We have 

found six alternative good rules which would have yielded the high return over a certain time period. Simulated 

results of buying and selling of trading rules were outstanding. These preliminary results suggest that GA is 

promising methods for extracting profitable trading rules. Although the trading systems that have worked well in the 

past seem to have a reasonable chance of doing well in the future, we need a more extensive validation process. 

We need a more extensive validation process because the future is never exactly as the past. We are working towards 

verifying and enhancing the trading rules using current data. 
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