
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

10

A Scheduling Algorithm to Enhance the Performance and the
Cost of Cloud Services

Naseem A.AL-Sammarraie, Mohammed .F. Al-Rahmawy, Magdi Z. Rashad

Faculty of Computers and Information, Mansoura University, Mansoura Egypt

Abstract
Cloud computing is based on the pay-per-use; hence, the price of usage is one of the main factors for cloud

services’ customers when selecting the cloud provider to rent the service from. Hence, cloud providers need to

provide competitive costs of the services for the users. Therefore, the cloud providers, in addition to optimize the

utilization of the resources, aim to provide the service with the competitive cost at the same time. In order to

achieve this, there is a need for a new set of economical task scheduling algorithms for the cloud. This paper

introduces an algorithm for task scheduling based on assigning priorities for tasks according to their profits,

where we provided examples of usage of the algorithm and compared it to some of the traditional cloud

scheduling algorithms.

Keywords: Cloud Computing, Scheduling, Priority, Resource Utilization.

1. Introduction
Cloud computing is one the upcoming latest technology which is developing drastically. There are many and

different definitions of cloud computing, one of the most popular definitions was provided by NIST which

defines Cloud Computing as follows [1]: “Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction”.

Job scheduling is one of the major activities performed in all the computing environments. Hence, as in

other computing environments, Job scheduling in cloud computing is one of the main approaches to increase the

efficiency of the cloud environments by reducing the makespan and increase the resource utilization [3, 7].

Moreover, some work in cloud job scheduling aims to optimize the energy usage [4, 5].

However, as cloud computing is based on the pay-per-use of the resources, one of the important issues

for cloud providers companies is to provide best services with competitive cost for cloud users. Hence, there is a

need for some new hybrid job scheduling algorithms for the cloud environments that aim to, in addition to

optimizing resource utilization and minimizing makespan, is to provide economical and cost competitive

services.

In this paper we propose a new hybrid economical algorithm of scheduling in cloud computing

environment. We designed this algorithm to consider two issues of cloud computing; service performance and

service cost. The paper are organized as follows: In section 2, the related works are discussed. In section 3, our

scheduling algorithm is presented. In section 4, the development results are shown and discussed. Finally in

section 5, the conclusions are drawn and future works are indicated.

2. RELATED WORK
Intensive research has been conducted in cloud computing task scheduling, to solve the problem of mapping a

set of tasks to a set of machines. Various algorithms have been designed to schedule the jobs in cloud computing,

e.g. [8], [9], [10], [11], [12], [13], [15]. Here, we make a quick overview of two of the most commonly known

algorithms, which are Min-Min [2,7], Max-Min [2,7],in addition to the ABC algorithm [6,12] which is a cost-

based scheduling algorithm for the cloud.

2.1 Min-Min Algorithm

The scheduling criterion in Min-Min is to achieve Minimum Completion Time. The scheduling process is done

by adding all tasks to a set known as the meta task, if the meta task not empty, the algorithm begins to calculate

the completion time for each task; then, the task that has the earliest minimum execution time is taken from the

set and assigned to the corresponding resource. Then, this task is removed from the meta-task set. This process

repeats after removing this task till all tasks in meta-task are processed [2, 7, 10].

2.2 Max-Min Algorithm
This algorithm is similar to the Min-Min algorithm but it is different in one issue; instead of choosing the task

with minimum completion time, it chooses the task with the maximum completion time and assigned to the

corresponding resource [7]. Max-Min is much better than Min-Min algorithm when the number of short tasks is

more than the number of long tasks [2].

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

11

2.3 An Optimized Algorithm for Task Scheduling Based On Activity Based Costing in Cloud Computing

(ABC Algorithm)

This algorithm measures the cost of the resource and applies the concept of cost-based priority by calculating the

cost of each individual use of the resources and the corresponding profit of using these resources. According to

these calculations, tasks are given priorities and sorted in three levels; High, Medium and Low level priority,

where the tasks with highest profit are assigned the highest priority. If new task arrives its priority calculated and

it is assigned to the end of the appropriate level [6].

3. The Proposed Algorithm (PCA)
Most of the traditional algorithms of scheduling in cloud computing don’t make any consideration for the task’s

cost, where the task is assigned to any available resource as soon as it arrives. This leads to some problems such

as over-costed and/or over-priced cloud services in case of high-volume simple tasks and under-costed and/or

under-priced in low-volume complex ones [6]. To overcome these problems and since many people think of

current cloud computing offerings as purely “pay by the drink” compute platforms [15], we proposed the

Performance and Cost Algorithm(PCA) as a hybrid algorithm that aims not only to the minimization of the

services cost paid by the user and/or maximizing the profit gained by the provider of services renting, but also

aims to optimize the performance of these services by minimizing the services completion time and maximizing

the resource utilization of the resources, in order to enable the provider to provide the best and most efficient

services with highly competitive prices.

The base structure of the scheduler we proposed in our algorithm is composed of a number of queues

equal to the number of priority levels considered in the system; e.g. in the examples presented in this paper, we

assumed a scheduler of three different priority levels; High, Medium and Low; hence, the proposed scheduler

has three different queues. Where, as explained later, the task’s priority used by the algorithm is not the one

assigned by the provider but is one calculated by the algorithm once it arrives to the scheduler according the

task’s cost and the profit gained from running it.

Once the task’s priority is calculated, the task is sent to the appropriate queue in the scheduler, where

the algorithm, shown in figure 1, assigns the task(s) in highest queues, i.e. which has/have the highest calculated

priority, to the resource(s) which has the minimum completion time with a consideration of the waiting time of

the tasks in the lower queues as explained next in details:

Fig. 1. Pseudo Code of The PCA Algorithm

���� 	 = 	 ���� + 	�

Step 1- FOR all available tasks DO

Calculate the priority of each task

 END FOR

Step 2- Sort the tasks according to thepriorities in the

scheduler’s queues.

Step 3- FOR all tasks Ti in meta-taskDO

 FOR all resources RjDO

Calculate the competition time:

 END FOR
END FOR

Step 4- Find task Tk which has the highest Priority and assign

this task Tk to the resource which has the minimum

completion time.

Step 5- Remove task Tk from Meta-tasks set and update rj for

the selected Rj and Update CTijfor all j.

Step 6-IF the waiting time of any task in the lower queues

has exceeded the threshold THEN

Move this/these tasks to the next upper queue.

 END IF.

Step 7- IF there is a new task has arrived THEN

Calculate its priority and sort it in the end of

appropriate queue and repeat the above steps

END IF

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

12

In Step one, we calculate the priority by first calculating the cost of each task on each available resource by

using equation 1:

Cost	(����) = NOI(��) 	× 		CPI(����) + 	D(��) 	× 	CPBW(����)																					(1)

Where:

NOI (Ti): is the number of instructions for task (Ti).

CPI(����):is the cost per instruction for Tion resource Rj

D(Ti): is the data for task (Ti).

CPBW(����): is the cost per bandwidth for running the task Ti on resource Rj.

Then, the profit is calculated for each task on the resource which has the highest cost using equation 2;

Profit	 = 	CostU(T#)– 	CO %T#&'()*																						(2)

Where:

CostU(��): is the cost paid by the user to run task Ti

CO(���,-.):is the actual cost of running task Ti on the resource Rmax (Rmax is the resource which has highest

cost).

After that, all the tasks are sorted and each task is assigned to the appropriate queue. In our work, we proposed

only three levels of queues (High, Medium and Low) and we proposed that these queues have equal range of

priorities, i.e. the total range of priorities of the recent tasks is divided among the available queues. Hence, as we

have three queues, we can use equation 3 to calculate the range QR of priorities for each queue:

QR = 123456789(��) 3⁄ 																				(<)
Where:

123456789(��): is the maximum profit of running task Ti, it is divided by 3 as we assumed the existence of three

queues in our algorithm.

Figure 2 shows an instance of our proposed schedule with three queues. The High queue has the highest region

of priorities, the Middle queue has the medium region of priorities and the Low queue has the lowest region of

priorities. As explained above, we can see that:

IF (Profit(T#) 	 ≤ 	QR), THEN the task Ti is inserted in the Low queue.

IF (QR	 < Profit(T#) 	 ≤ 	2QR) THEN the task Ti is inserted in the Medium queue.

IF (2QR	 < Profit(T#) ≤ 	3QR) THEN the task Ti is inserted in the High queue.

Then, in Step three, the completion time is calculated for each task on each resource in the system by using

equation 4:

CT#? 	 = 	 EC#? + r?																						(4)

Where:

ECij: is the execution time of task Ti on the resource Rj.

rj: is the ready time for resource Rj.

In step four, the task which has the highest priority is selected and assigned to the resource that executes it in the

minimum completion time.

Fig. 2. Shows an instance of our proposed schedule with three queues. The High queue has the highest region of

priorities, the Middle queue has the medium region of priorities and the Low queue has the lowest region of

priorities

In step five, the assigned task is removed from the meta-task and all ready times and completion times

Fig. 2. Level of priority

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

13

for all resources are update.

In step six, in order to overcome the problem of infinite waiting of tasks in the lower queues, we

assumed an aging threshold value for the maximum waiting time of a task in a queue, for all queues other than

the High queue; if this task outstrips the threshold, the task migrates to the end of next upper queue.

In step seven, if a new task arrived, its priority is calculated using equation (1) and the process is

repeated from step one, where all the calculations are remade and the queues are updated.

4. Results
In order to validate our algorithm, we built a simple simulation using Java. Here, we present some examples that

illustrate its work and we used a set of metrics as a performance metrics in order to evaluate the performance of

the algorithm and to compare it with some of the traditional cloud scheduling algorithms. Next, we present first

the performance metrics used; then, we present the examples.

4.1 Performance Metrics
Depending on what scheduling performance is desired in the cloud, there exist different performance metrics for

evaluating different scheduling algorithms. Here, the results are evaluated on the basis of the following

performance metrics.

- Priority: it is calculated for each task in the meta-task set based on the cost and profit of the service task and its

maximum value is used to define the boundaries of the scheduler queues as stated previously.
- Makespan: it is the time difference between the start and finish of the sequence of jobs or tasks ti. It can be

calculated using the equation

makespan = max(CT#)HI∈KLHMNMOP						(Q)

In general, the lower the makespan, the better is the scheduling.

- Average resource utilization rate: it is calculated according to equation 6 borrowed from (7):

ru = ∑ ru?T?UV
m 																																												(W)

Here, ruj is the average resource utilization rate of resource j. It can be calculated using equation7.	
ru? = ∑(te#X		ts	#)

T 																																				(Y)

Where, tei and tsi are the end time and the start time of executing the task ti on the resource mj respectively, and T

is the total application time so far, it can be calculated using following equation

T = max (tei) −min (tsi) (8)

- Provider Cost: It is the cost afforded by the provider to present the service to the user. It can be calculated

using equation 9:

COZ[\]#^L[= _[PCost	(R(T#

a

#UV
)) × Size(T#) + BWCost(R(T#)) × Data(T#)]																	(e)

Where:

n: is the number of scheduled task.

f(��): is the resource chosen to run task Ti

1g3h6	(f(��)): is the cost of executing task Ti on the resourcef(��).

i5jk(��): is the Size of instructions executed by Ti.

lmg3h6(f(��)): is the bandwidth cost of running the data of task Ti on the resourcef(��).

no6o(��): is the size of Data transferred by task Ti to/from the resource.

4.2 Example 1:
The aim of this example is to illustrate the basic functionality of the proposed algorithm. In this example, it is

assumed that there is a cloud environment with three resources R1, R2, R3. The processing speed of these

resources and the bandwidth of their communication links are shown in Table 1.

Table 1. Specification of the Resources

Resources Processing speed (MIPS) Related Bandwidth (Mbps)
R1 50 100

R2 250 200

R3 100 150

Also, assume we have a meta-task of twelve tasks T1, T2..., T12are in the meta-task, and the cloud manager is

supposed to schedule all the tasks within this meta-task on the three available resources R1, R2 and R3. Table 2

represents the size details of both the instructions and data for all the tasks T1 to T12.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

14

Table 2. Specification of Tasks

Task ID instructions (MI) Data (Mb)
T1 215 75

T2 320 95

T3 183 52

T4 198 201

T5 324 102

T6 55 63

T7 45 33

T8 600 450

T9 99 29

T10 508 307

T11 222 66

T12 403 142

Table 3 describes the actual costs of the three resources; including the processor cost in instructions per second

(IPS) and the bandwidth cost in bandwidth per second (bps).

From the above specifications, we can calculate, as shown in the three columns of Table 4, the cost of running

each task on each of the three resources (R1, R2 and R3).

Table 3. Costs of Using the Resources

Cost/Resource R1 R2 R3

Cost of processor (IPS) 0.02 0.05 0.03

Cost of bandwidth (bps) 0.01 0.03 0.02

Table 4. Data of Example 1

Task ID
Actual Cost CO($) of running on

Cost CostU($) Paid the
User

Profit for Rmax R1

 (CR1)

R2

(CR2)

R3

(CR3)

T1 5.05 13 7.95 15 2

T2 7.35 18.85 11.5 25 6.15

T3 4.18 10.17 6.53 16 5.83

T4 5.97 15.93 9.96 20 4.07

T5 7.5 19.77 11.75 30 10.23

T6 1.73 4.04 2.91 10 5.96

T7 1.23 8 2.01 12 4

T8 16.5 43.5 27 60 16.5

T9 5.1 13.08 7.98 17 3.92

T10 13.23 34.61 21.38 50 15.39

T11 2.27 5.82 3.55 10 4.18

T12 9.48 24.41 14.93 40 15.59

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

15

Fig. 3. A Gantt chart of The Data in Table 4

In the 5
th

 column of the same table, Table 4, the price offered to the user for running each task in the cloud

environment is shown. Hence, as required for equation 2 of the algorithm, in the last column the approximate

value of the lowest profit that can be gained from running each task can be deduced by subtracting the price

payable by the user, i.e. the value in the 5th column, from the maximum possible actual price, i.e. the maximum

value in columns 2, 3, 4. For instance, Task 2’s lowest profit = 25-maximum (7.35, 18.85, 11.5) = 6.15 as shown

in the last column. Figure 3shows a Gantt chart that summarizes the data shown in Table 4.

We can deduce from the last column of table 4 the value of 123456789(��)	to be 16. Then, according to equation

3 the range of priorities for each of the three queues QR=16/3=5.19.Hence the limits of the three queues are as

follows:

- Low queue: tasks with priority [0, 5],

- Medium queue: tasks with priority [5, 10],

- High queue: tasks with priority above 10,

This results in the distribution shown in Table 5.

According to the algorithm, the next step is to find task Ti which has the highest priority and assign task Ti to the

resource which has the minimum completion time.

Table 5. Assigned Priority Queues for each task

Task ID Priority Queue
T1 LOW

T2 MEDIUM

T3 MEDIUM

T4 LOW

T5 MEDIUM

T6 MEDIUM

T7 LOW

T8 HIGH

T9 LOW

T10 HIGH

T11 LOW

T12 HIGH

Table 6 below shows the resource assigned by our proposed algorithm for running each task and the Completion

Time at which this task finishes its execution at this resource. According to equation 5, the makespan of this

meta-task equals 12.75 which is the maximum completion time of all the tasks.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

16

Table 6. Assigned Resources and the Completion Time

Task ID
Assigned

Resources
Completion Time

T8 R2 4.65

T10 R3 7.06

T12 R2 6.97

T5 R1 7.5

T2 R2 8.72

T6 R3 7.96

T3 R2 9.72

T11 R3 10.62

T4 R2 11.51

T7 R1 8.73

T9 R1 11

T1 R2 12.75

Table 7. Provider Cost

Algorithms Provider Cost
Min-Min 174.58

Max-Min 199.91

ABC 162.59

PCA 162.35

Also, table 7 shows the costs afforded by the provider as calculated from equation 9 for our algorithm and the

three other algorithms (Min-Min, Max-Min and ABC).

As seen from the table our algorithms achieved the 2
nd

 minimum cost after the ABC algorithm with a

cost very close to it. But when looking to both the makespan, shown in figure 4, and resource utilization, shown

in figure 5, we find that our algorithm beats clearly not just the ABC algorithm, but the Min-Min and Max-Min

as well. This means that our algorithm can enable the cloud provider to present relatively high performance

services to the users with economic and competitive prices.

Fig. 4. Makespan Comparisons

0

5

10

15

20

Makespan

PCA Min-Min Max-Min ABC

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

17

Fig. 5. Comparison of Average Resource Utilization

4.3 Example 2

To confirm the validity of our algorithm, we show here another example with more resources that have different

specifications. In this example, we assume that we have the same task set presented in example 1 and five

resources with the characteristics shown in table 8.

Table 9 describes the actual costs of the three resources; including the processor cost in instructions per second

(IPS) and the bandwidth cost in bandwidth per second (bps).

Table 10 shows the cost of each resource and the cost payable by the user for each task and the calculated profit

for the resource which has the highest cost. In the same table, we deduced, as explained in the previous example,

the values of the profit gained by each task when it runs on the resource Rmax; from these values we directly

decided in the last column the priority queue to which the task is added, where QR in this example equals

16.5/3=5.5

Table 8. Resources Characteristics

Resources
Processing speed

(MIPS)
Related Bandwidth (Mbps)

R1 400 50

R2 250 200

R3 100 150

R4 125 30

R5 50 100

Table 8. Resources Characteristics

Resources Processing speed (MIPS)
Related Bandwidth

(Mbps)
R1 400 50

R2 250 200

R3 100 150

R4 125 30

R5 50 100

0%

20%

40%

60%

80%

100%

Average Resource Utilization

PCA Min-Min Max-Min ABC

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

18

Table 10. Costs and Profits of Example 2

Priority
Queue

Profit
for

Rmax

Cost CostU($)
Paid by the

User

Actual Cost CO($) of running on

T
a

sk
 I

D

R
5

 (
C

R
5

)

R
4

(C
R

4
)

R
3

 (
C

R
3

)

R
2

(C
R

2
)

R
1

(C
R

1
)

LOW 1.35 15 5.05 9.35 7.95 13 13.65 T1

LOW 4.85 25 7.35 13.75 11.5 18.85 20.15 T2

LOW 4.5 16 4.18 7.84 6.53 10.17 11.5 T3

LOW 4.07 20 5.97 9.93 9.96 15.93 13.89 T4

MEDIUM 9.45 30 7.5 13.98 11.75 19.26 20.46 T5

MEDIUM 5.96 10 1.73 2.83 2.91 4.04 3.93 T6

LOW 4 12 1.23 2.13 2.01 8 3.03 T7

HIGH 16.5 60 16.5 28.5 27 43.5 40.5 T8

LOW 3.77 10 2.27 4.25 3.55 5.82 6.23 T9

HIGH 15.84 50 13.23 23.39 21.38 34.61 33.55 T10

LOW 3.02 17 5.1 9.54 7.98 13.08 13.98 T11

HIGH 14.6 40 9.48 17.54 14.93 24.41 25.4 T12

Table 11. Completion Time of tasks in Example 2

Task ID Resources Completion Time
T8 R2 4.65

T10 R3 7.06

T12 R1 3.84

T5 R4 5.99

T6 R5 1.63

T2 R2 6.405

T3 R1 5.397

T4 R5 7.6

T7 R1 6.17

T9 R2 6.946

T11 R1 8.045

T1 R2 8.181

Table 12. Actual cost

Algorithms Provider Cost
Min-Min 183.87

Max-Min 181.56

ABC 173.63

PCA 174.29

Table 11 shows the resources assigned by our proposed algorithm for running each task and the

Completion Time at which this task finishes its execution on these resources. According to equation 5, the

makespan of this meta-task equals 8.181 which is the maximum completion time of all the tasks.

As in the previous example, Table 12 shows that the provider cost afforded by the proposed algorithm

is very close to the ABC algorithm and Figures (6 and 7) show that both the makespan and resource utilization of

the proposed algorithm is much better than the other algorithms (Min-Min, Max-Min and ABC). This confirms

that the proposed algorithm provides high performance services with competitive and economical prices.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

19

Fig. 6. Makespan Comparisons

Fig. 7. Average Resource Utilization

4.4 Example 3
The aim of this example is to show how the algorithm handles the low priority tasks to avoid starvation. In this

example we assumed that we have 12 tasks, see their specification in table 13, arrived at different times (time 0,

time 5 and time 10) and there are only two resources with the specification shown in table 14.

Table 13. Specification of the Tasks

Task
ID

instructions (MI) Data (Mb)
Arrival Time
 (Time Unit)

T1 215 75 0

T2 320 95 0

T3 183 52 0

T4 198 201 0

T5 99 29 5

T6 508 307 5

T7 222 66 5

T8 403 142 5

T9 324 102 10

T10 55 63 10

T11 45 33 10

T12 600 450 10

0

2

4

6

8

10

12

Makespan

PCA Min-Min Max-Min ABC

0%

20%

40%

60%

80%

100%

Average Resource Utilization

PCA Min-Min Max-Min ABC

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

20

Table 14. Specification of the Resources

Resources Processing speed
(MIPS)

Related Bandwidth
(Mbps)

R1 50 100

R2 100 150

Table 15 describes the costs of the two resources; including the processor cost in instructions per second (IPS)

and the bandwidth cost in bandwidth per second (bps).

Table 15. Costs of Using the Resources

Cost/Resource R1 R2

Cost of processor (IPS) 0.02 0.05

Cost of bandwidth (bps) 0.01 0.03

To simplify the calculations, table 16 shows approximate values of the calculated Profit for Rmax for each of the

12 tasks as described in the earlier examples.

Table 16. Calculations of the Profit for Rmax

Task ID Actual Cost CO($) of
Running on

Cost CostU($)
Paid by the User

Approximate
Profit for

Rmax R1

 (CR1)

R2

(CR2)

T1 2.27 5.82 13 7

T2 13.23 34.61 50 15

T3 5.1 13.08 17 4

T4 9.48 24.41 40 15

T5 5.05 13 15 2

T6 7.35 18.85 25 6

T7 4.18 10.17 16 6

T8 5.97 15.93 20 3

T9 7.5 19.26 30 11

T10 1.73 4.04 10 6

T11 1.23 8 12 4

T12 16.5 43.5 60 16

In this example, we assumed the threshold of waiting time for each task in any queues other than the High queue

is 10 time units. After this time, each task migrates to the next upper queue.

Table 17. Assigned Resources and the Completion Time of the Tasks

Task ID Assigned Resources Completion Time
T2 R2 4

T4 R1 6

T1 R2 7

T6 R2 14

T7 R1 11

T12 R2 24

T9 R1 18

T3 R1 22

T10 R1 24

T8 R2 29

T5 R1 26

T11 R1 27

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

21

Fig.8. Execution of the Tasks of Example 3 on R1 and R2

By inspecting the tasks in table 13, we notice that only 4 tasks arrives at time 0; hence, from table 16,

we can see that the maximum profit from these tasks equals 15 approximately; hence QR≈5 at the beginning of

execution of the scheduler. Therefore, tasks T2 and T4 are inserted in the High queue, while task T3 is inserted in

the Low queue and task T1 is inserted in the Medium queue. So, as shown in table 17 and in figure 8, tasks T4

and T2 are assigned to R1, R2 directly, while T1 and T3 waits in their queues. Once, T2 finishes its execution and

R2 becomes free, the algorithm assigns T1 to R2 at time 4. At time 5, in addition to the remaining task T3 in the

Low queue, new tasks (T5, T6, T7, T8) arrive; hence, according to our algorithm

a new value is calculated for QR using the profit value of the remaining tasks and the newly arrived

tasks to, where in this case as the calculated value of QR equals 6/3=2 which is less than the old value of QR, the

algorithm keeps the old value of QR and ignores the new value. So, tasks T6 and T7 are inserted in the Medium

queue, T8 are inserted at the end of the Low queue after T3, which remains in the same queue as the aging

threshold has not reached yet. Later, at time 10, when tasks T9, T10, T11, T12, the algorithm finds that tasks T3, T5,

T8 has not executed yet, but only task T3 has waited 10 time units which is the threshold value of the waiting time

in any queue in our algorithm. So, the algorithm keeps the priorities of both T5 and T8, while in order to move

task T3 to the upper queue, the algorithm updates the value of its priority to a value of 6 which is the minimum

value of the priority in the next upper queue. Then, again the algorithm recalculates a new value of QR, which

becomes in this case 16/3≈5 which is similar to the old value, so the limits of the queues are kept the same.

Hence, tasks T9, T12 are inserted in the High queue, T10 is inserted in the medium queue and T11 is inserted in the

Low queue. Later, at time 15, the algorithm finds that T5 and T8 have spent 10 time units in the Low queue, so it

changes their priority to a value of 6 and move them to the Middle queue. Later at time 20, the algorithm finds

that T10 has reached the waiting time threshold, so it updates its priority to a value of 11 in order to move it to the

High queue. So, as seen in figure 4, at time 22 T10 is executed on R2; then, at time 24, T5 is assigned to R2.

Finally, at time 24, task T8 is assigned to R2. At time 25, the value of T11 does not change. Finally, at the time 26,

T11 is assigned to R1. The completion time of all tasks are shown in table 4 and figure 4, where we can see that

the makespan in this example=29.

4.5 Evaluation with Other Algorithms
To evaluate and compare our proposed scheduling algorithm with three well-known cloud scheduling algorithms

(Min-Min, Max-Min and ABC), we used a simple simulation built using JAVA, where we assumed 8 resources

and 50 tasks. The following three scenarios are taken to perform the experimental testing:

1. Scenario 1: - Many high priority tasks along with few medium and low tasks.

2. Scenario 2: - Many medium priority tasks along with few high and low tasks.

3. Scenario 3: - Many low priority tasks along with few high and medium tasks.

The makespan for the four algorithms in each of the above three scenarios are shown next in figure 9,

where it can be seen that the proposed algorithm is more efficient than the other three algorithms (Min-Min,

Max-Min, and ABC) as in all the scenarios it achieves better makespan than the other algorithms.

Also, figure 10 shows the average resource utilization for the four algorithms, where it is clear that the

proposed algorithm achieves the best resource utilization when compared with the other three algorithms (Min-

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

22

Min, Max-Min and ABC).

Fig. 9. The Makespan for (a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 10. The Average Resource Utilization for (a) Scenario 1 (b) Scenario 2 (c) Scenario 3

5. Conclusion
In traditional cloud scheduling algorithms, the schedulable task is assigned either to the resource which finishes

it in the minimum completion time or to the available resource as soon as it arrives without taking in to

consideration the cost of the tasks. Some other algorithms do take into account the priority or the cost of the task

assigned by the user but ignored the completion time. In this paper, we presented the (PCA) algorithm to

consider both the completion time and the cost-priority in order to optimize the resource utilization and to

minimize the makespan in order to provide cost economical services with high performance for the cloud users.

Many issues remain open, like temperature resources and energy consumption etc., and they are under

consideration as a part of a further work.

References
[1] Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Special Publication 800-145. National

Institute of Standards and Technology. U.S. Department of Commerce.(2011). [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[2] Sarada, N. S.: Enhanced Ant Colony System Based On RASA Algorithm In Grid Scheduling. International

Journal of Computer Science and Information Technologies, Vol. 2. No.4, 1659-1674, 2011.

[3] Chen, H., Wang F., Helian, N., Akanmu, G.: User-Priority Guided Min-Min Scheduling Algorithm for Load

Balancing in Cloud Computing. In Proceedings of the National Conference on Parallel Computing

Technologies (PARCOMPTECH), IEEE. Computer Society, Bangalore, India. (2013).

[4] Beloglazov, A., Abawajy, J., Buyya, R.: Energy-Aware Resource Allocation Heuristics for Efficient

Management of Data Centers for Cloud Computing, The International Journal of Grid Computing and

eScience, Future Generation Computer Systems (FGCS), Volume 28. No. 5, 755-768. Elsevier Science, The

Netherlands. (2012).

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.8, 2015

23

[5] Kaur, A., Kinger, S.: Temperature Aware Resource Scheduling in Green Clouds. In Proceedings of the

International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE

Computer Society, Mysore, India, 1919-1923. (2013).

[6] Cao, Q., Wei. Z., Gong, W. M.: An Optimized Algorithm for Task Scheduling Based On Activity Based

Costing in Cloud Computing. In Proceedings of the 3rd International Conference Bioinformatics and

Biomedical Engineering (ICBBE). IEEE Computer Society, Beijing, China, 1-3. (2009).

[7] Etminani, K., Naghibzadeh, M.: A Weighted Mean Time Min-Min Max-Min Selective Scheduling Strategy

for Independent Tasks on Grid. In Proceedings of the 2nd International Advance Computing Conference

(IACC), IEEE Computer Society, Patiala, India, 4-9. (2010)

[8] Casavant, T., Kuhl, J. G.: A Taxonomy of Scheduling in General-purpose Distributed Computing Systems.

IEEE Transactions on Software Engineering, Vol.14, No. 2, 141-154. (1988).

[9] Bhoi, U., Ramanuj, P.N.: Enhanced Max-Min Task Scheduling Algorithm in Cloud Computing. International

Journal of Application or Innovation in Engineering & Management (IJAIEM), Vol. 2, No. 4, 259-264.

(2013).

[10] Liu, G., Li, J., Xu, J.: An Improved Min-Min Algorithm in Cloud Computing. In Proceedings of the

International Conference of Modern Computer Science and Applications. Springer, Wuhan, China, 47-52.

(2012).

[11] Selvarani, S., Sadhasivam, G. S.: Improved Cost-based Algorithm for Task Scheduling in Cloud Computing.

In Proceedings of International Conference Computational Intelligence and Computing Research (ICCIC),

IEEE Computer Society, Coimbatore, India,1-5.(2010)..

[12] Ghanbari, S., Othman, M.: A Priority-based Job Scheduling Algorithm in Cloud Computing. In Proceedings

of the International Conference on Advances Science and Contemporary Engineering (ICASCE). Jakarta,

Indonesia, 778-785. (2012).

[13] Wu, X., Deng, M., Zhang, R, Zeng, B., Zhou, S.: A Task Scheduling Algorithm Based on QoS-Driven in

Cloud Computing. In Proceedings of the International Conference on Information Technology and

Quantitative Management. Elsevier Procedia, Suzhou, China, 1162-1169. (2013).

[14] Lee1, Z., Wang, Y., Zhou, W.: A Dynamic Priority Scheduling Algorithm on Service Request Scheduling in

Cloud Computing. In Proceedings of the International Conference on Electronic & Mechanical Engineering

and Information Technology (EMEIT). IEEE Computer Society, Harbin, China, 4665-4669. (2011).

[15] Sun Microsystems: Take Your Business To A Higher Level - Sun Cloud Computing Technology Scales

Your Infrastructure to Take Advantage of New Business Opportunities. Technical Report. (2009).

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

