
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

94

An Authenticated Bit Shifting and Stuffing (BSS) Methodology

for Data Security

B. Ravi Kumar
1
, P.R.K.Murti

2
, B. Hemanth Kumar

3

1,2
 Department of Computer and Information Sciences, University of Hyderabad,

P.O. Central University, Gachibowli, Hyderabad 500 046, Andhra Pradesh, INDIA.

Email:
1
ravi_budithi@yahoo.com &

2
murti.poolla@gmail.com

3
 Department of IT, R.V.R.& J.C. College of Engineering ,

 Guntur, Andhra Pradesh, INDIA.

Email:
 3

bhkumar_2000@yahoo.com

Abstract

Providing security to the data means the third party cannot interpret the actual information. When providing

authentication to the data then only authorized persons can interpret the data. One of the methodology to

provide security is cryptography. But in previous paper we have proposed a methodology for the

cryptography process is BSS. In Bit Shifting and Stuffing (BSS) system to represent a printable character it

needs only seven bits as per its ASCII value. In computer system to represent a printable character it

requires one byte, i.e. 8 bits. So a printable character occupies 7 bits and the last bit value is 0 which is not

useful for the character. In BSS method we are stuffing a new bit in the place of unused bit which is

shifting from another printable character. To provide authentication a four bit dynamic key is generated for

every four characters of the encrypted data and the key is also maintained in the data itself. While

decryption the key is retrieved from the data and check whether the data is corrupted or not.

Key Words: Bit Shifting, Stuffing, Security, authentication.

1. Introduction

In our previous paper (Kumar 2011) we discussed how encryption and decryption process is done by using

BSS methodology. In this paper we generate a dynamic key for data authentication and security. Data

transmitted over the Internet passes through many servers and/or routers and there are many opportunities

for third parties to intercept that transmission. Preventing interception is impossible; instead, the data must

be made unreadable (encrypted) during transmission, with a way for the intended recipient to be able to

transform the received transmission back to its readable form (decryption process) (Wikipedia 2006).

Encryption is a mechanism by which a message is transformed so that only the sender and recipient can

see. When a message is encrypted, that means that it is transformed into a form when the data is passed

through some substitute technique, shifting technique, table references or mathematical operations. All

those processes generate a different form of that data and that is not readable; the encrypted form often

looks like random characters or gibberish. When a message is decrypted, it is returned to its original

readable form. Encryption can provide strong security for data to give sensitive data the highest level of

security. The algorithm used to encrypt data is called a cipher, or cipher text which is representation of the

original data in a difference form (Freeman 1998), while unencrypted data is called plaintext. Decryption is

the process of converting encrypted data (ciphertext) back into its original form (plaintext), so it can be

understood. The security of encrypted data depends on several factors like what algorithm is used, what is

the key and how was the algorithm implemented in the product.

In section 2 we have discussed about the previous work of the proposed system, in section 3 we give our

proposed system, in section 4 we have given the methodology and algorithms for generating dynamic key

mailto:2murti.poolla@gmail.com

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

95

encryption and decryption for the proposed system, in section 5 implementation results with discussions,

section 6 conclusions and future work.

2. Previous Work

The system deals with security of data by using BSS encryption and decryption (Kumar 2011).

2.1 Encryption Process

In this process every eight bytes of plain text becomes seven bytes of cipher text. So another advantage of

this method is when it encrypts it reduces the size of the data. In this process let us consider I1 , I2 , I3 , I4 , I5 ,

I6 , I7 and I8 represents 8 printable characters of plain text and the values in the boxes represents the byte

equivalent values of each character. i.e. a1 a2 a3 a4 a5 a6 a7 represents 7bits of character I1

and their value may be either 0 or 1. Similarly remaining character bits are represented in boxes as shown

in figure 1. In this process the last character I8 bits h1 , h2 , h3 , h4 , h5 , h6 , h7 are shifted and stuffed in to the

characters I7 , I6, I5 , I4 , I3 , I2 , I1 respectively as shown in figure 2.

2.2 Decryption Process

In decryption process every seven bytes of cipher text produces eight characters of plain text. So after

decryption process the decrypted data will automatically get its original size. The fallowing figure 3 shows

data before decryption, and figure 4 shows the data after decryption.

Figure 1: Before Encryption

I5: 0 e1 e2 e3 e4 e5 e6 e7

I6: 0 f1 f2 f3 f4 f5 f6 f7

I7: 0 g1 g2 g3 g4 g5 g6 g7

I8: 0 h1 h2 h3 h4 h5 h6 h7

I4: 0 d1 d2 d3 d4 d5 d6 d7

I3: 0 c1 c2 c3 c4 c5 c6 c7

I2: 0 b1 b2 b3 b4 b5 b6 b7

I1: 0 a1 a2 a3 a4 a5 a6 a7

Figure 2: After Encryption

I1: h7 a1 a2 a3 a4 a5 a6 a7

I2: h6 b1 b2 b3 b4 b5 b6 b7

I3: h5 c1 c2 c3 c4 c5 c6 c7

I5: h3 e1 e2 e3 e4 e5 e6 e7

I4: h4 d1 d2 d3 d4 d5 d6 d7

I6: h2 f1 f2 f3 f4 f5 f6 f7

I7: h1 g1 g2 g3 g4 g5 g6 g7

Figure 3: Before Decryption

I1: h7 a1 a2 a3 a4 a5 a6 a7

I2: h6 b1 b2 b3 b4 b5 b6 b7

I5: h3 e1 e2 e3 e4 e5 e6 e7

I6: h2 f1 f2 f3 f4 f5 f6 f7

I7: h1 g1 g2 g3 g4 g5 g6 g7

I3: h5 c1 c2 c3 c4 c5 c6 c7

I4: h4 d1 d2 d3 d4 d5 d6 d7

Figure 4: After Decryption

I3: 0 c1 c2 c3 c4 c5 c6 c7

I8: 0 h1 h2 h3 h4 h5 h6 h7

I4: 0 d1 d2 d3 d4 d5 d6 d7

I2: 0 b1 b2 b3 b4 b5 b6 b7

I1: 0 a1 a2 a3 a4 a5 a6 a7

I5: 0 e1 e2 e3 e4 e5 e6 e7

I6: 0 f1 f2 f3 f4 f5 f6 f7

I7: 0 g1 g2 g3 g4 g5 g6 g7

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

96

3. PROPOSED SYSTEM

In our proposed system, we have presented new algorithms named Bits Shifting and Stuffing (BSS)

methodology(Kumar 2011). Commonly in encryption or decryption process some of the characters are

inter changed by using some encryption and decryption algorithms(Beth 1989, IBM 1994, Lai 1990, Bruce

Schneier 1994)with key. But in Bit Shifting and Stuffing (BSS) system to represent a printable character it

needs only seven bits as per its ASCII value. In computer system to represent a printable character it

requires one byte, i.e. 8 bits. So a printable character occupies 7 bits and the last bit value is 0 which is not

useful for the character. In BSS method we are stuffing a new bit in the place of unused bit which is

shifting from another printable character. So in this BSS methodology after encryption, for every eight

bytes of plain text it will generate seven bytes cipher text and in decryption, for every seven bytes of cipher

text it will reproduce eight bytes of plain text. Then for Authentication and Security we generating key,

by using a random function generating a 4 bit polynomial. Take 4 characters from the encrypted file and by

using this polynomial perform modulo- 2 division operation on these 4 characters. we will get a remainder

of 3bits. In the second step of encryption these 4 characters, polynomial and the remainder are adjusted in

5 bytes. These five bytes are maintained separately in another file. Like for every 4 characters of first

encrypted file after performing modulo-2 division operation, 5 bytes are maintained in the file.

4. Methodology

The system deals with security and authentication of data by using BSS encryption and decryption by using

dynamic key. Figures 5 and 8 shows the architectural Diagrams for authentication process.

4.1 Encryption with Dynamic key

By using a random function generate a 4 bit Dynamic polynomial. Take 4 characters from the encrypted

file and by using this polynomial perform modulo- 2 division operation on these 4 characters. You will get

a remainder of 3bits. In the second step of encryption these 4 characters, polynomial and the remainder are

adjusted in 5 bytes. These five bytes are maintained separately in another file (say encr2.). Like for every 4

characters of first encrypted file after performing modulo-2 division operation, 5 bytes are maintained in

the file encr2. Figure 5 shows the architecture for Encryption with Key and Authentication Process. The

original encrypted data by using BSS algorithm for as shown in figure 6. After generating 4 bit

(p1,p2,p3,p4) dynamic key , perform modulo 2 division on these 4 characters and the remainder will be

(r1,r2,r3). The key and remainder is embedded in the data itself as shown in figure 7.

Authentication

 Figure 5: Architecture for Encryption with Key

Encryption
Cipher text

Encrypted with key

Cipher text with key

Actual message M

+

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

97

 4.2 Dynamic Polynomial

In this algorithm we are using random() method which generates random number and we are using a

number which is between 8 and 15 i.e 4bit number and this function returns this number known as the

POLY.

Integer dyn_poly()

1. while TRUE

2. POLY  Rand()%8 + 8 // (8 to 15)

3. If (Mod_2div (0x02 ,POLY, 0x00,2) && Mod_2div(0x03 ,POLY, 0x00,2)) then

4. return POLY

End while

5. End.

4.3 Modulus 2 Division

POLY.PREPOS,A are characters and PSIZE Integer.

Mod_2div(POLY, A, PREPOS, PSIZE)

1. Let CH and MASK are characters

MASK  0x07 (Hexadecimal number)

2. For I 1 to 8

a) CH  A >> (8-I)

CH CH & 0x01 // (“ & “ AND operator)

b) PREPOS  PREPOS & MASK

PREPOS  PREPOS << 1

PREPOS  PREPOS | CH // (“ | ” OR operator)

c) If PREPOS < PSIZE then

PREPOS  PREPOS ^ 0x00 //(“ ^ “ Exclusive OR)

Else

PREPOS  PREPOS ^ POLY

Figure 6: original encrypted message

 a0 a1 a2 a3 a4 a5 a6 a7 A [4]:

 b0 b1 b2 b3 b4 b5 b6 b7 A [3]:

 c0 c1 c2 c3 c4 c5 c6 c7 A [2]:

 d0 d1 d2 d3 d4 d5 d6 d7 A [1]:

Figure 7:encrypted message with key

 a3 a4 a5 a6 a7 r1 r2 r3 A [4]:

 b3 b4 b5 b6 b7 a0 a1 a2 A [3]:

 c3 c4 c5 c6 c7 b0 b1 b2 A [2]:

 d3 d4 d5 d6 d7 c0 c1 c2 A [1]:

 0 p1 p2 p3 p4 d0 d1 d2 A [0]:

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

98

d) Ene for loop

3. return PREPOS

4. End.

4.4 Authentication

Crc32() takes Poly and array of characters AR[] and returns CRC

1. CRC  0x00 (hexadecimal numbers)

2. For J is 0 to 4

3. CRC  Mod _2div(POLY , AR[J] ,CRC)

4. Return CRC

5. End.

4.5 Encryption with key Process

It takes the encrypted data FILE as argument.

1. Let A[5] is the character array of 5 elements

Take first 4 characters into A[4], A[3], A[2], A[1]

Initially the characters as shown in figure 6.

2. Do the fallowing operations

Let T and T1 are temporary variables

a) T1  0x00

b) For J is 3 to 0

T A[J + 1]

A[J + 1]  A[J + 1] << 3

A[J + 1]  A[J + 1] & 0xf8

A[J + 1]  A[J + 1] | T1

T1  T >>5

T1  T1 & 0x07

End for.

A[0]  T1

After these operations this array is as fallows.

 a3 a4 a5 a6 a7 0 0 0 A [4]:

 b3 b4 b5 b6 b7 a0 a1 a2 A [3]:

 c3 c4 c5 c6 c7 b0 b1 b2 A [2]:

 d3 d4 d5 d6 d7 c0 c1 c2 A [1]:

 0 0 0 0 0 d0 d1 d2 A [0]:

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

99

3. POLY  dyn_poly()

POLY  POLY << 3

4. A[0]  A[0] | POLY

5. CRC  Crc32(POLY, A[])

CRC  CRC & 0x07

6. A[4]  A[4] | CRC

7. Write these 5 characters A[0], A[1], A[2], A[3], and A[4] to the file.

8. Take next 4 characters into the array A [] and continue steps from 2 to 8 until the end of the file.

9. End.

4.6 Decryption process

The architecture of the decryption process is as shown in figure 8. In decryption process every seven bytes

of cipher text produces eight characters of plain text. So after decryption process the decrypted data will

automatically get its original size. Figure 3 shows data before decryption, and figure 4 shows the data after

decryption.

 0 0 0 0 0 r1 r2 r3 CRC:

 0 p1 p2 p3 p4 0 0 0 POLY:

 0 p1 p2 p3 p4 d0 d1 d2 A [0]:

 a3 a4 a5 a6 a7 r1 r2 r3 A [4]:

 Decrypted message

 Without key

Decryption Cipher text

 Figure.8: Architecture for extracting data from Decryption

Cipher text with key

Decrypted message

(Original message)

Data Authentication

-

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

100

4.7 Data Authentication

Take five characters from the retrieved data file (decypt2.) as shown in figure 9 and detect the key from the

fifth character and by using this key perform modulo 2 division on these five characters. If the remainder is

zero then there is no corruption in the data otherwise data is corrupted. If the data is not corrupted then

remove key and remainder from the five characters and arrange the bits in 4 bytes to get the encrypted data

as shown in figure 10. These 4 bytes are maintained separately in a special file say dect1. Like that for

every 5 bytes from decypt1. after removing key and remainder the 4bytes are maintained in the file

dect1.This is the encrypted file without key.

4.7.1 Finding polynomial from the data and verifying crc by modulo 2 division.

1. Take first five characters into the array A[5] of elements A[0],A[1],A[2],A[3] and A[4]

2. Finding polynomial

POLY  A[0] >> 3

POLY  POLY & 0x0f

3. RMAINDER  Crc 32(POLY, A[])

4. If REMAINDER is ZERO then

a) verified successfully and no error in data.

b) Take array B[4] , T

c) For J is 3 to 0

B[J]  A[J + 1]

B[J] B[J] >> 3

Figure 9: Encrypted message with key

 0 p1 p2 p3 p4 d0 d1 d2 A [0]:

 c3 c4 c5 c6 c7 b0 b1 b2 A [2]:

 d3 d4 d5 d6 d7 c0 c1 c2 A [1]:

 b3 b4 b5 b6 b7 a0 a1 a2 A [3]:

 a3 a4 a5 a6 a7 r1 r2 r3 A [4]: a0 a1 a2 a3 a4 a5 a6 a7 A [4]:

 b0 b1 b2 b3 b4 b5 b6 b7 A [3]:

 c0 c1 c2 c3 c4 c5 c6 c7 A [2]:

 d0 d1 d2 d3 d4 d5 d6 d7 A [1]:

Figure 10: Authenticated encrypted message

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

101

B[J] B[J] & 0x1f

T  A[J]

T  T << 5

T  T & 0xe0

B[J]  T | B[J]

End for loop

d) Write these 4 character array B[] to the file.

e) Repeat these steps until the end of the file.

5. Else

Data corrupted

End.

5. Implementation Results and Discussions

We have applied this BSS system on different sizes of data to encryption and decryption and data is

authenticated and secure with key

5.1 Sample Test Data

5.1.1 Encryption

 Authentication with key

Encryption

I+F§y×KšK¡ 3|{

/@Oc« {?

m •/E*•M.M±¥™KÁ†yŸ§Ê}#w

{%ŸNOw/kL{›s{MI‹ŸIN¹…¶}••}+C¢{¯§

O/mgO+?

™•/O�MŸI{½ˆO›+£ÌO+§5•G¡ •{s)KO‡Ï—K¡

sxKK›/B•y+ÑK/C£3Ow){/£‡ËOŸm"O+;šy‰M•µ©}›/ÊM's

K™+A•+/ÓIKË—tM'§•OC§K¿IÏ-y�ŸN•Ï«yŸ+§

 Encrypted message with key (255 bytes)

The size of the actual image here is 4,608 bytes and

its dimensions is 160 × 120 the actual message size is

175 bytes after the encryption the size of the

encrypted message is 156 bytes and the size

encrypted with key is 195 bytes.

 Actual message (232 bytes)

Encrypted message (204 bytes)

Ôhå séú of tèeáctõaì máge èåe és 4¶0¸ bùôs

ánä éó diíåîions és1¶0 × 1° the áôõal íåságå óéå

és ±7 byteó ætår ôè eîcòùðion tèesize ïftèe

åîãùpôed íóóagå é 1µ6 âùes aîä he

siúeånãryðôä wétè åy éó 15 âùtås

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

102

5.1.2 Decryption

5.2 Analysis

After encryption the size of the encrypted data is reduced and after the dynamic key the size increases and

then after decryption the size of the decrypted data is decreased, i.e original size of the actual data. The

following table1 represents the variation of size of different data sets after encryption and decryption with

key.

TABLE 1

SNO
Data size

(bytes)

After

encryption

Size

(bytes)

Encrypted

data with key

(bytes)

After

decryption

size

(bytes)

1 3,250 2,844 3,555 3,250

Decryption

Authentication

I+F§y×KšK¡ 3|{

/@Oc« {?

m •/E*•M.M±¥™KÁ†yŸ§Ê}#w

{%ŸNOw/kL{›s{MI‹ŸIN¹…¶}••}+C¢{¯§

O/mgO+?

™•/O�MŸI{½ˆO›+£ÌO+§5•G¡ •{s)KO‡Ï—K¡

sxKK›/B•y+ÑK/C£3Ow){/£‡ËOŸm"O+;šy‰M•µ©}›/ÊM's

K™+A•+/ÓIKË—tM'§•OC§K¿IÏ-y�ŸN•Ï«yŸ+§

 Encrypted message with key (255 bytes)

Authenticated data (Encrypted message) 204 bytes

ánä éó diíåîions és1¶0 × 1° the áôõal íåságå óéå

és ±7 byteó ætår ôè eîcòùðion tèesize ïftèe

åîãùpôed íóóagå é 1µ6 âùes aîä he siúeånãryðôä wétè åy

éó 15 âùtås

The size of the actual image here is 4,608 bytes and its

dimensions is 160 W 120 the actual message size is 175

bytes after the encryption the size of the encrypted message

is 156 bytes and the size encrypted with key is 195 bytes.

Decrypted message (233 bytes) Actual message

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

103

Table1: Represents the variation of size of different data sets after encryption and decryption with key.

6. Conclusions

In this paper we presented an implementation of BSS encryption algorithm with dynamic key. The main

objective was to evaluate the performance of this algorithm in terms of data size and authentication and

security. The results showed that the BSS algorithm with dynamic key was very effective in complexity

and security. In our future work with this methodology we are combining cryptograpy with setganograpy to

achive data security and authentication.

References

Wikipedia, “Encryption”, http://en.wikipedia.org/wiki/Encryption, modified on 13 December 2006.

Freeman, J. Neely, R. & Megalo, L.(1998). “Developing Secure Systems: Issues and Solutions”. IEEE Journal of Computer And

Communication, Vol. 89, PP. 36-45.

Kumar, B.R. Murti, P.R.K, Dr.,(July2011). “Data Encryption and Decryption process Using Bit Shifting and Stuffing (BSS)

Methodology” International Journal on Computer Science and Engineering (IJCSE) Vol. 3 No. 7, pp. 2818-2827

Beth, T. & Gollmann, D.(1989). “Algorithm Engineering for Public Key Algorithms”. IEEE Journal on Selected Areas in

Communications; Vol. 7, No 4, PP. 458-466.

IBM. “The Data Encryption Standard (DES) and its strength against attacks”. IBM Journal of Research and Development, Vol. 38,

PP. 243-250. 1994

Lai, X. Massey, J. (1990) “A Proposal for a New Block Encryption Standard”, Proceedings, EUROCRYPT ’90.

Bruce Schneier,(April 1994). “The Blowfish encryption algorithm”, Dr. Dobb's Journal of Software Tools, 19(4),p. 38, 40, 98, 99.

Kofahi, N.A., Turki Al-Somani, Khalid Al-Zamil (Dec.2003). “Performance evaluation of three encryption/decryption

algorithms” 2005 IEEE International Symposium on Micro-NanoMechatronics and Human Science, Volume: 2, pp 790-793

Stallings, W.,(1999). “Cryptography and Network Security: Principles and Practice”, 2nd Edition, pgs. 102-109, 128.

Wayne G. Barker,(1991). "Introduction to the analysis of the Data Encryption Standard (DES)", A cryptograph-ic series, Vol. 55, p.

viii + 190, Aegean Park Press.

Wu, C.-P. Kuo, C.-C. J. (2005). “Design of integrated multimedia compression and encryption systems,” IEEE Trans.

Multimedia, vol. 7, no. 5, pp. 828-839.

2 3,254 2,848 3,560 3,254

3 9,741 8,524 10,655 9.741

4 9,746 8,528 10,660 9.746

5 9,747 8,532 10,665 9.750

6 29,161 25.516 31,895 29,161

7 29,165 25.520 31,900 29,165

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.3

104

Biham, E. & Shamir, A.(1993). Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag.

Matsui, M.(1994). "Linear Cryptanalysis Method for DES Cipher," Advances in Cryptology-CRYPTO '93 Proceedings, Springer-

Verlag.

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

