
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

60

Dynamic Optimization of Network Routing Problem through Ant

Colony Optimization (ACO)

Khalid Mahmood
1*

, Shahid Kamal
1, 2

, Hamid Masood Khan
1

1. ICIT, Gomal University, D.I.Khan, (KPK), Pakistan

 2. FSKSM, UTM, Johor Bahru, Malaysia

* Email of the Corresponding author: khalid_icit@hotmail.com

Abstract:

Search Based Software Engineering (SBSE) is a new paradigm of Software engineering, which considers software

engineering problems as search problems and emphasizes to find out optimal solution for the given set of available

solutions using metaheuristic techniques like hill climbing simulated annealing, evolutionary programming and

tabu search. On the other hand AI techniques like Swarm particle optimization and Ant colony optimization

(ACO) are used to find out solutions for dynamic problems. SBSE is yet not used for dynamic problems. In this

study ACO techniques are applied on SBSE problem by considering Network routing problem as case study, in

which the nature of problem is dynamic.

Keywords: SBSE, ACO, Metaheuristic search techniques, dynamic optimization

1. Introduction:

Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors

of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which

the most studied and the most successful is the general purpose optimization technique known as ant colony

optimization. Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species.

These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other

members of the colony. Ant colony optimization exploits a similar mechanism for solving optimization problems

(Dorigo, 2006).

Software Engineering often considers problems that involve finding a suitable balance between competing and

potentially conflicting goals. There is often a bewilderingly large set of choices and finding good solutions can be

hard. For instance, the following is an illustrative list of Software Engineering questions. The term Search Based

Software Engineering was coined by Harman and Jones in 2001. In Search Based Software Engineering, the term

‘search’ is used to refer to the metaheuristic search-based optimization techniques that are used. SBSE seeks to

reformulate Software Engineering problems as search-based optimization problems (or ‘search problems’ for

short). This is not to be confused with textual or hyper textual searching. Rather, for Search Based Software

Engineering, a search problem is one in which optimal or near optimal solutions are sought in a search space of

candidate solutions, guided by a fitness function that distinguishes between better and worse solutions (M. Harman

2009).

Search based optimization has been applied to a wide variety of Software Engineering application areas including

requirements engineering, project planning, cost estimation, maintenance, reverse engineering, refactoring,

program comprehension, service-oriented software engineering and quality assessment. This area has come to be

known as Search Based Software Engineering (M. Harman 2007).

The goal of this article is to utilize Ant Colony optimization (ACO) technique on dynamic problems. Section 1

provides some background and history of Search Based Software Engineering (SBSE) and Ant Colony

Optimization (ACO) techniques. Section 2 provides an overview of Metaheuristic search techniques, Section 3

provides the related work in the field of ACO and SBSE, Section 4 provides the proposed methodology and

proposed workflow model, whereas the Section 5 elaborates the conclusion.

1.1 Reformulating Software Engineering as a search problem.

The principal intention of this section is to demonstrate how conceptually simple is the reformulation of software

engineering to search based software engineering. It is hoped that the reader is convinced that, at least in principal,

it will be possible to apply metaheuristic search to large body of software engineering problems, where natural

representations, fitness functions and operators suggest themselves.

In order to reformulate software engineering as a search problem, it will be necessary to define:

• A representation of the problem which is amenable to symbolic manipulation,

• A fitness function (defined in terms of this representation) and

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

61

• A set of manipulation operators.

Example, in the case of testing, the problem becomes one of searching for test cases, which satisfy some

test-adequacy criterion.

1.1.1 Representation

The representation of a candidate solution is critical to shaping the nature of the search problem. Representations,

which are frequently used in existing application for problem parameters are floating point numbers and binary

code. In the later case, grey codes are generally preferred to ‘pure binary’ numbers. (M. Harman 2005), since

successor decimals (for instance 7 and 8) are not neighbors in a pure binary code (4 mutations are required to

mutate the four differing digits, rather than one). Grey codes avoid this problem.

1.1.2 Fitness Function

The fitness function is the characterization of what is considered to be a good solution. In measurement theoretical

terms (N. Gold 2006), the fitness function need merely impose an ordinal scale of measurement upon the

individual solutions it is applied to. That is, it will generally be sufficient to know which of the two candidate

solutions is better according to the properties to be measured. The fitness function imposes a landscape, the

characteristics of which will both determine which search techniques are most applicable and will shed light on the

nature of the problem and its candidate solutions in terms of their perceived fitness. Fitness landscapes should not

be too flat, nor should they have sharp maxima that can easily be missed. Often the fitness function, which first

occurs, requires tuning to avoid these problems and to help guide the search towards good solution. In some cases

it may be hard to define a fitness function, because the artifact to be optimized may have aesthetic qualities which

make the determination of an ordinal scale metric difficult. However, in such situation a search based approach

may still be applicable.

1.1.3 Operators

Different search techniques use different operators. As a minimum requirement, it will be necessary to mutate an

individual representation of a candidate solution to produce a representation of a different candidate solution.

Clearly, this is a very minimal requirement. It will make it possible to apply hill climbing approaches and certain

forms of evolutionary computation. If it is also possible to determine the set of ‘near neighbors’ of a candidate

solution (in terms of its representation) then simulated annealing and tabu search can be applied. If instead (or in

addition), it is possible to sensibly cross over two individuals then genetic algorithms will be applicable.

2. Optimization Techniques

This section provides an overview of optimization techniques, focusing on those that have been most widely

applied on software engineering. Space constraints only permit an overview. For more detail, the reader is referred

to the recent survey of search methodologies edited by Burke and Kendall (E. Burke 2005). The section starts with

classical techniques, distinguishing these from metaheuristic search. Hitherto, classical techniques have been little

used as optimization techniques for software engineering problems; authors have preferred to use more

sophisticated metaheuristic search techniques. However, there has been some work using classical techniques.

Bagnall et al. (A. Bagnall 2001) applied a branch and bound approach to a formulation of the next release problem,

while Barreto et al. (A. Barreto 2002) apply it to project staffing constraint satisfaction problems. Cortellessa et al.

(Cortellesa 2004) use classical optimization techniques to address decision making problems in component

sourcing, optimizing properties such as quality and reliability. Del Grosso et al. (Del Grosso 2006) use a

combination of classical and metaheuristic techniques to test for buffer overflow.

2.1 Classic Techniques

Linear programming (LP) is a mathematical optimization technique that is guaranteed to locate the global

optimum solution. The inputs to a linear programming model are a set {x1,...,xn} of n real, non-negative values,

called the decision variables. The goal is to maximize the value of some linear expression in these decision

variables subject to a set of constraints, expressed as linear equations in the decision variables. That is

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

62

Where {c1,...,cn} is a set of problem specific coefficients, subject to a set of m constraints of the form

Where aij and bi are problem determined constants. The constraints can also be expressed using ≥ and = in place of

≤ and the goal can be minimization rather than maximization.

This formulation is typically applied to problems such as resource and plant allocation. It requires a clear cut

determination of a single objective to be optimized and a set of well understood constraints that can be captured as

a set of linear equations. If a software engineering problem can be formulated in this way, then LP is a good choice

because there exist efficient LP optimization algorithms and the solution is guaranteed to be globally optimal. If

some of the decision variables are further constrained to take on only integer values, then the result is a further

constrained model. Integer programming models can capture a wider set of possible problem domains, because of

this additional constraint. For example, it now becomes possible to model situations in which a decision variable is

constrained to be a Boolean choice variable; yielding a value of either 1 or 0. However, the additional constraints

can lead to model formulations that are far harder to solve than their linear programming counterparts. One other

classical technique for optimization deserves mention in this section: branch and bound. This is an approach that

seeks to tame the exponential explosion that is inherent in most search problems, by a simple iterative process of

branching from a current solution, while simultaneously maintaining a set of bounds that prune the possible search

space as it expands through branching.

2.2 Metaheuristic Search

This section provides a brief overview of three metaheuristic search techniques that have been most widely applied

to problems in software engineering: hill climbing, simulated annealing and genetic algorithms.

2.2.1 Hill Climbing

Hill climbing (M. Harman 2000) starts from a randomly chosen candidate solution. At each iteration, the elements

of a set of ‘near neighbors’ to the current solution are considered. Just what constitutes a near neighbor is problem

specific, but typically neighbors are a ‘small mutation away’ from the current solution. A move is made to a

neighbor that improves fitness. There are two choices: In next ascent hill climbing, the move is made to the first

neighbor found to have an improved fitness. In steepest ascent hill climbing, the entire neighborhood set is

examined to find the neighbor that gives the greatest increase in fitness. If there is no fitter neighbor, then the search

terminates and a (possibly local) maxima has been found. Figuratively speaking, a ‘hill’ in the search landscape

close to the random starting point has been climbed. Clearly, the problem with the hill climbing approach is that

the hill located by the algorithm may be a local maxima, and may be far poorer than a global maxima in the search

space. For some landscapes, this is not a problem because repeatedly restarting the hill climb at a different

locations may produce adequate results (this is known as multiple restart hill climbing). Despite the local maxima

problem, hill climbing is a simple technique which is both easy to implement and surprisingly effective (Mitchell

2002).

2.2.2 Simulated Annealing

Simulated annealing (Metropolis 1953) can be thought of as a variation of hill climbing that avoids the local

maxima problem by permitting moves to less fit individuals. Simulated annealing is a simulation of metallurgical

annealing, in which a highly heated metal is allowed to reduce in temperature slowly, thereby increasing its

strength. As the temperature decreases the atoms have less freedom of movement. How ever, the greater freedom

in the earlier (hotter) stages of the process allow the atoms to ‘explore’ different energy states. A simulated

annealing algorithm (Bouktif 2006) will move from some point x1 to a worse point x0 with a probability that is a

function of the drop in fitness and a ‘temperature’ parameter that (loosely speaking) models the temperature of the

metal in metallurgical annealing. The effect of ‘cooling’ on the simulation of annealing is that the probability of

following an unfavorable move is reduced. At the end of the simulated annealing algorithm, the effect is that of

pure hill climbing. However, the earlier ‘warmer’ stages allow productive exploration of the search space, with the

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

63

hope that the higher temperature allows the search to escape local maxima. The approach has found application in

several problems in search based software engineering (Mitchell 2002).

2.2.3 Genetic Algorithms

Genetic algorithms (J. H. Holland 1975) use concepts of population and of recombination. Of all optimization

algorithms, genetic algorithms have been the most widely applied search technique in SBSE, though this has

largely been for historical reasons, rather than as a result of any strong theoretical indications that these approaches

are in some way superior. A generic genetic algorithm (Clark 2003) is presented in Figure 1.

An iterative process is executed, initialized by a randomly chosen population. The iterations are called generations

and the members of the population are called chromosomes, because of their analogs in natural evolution. The

process terminates when a population satisfies some pre-determined condition (or a certain number of generations

have been exceeded). On each generation, some members of the population are recombined, crossing over

elements of their chromosomes. A fraction of the offspring of this union are mutated and, from the offspring and

the original population a selection process is used to determine the new population. Crucially, recombination and

selection are guided by the fitness function; fitter chromosomes having a greater chance to be selected and

recombined. There are many variations on this overall process, but the crucial ingredients are the way in which the

fitness guides the search, the recombinatory and the population based nature of the process. There is an alternative

form of evolutionary computation, known as evolution strategies (Schwefel 1998), developed independently of

work on Genetic Algorithms. However, evolution strategies have not been applied often in work on SBSE. An

exception is the work of Alba and Chicano (Alba 2009), which shows that evolution strategies may outperform

genetic algorithms for some test data generation problems.

Figure 2.1: A Generic Genetic Algorithm

There is also a variation of genetic algorithms, called genetic programming (Koza 1992), in which the

chromosome is not a list, but a tree. The tree is the abstract syntax tree of a simple program that is evolved using a

similar genetic model to that employed by a genetic algorithm. Genetic programs are typically imperfect programs

that are, nonetheless, sufficiently good for purpose. Fitness is usually measured using a testing-based approach that

seeks to find a program best adapted to its specification (expressed as a set of in-put/output pairs). Genetic

programming has been used in SBSE to form formulate that capture predictive models of software projects and in

testing.

 3. Literature Survey

The term Search Based Software Engineering was coined by Harman and Jones in 2001 (Harman 2001). SBSE

tries to solve the problems associated with the balancing of competing constraints, trade-offs between concern and

requirements imprecision.

SBSE have been applied to a number of software engineering activities right from requirements engineering

(Bagnall 2001), project planning and cost estimation (Antoniol 2004), testing (Briand 2005), to automated

maintenance (Bouktif 2006), service oriented software engineering (Canfora 20005), compiler optimization

(Cohen 2006) and quality assessment (Bouktif 2006).

The Idea of Swarm Particle Intelligence was first proposed the French entomologist Pierre-Paul Grass´ e (Grass

1946). He observed that some species of termites react to what he called “significant stimuli”. He used the term

stigmergy (Grass 1959) to describe this particular type of communication in which the “workers are stimulated by

the performance they have achieved”.

Set generation number, m: = 0

Choose the initial population of candidate solutions, P (0)

Evaluate the fitness for each individual of P (0), F (Pi (0))

Loop

Recombine: P (m):= R (P (m))

Mutate: P (m):= M (P (m))

Evaluate: F (P (m))

Select: P (m+1):= S (P (m))

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

64

Christian Blum (Christian 2005) in his paper explains the Basics of Swarm Intelligence and Ant Colonies social

behavior, types of ants and their structure. The author elaborates the ACO algorithm with detail examples and its

theoretical studies.

Marco Dorigo (Dorigo 2006) in his paper briefly describes the basic theme of Swarm Intelligence, its biological

inspiration and Ant Colony Optimization Algorithm. The author applied the ACO on Traveling sales person (TSP)

problem, metaheuristic optimization techniques including Simulated Annealing, Tabu search and on evolutionary

algorithms. Furthermore the author justifies the ACO algorithms through some theoretical results. In this paper the

author highlights the applications of ACO algorithm through NP-Hard problems, Telecommunication Networks

(firstly on telephone network (Schoonderwoerd 1996), packet switched networks (Dicaro 1998) and further on

Mobile networks (Ducatelle 2005), (DiCaro 2005) and its industrial applications. In the end the author list the hot

issues related to ACO and points out some latest research areas in the ACO like dynamic optimization, stochastic

problem, Multi objective optimization, Parallel implementation and finally continuous optimization issues.

Marco Dorigo (Dorigo 2000) in this technical report paper describes the history of Optimization algorithms from

local search problems (greedy algorithms) to Ant colony optimization algorithm. In this report the author elaborate

the ACO Algorithm, its application on static as well as dynamic problems. Author highlights the examples of ACO

which includes, Single Machine total weighted tardiness scheduling problem, the generalized assignment problem,

the set covering problem and Ant net for network routing problem. In the end the author highlights the future

direction in the ACO algorithms by emphasizing on the Dynamic Optimization as the core area of research.

Zhi-hui Zhan (Zhan 2009) in his paper extends the study of ACO algorithm and proposes a new algorithm namely

Discrete Particle Swarm Optimization (DPSO) for Multiple Destination Routing Problems, The author describes

the algorithm and shows its empirical results comparisons with other comparative algorithms.

Guohui Zhang (Zhang 2009) in his paper applies Flexible job-shop scheduling problem (FJSP) as an extension of

the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain

preferable results in solving the mono objective FJSP. However, they are very difficult to solve multi-objective

FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are

combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which

integrates local search and global search scheme possesses high search efficiency. The computational results have

proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP,

especially for the problems on a large scale.

Zhi-Hui Zhan (Zhan 2009), in his paper, proposes an extension to Particle Swarm Optimization (PSO) algorithm

through Adaptive Particle Swarm Optimization (APSO) Algorithm. This progress in PSO has been made possible

by ESE, which utilizes the information of population distribution and relative particle fitness, sharing a similar

spirit to the internal modeling in evolution strategies. Based on such information, an evolutionary factor is defined

and computed with a fuzzy classification method, which facilitates an effective and efficient ESE approach and,

hence, an adaptive algorithm. The author justifies his proposed work through statistical as well as empirical

validation.

Yu Bin (Bin 2009) proposes an improved ant colony optimization (IACO), to vehicle routing problem (VRP), a

well-known combinatorial optimization problem, holds a central place in logistics management. In this paper the

author argues that IACO possesses a new strategy to update the increased pheromone, called ant-weight strategy,

and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported

and compared to those of other metaheuristic approaches.

4. Proposed Methodology:

All applications of SBSE concerned should be termed as ‘static’ or ‘offline’ optimization problems. That is,

problems where the algorithm is executed off line in order to find a solution to the problem in hand. This is to be

contrasted with ‘dynamic’ or ‘on line’ SBSE, in which the solutions are repeatedly generated in real time and

applied during the lifetime of the execution of the system to which the solution applies. The static nature of the

search problems has tended to delimit the choice of algorithms and the methodology within which the use of search

is applied. Particle Swarm Optimization and Ant Colony Optimization techniques have not been used in the SBSE

literature. These techniques work well in situations where the problem is rapidly changing and the current best

solution must be continually adapted. For example, the paradigm of application for Ant Colony Optimization is

“dynamic network routing”, in which paths are to be found in a network, the topology of which is subject to

continual change. The ants lay and respond to a pheromone trail that allows them quickly to adapt to network

connection changes.

4.1 Workflow Model for Dynamic Optimization

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

65

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

66

Figure 4.1: Workflow model for dynamic optimization

5. Conclusion:

Search Based Software Engineering (SBSE) is used for finding a near optimal solution for different software

activities throughout software development life cycle. SBSE has been applied to problems having static nature, but

yet not applied to problems having dynamic nature. On the other hand Swarm Particle Intelligence techniques,

such as Ant Colony Optimization (ACO) uses ants behavior and structure to find the real world problems, using AI

technique to SBSE dynamic search problem will probably find the objective which yet not been achieved.

Dynamic Network Routing problem using ACO will yield this objective. Results will be statistically and

empirically tested and compared with other competitive studies to validate the research being proposed.

References:

Marco Dorigo et al. (2006). Ant Colony Optimization, IEEE Computational Intelligence Magzine, November.

Mark Harman, S. Afshin Mansouri, (2009). Search Based Software Engineering: A Comprehensive Analysis and

Review of Trends Techniques and Applications, Technical Report TR-09-03, April 9.

Mark Harman (2007). Automated Test Data Generation using Search Based Software Engineering, IEEE

Computer Society, Second International Workshop on Automation of Software Test (AST’07).

Incoming Traffic from

Different Sources

Apply Ant Colony

Optimization (ACO)

Locate Ants randomly in

different nodes and store the

current node in the tabu list

Move to next node and store

it in tabu list

All Nodes

have been

visited?

Record the Length of tour

and clear the tabu list

Determine dynamically to

visit which node to visit next

Determine the shortest tour and

update pheromone

Have the max:

Iterations been

performed?

Stop ACO

No

Yes

No

Yes

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

67

M. Harman, S. Swift, and K. Mahdavi. (2005). An empirical study of the robustness of two module clustering

fitness functions, In Genetic and Evolutionary Computation Conference (GECCO 2005), pages 1029–1036,

Washington DC, USA, June, Association for Computer Machinery.

N. Gold, M. Harman, Z. Li, and K.Mahdavi. (2006). A search based approach to overlapping concept boundaries,

In 22nd International Conference on Software Maintenance (ICSM 06), Philadelphia, Pennsylvania, USA, Sept.

To appear.

E. Burke and G. Kendall. (2005). Search Methodologies, Introductory tutorials in optimization and decision

support techniques, Springer.

A. Bagnall, V. Rayward-Smith, and I. Whittley, (2001). The next release problem, Information and Software

Technology, 43(14):883–890, December.

A. Barreto, M. Barros, and C. Werner. (2001). Staffing a Software Project: A constraint satisfaction and

optimization based approach, Computers and Operations Research (COR) focused issue on Search Based Software

Engineering

V. Cortellessa, F. Marinelli, and P. Potena (2001). An optimization framework for “build–or–buy” decisions in

software architecture, Computers and Operations Research (COR) focused issue on Search Based Software

Engineering.

C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier. (2003). Detecting buffer overflow via automatic test input

data generation, Computers and Operations Research (COR) focused issue on Search Based Software

Engineering.

M. Harman, R. Hierons, and M. Proctor (2002). A new representation and crossover operator for search-based

optimization of software modularization, In GECCO 2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1351–1358, San Francisco, CA 94104, USA, 9-13 July. Morgan Kaufmann

Publishers.

B. S. Mitchell and S. Mancoridis (2002). Using heuristic search techniques to extract design abstractions from

source code, In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages

1375–1382, San Francisco, CA 94104, USA, 9-13 July, Morgan Kaufmann Publishers.

N.Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equation of state calculations by fast

computing machines, Journal of Chemical Physics, 21:1087–1092.

S. Bouktif, H. Sahraoui, and G. Antoniol (2006). Simulated annealing for improving software quality prediction,

In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, volume 2,

pages 1893–1900, Seattle, Washington, USA, 8-12 July, ACM Press.

J. H. Holland (1975), Adoption in Natural and Artificial Systems, MIT Press, Ann Arbor.

J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M.

Roper, and M. Sheppard (2003). Reformulating software engineering as a search problem, IEEE Proceedings —

Software, 150(3):161–175.

H. Schwefel and T. B¨ ack (1998). Artificial evolution: How and why? In D. Quagliarella, J. P´ eriaux, C. Poloni,

and G. Winter, editors, Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, pages

1–19, John Wiley and Sons.

E. Alba and J. F. Chicano. “Observations in using parallel and sequential evolutionary algorithms for automatic

software testing”, Computers and Operations Research (COR) focused issue on Search Based Software

Engineeering. To appear.

J. R. Koza (1992), “Genetic Programming: On the Programming of Computers by Means of Natural Selection”

MIT Press, Cambridge, MA.

Mark Harman, Bryan F. Jones (2001), “Search Based Software Engineering”, Information and Software

Technology, 43 (2001), 833-839.

A. Bagnall, V. Rayward-Smith, and I. Whittley (2001), “The next release problem”. Information and Software

Technology, 43(14):883–890, December.

G. Antoniol, M. Di Penta, and M. Harman (2004), “A robust search based approach to project management in the

presence of abandonment, rework, error and uncertainty”, In 10th International Software Metrics Symposium

(METRICS 2004), pages 172–183, Los Alamitos, California, USA, Sept. 2004. IEEE Computer Society Press.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.8, 2012

68

L. C. Briand, Y. Labiche, and M. Shousha (2005), “Stress testing real-time systems with genetic algorithms”, In

Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June

25-29, 2005, pages 1021–1028, ACM.

S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler (2006), “A novel approach to optimize clone refactoring

activity”, In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,

volume 2, pages 1885–1892, Seattle, Washington, USA, 8-12 July, ACM Press.

G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani (2005), “An approach for qoS-aware service composition

based on genetic algorithms”, In H.-G. Beyer and U.-M. O’Reilly, editors, Genetic and Evolutionary Computation

Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, pages 1069–1075, ACM.

M. Cohen, S. B. Kooi, and W. Srisaan (2006), “Clustering the heap in multi-threaded applications for improved

garbage collection”, In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary

computation, volume 2, pages 1901–1908, Seattle, Washington, USA, 8-12 July, ACM Press.

S. Bouktif, H. Sahraoui, and G. Antoniol (2006), “Simulated annealing for improving software quality

prediction”, In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,

volume 2, pages 1893–1900, Seattle, Washington, USA, 8-12 July, ACM Press.

P.-P. Grass´ e (1946), ‘ Les Insectes Dans Leur Univers’ , Paris, France: Ed. du Palais de la d´ ecouverte.

P.-P. Grass´ e (1959), “La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes

Natalensis et Cubitermes sp. La th´ eorie de la stigmergie ‘: Essai d’interpr´ etation du comportement des termites

constructeurs,” Insectes Sociaux, vol. 6, pp. 41–81.

Christian Blum (2005), “Ant Colony Optimization”, GECCO, June 26, Washington, US.

Marco Dorigo et al. (2006), “Ant Colony Optimization “Artificial Ants as a computaional intelligence

techniques”, IEEE Computational Intelligence Magazine, November.

R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz (1996), “Ant-based load balancing in

telecommunications networks,” Adaptive Behavior, vol. 5, no. 2, pp. 169–207.

G. Di Caro and M. Dorigo (1998), “AntNet: Distributed stigmergetic control for communications networks,”

Journal of Artificial Intelligence Research, vol. 9, pp. 317–365.

F. Ducatelle, G. Di Caro, and L.M. Gambardella (2005), “Using ant agents to combine reactive and proactive

strategies for routing in mobile ad hoc networks,” International Journal of Computational Intelligence and

Applications, vol. 5, no. 2, pp. 169–184.

G. Di Caro, F. Ducatelle, and L.M. Gambardella (2005), “AntHocNet: An adaptive nature inspired algorithm for

routing in mobile ad hoc networks,” European Transactions on Telecommunications, vol. 16, no. 5, pp. 443–455.

Marco Dorigo, Thomas Stutzle (2001), “The Ant Colony Optimization Metaheuristic: Algorithms, Applications,

and Advances
 *
”, Technical Report IRIDIA-2000-32.

* To appear in Metaheuristics Handbook, F. Glover and G. Kochenberger (Eds.), International Series in

Operations Research and Management Science, Kluwer, 2001.

Zhi-hui Zhan and Jun Zhang (2009), “Discrete Particle Swarm Optimization for Multiple Destination Routing

Problems”, Springer-Verlag Berlin Heidelberg, EvoWorkshops 2009, LNCS 5484, pp 117–122.

[38] Guohui Zhang et al. (2009), “An effective hybrid particle swarm optimization algorithm for multi-objective

flexible job-shop scheduling problem”, Computers & Industrial Engineering 56, pp 1309–1318.

Zhi-Hui Zhan (2009), “Adaptive Particle Swarm Optimization”, IEEE Transactions on Systems, Man, and

Cybernetics—part b: Cybernetics, vol. 39, no. 6, pp 1362-1381, December 2009.

Yu Bin et al. (2009), “An improved ant colony optimization for vehicle routing problem”, European Journal of

Operational Research 196 (2009), pp 171–176.

