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Abstract: 

Search Based Software Engineering (SBSE) is a new paradigm of Software engineering, which considers software 

engineering problems as search problems and emphasizes to find out optimal solution for the given set of available 

solutions using metaheuristic techniques like hill climbing simulated annealing, evolutionary programming and 

tabu search. On the other hand AI techniques like Swarm particle optimization and Ant colony optimization 

(ACO) are used to find out solutions for dynamic problems. SBSE is yet not used for dynamic problems. In this 

study ACO techniques are applied on SBSE problem by considering Network routing problem as case study, in 

which the nature of problem is dynamic.  
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1.  Introduction: 

Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors 

of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which 

the most studied and the most successful is the general purpose optimization technique known as ant colony 

optimization. Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species. 

These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other 

members of the colony. Ant colony optimization exploits a similar mechanism for solving optimization problems 

(Dorigo, 2006). 

Software Engineering often considers problems that involve finding a suitable balance between competing and 

potentially conflicting goals. There is often a bewilderingly large set of choices and finding good solutions can be 

hard. For instance, the following is an illustrative list of Software Engineering questions. The term Search Based 

Software Engineering was coined by Harman and Jones in 2001. In Search Based Software Engineering, the term 

‘search’ is used to refer to the metaheuristic search-based optimization techniques that are used. SBSE seeks to 

reformulate Software Engineering problems as search-based optimization problems (or ‘search problems’ for 

short). This is not to be confused with textual or hyper textual searching. Rather, for Search Based Software 

Engineering, a search problem is one in which optimal or near optimal solutions are sought in a search space of 

candidate solutions, guided by a fitness function that distinguishes between better and worse solutions (M. Harman 

2009). 

Search based optimization has been applied to a wide variety of Software Engineering application areas including 

requirements engineering, project planning, cost estimation, maintenance, reverse engineering, refactoring, 

program comprehension, service-oriented software engineering and quality assessment. This area has come to be 

known as Search Based Software Engineering (M. Harman 2007).  

The goal of this article is to utilize Ant Colony optimization (ACO) technique on dynamic problems. Section 1 

provides some background and history of Search Based Software Engineering (SBSE) and Ant Colony 

Optimization (ACO) techniques. Section 2 provides an overview of Metaheuristic search techniques, Section 3 

provides the related work in the field of ACO and SBSE, Section 4 provides the proposed methodology and 

proposed workflow model, whereas the Section 5 elaborates the conclusion.  

1.1 Reformulating Software Engineering as a search problem. 

The principal intention of this section is to demonstrate how conceptually simple is the reformulation of software 

engineering to search based software engineering. It is hoped that the reader is convinced that, at least in principal, 

it will be possible to apply metaheuristic search to large body of software engineering problems, where natural 

representations, fitness functions and operators suggest themselves. 

In order to reformulate software engineering as a search problem, it will be necessary to define: 

• A representation of the problem which is amenable to symbolic manipulation, 

• A fitness function (defined in terms of this representation) and  
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• A set of manipulation operators. 

Example, in the case of testing, the problem becomes one of searching for test cases, which satisfy some 

test-adequacy criterion. 

1.1.1 Representation 

The representation of a candidate solution is critical to shaping the nature of the search problem. Representations, 

which are frequently used in existing application for problem parameters are floating point numbers and binary 

code. In the later case, grey codes are generally preferred to ‘pure binary’ numbers. (M. Harman 2005), since 

successor decimals (for instance 7 and 8) are not neighbors in a pure binary code (4 mutations are required to 

mutate the four differing digits, rather than one). Grey codes avoid this problem. 

1.1.2 Fitness Function 

The fitness function is the characterization of what is considered to be a good solution. In measurement theoretical 

terms (N. Gold 2006), the fitness function need merely impose an ordinal scale of measurement upon the 

individual solutions it is applied to. That is, it will generally be sufficient to know which of the two candidate 

solutions is better according to the properties to be measured. The fitness function imposes a landscape, the 

characteristics of which will both determine which search techniques are most applicable and will shed light on the 

nature of the problem and its candidate solutions in terms of their perceived fitness. Fitness landscapes should not 

be too flat, nor should they have sharp maxima that can easily be missed. Often the fitness function, which first 

occurs, requires tuning to avoid these problems and to help guide the search towards good solution. In some cases 

it may be hard to define a fitness function, because the artifact to be optimized may have aesthetic qualities which 

make the determination of an ordinal scale metric difficult. However, in such situation a search based approach 

may still be applicable. 

1.1.3 Operators 

Different search techniques use different operators. As a minimum requirement, it will be necessary to mutate an 

individual representation of a candidate solution to produce a representation of a different candidate solution. 

Clearly, this is a very minimal requirement. It will make it possible to apply hill climbing approaches and certain 

forms of evolutionary computation. If it is also possible to determine the set of ‘near neighbors’ of a candidate 

solution (in terms of its representation) then simulated annealing and tabu search can be applied. If instead (or in 

addition), it is possible to sensibly cross over two individuals then genetic algorithms will be applicable. 

2.  Optimization Techniques 

This section provides an overview of optimization techniques, focusing on those that have been most widely 

applied on software engineering. Space constraints only permit an overview. For more detail, the reader is referred 

to the recent survey of search methodologies edited by Burke and Kendall (E. Burke 2005). The section starts with 

classical techniques, distinguishing these from metaheuristic search. Hitherto, classical techniques have been little 

used as optimization techniques for software engineering problems; authors have preferred to use more 

sophisticated metaheuristic search techniques. However, there has been some work using classical techniques. 

Bagnall et al. (A. Bagnall 2001) applied a branch and bound approach to a formulation of the next release problem, 

while Barreto et al. (A. Barreto 2002) apply it to project staffing constraint satisfaction problems. Cortellessa et al. 

(Cortellesa 2004) use classical optimization techniques to address decision making problems in component 

sourcing, optimizing properties such as quality and reliability. Del Grosso et al. (Del Grosso 2006) use a 

combination of classical and metaheuristic techniques to test for buffer overflow.  

 

2.1 Classic Techniques 

Linear programming (LP) is a mathematical optimization technique that is guaranteed to locate the global 

optimum solution. The inputs to a linear programming model are a set {x1,...,xn} of n real, non-negative values, 

called the decision variables. The goal is to maximize the value of some linear expression in these decision 

variables subject to a set of constraints, expressed as linear equations in the decision variables. That is  
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Where {c1,...,cn} is a set of problem specific coefficients, subject to a set of m constraints of the form 

 

 

 

 

 

 

 

Where aij and bi are problem determined constants. The constraints can also be expressed using ≥ and = in place of 

≤ and the goal can be minimization rather than maximization. 

This formulation is typically applied to problems such as resource and plant allocation. It requires a clear cut 

determination of a single objective to be optimized and a set of well understood constraints that can be captured as 

a set of linear equations. If a software engineering problem can be formulated in this way, then LP is a good choice 

because there exist efficient LP optimization algorithms and the solution is guaranteed to be globally optimal. If 

some of the decision variables are further constrained to take on only integer values, then the result is a further 

constrained model. Integer programming models can capture a wider set of possible problem domains, because of 

this additional constraint. For example, it now becomes possible to model situations in which a decision variable is 

constrained to be a Boolean choice variable; yielding a value of either 1 or 0. However, the additional constraints 

can lead to model formulations that are far harder to solve than their linear programming counterparts. One other 

classical technique for optimization deserves mention in this section: branch and bound. This is an approach that 

seeks to tame the exponential explosion that is inherent in most search problems, by a simple iterative process of 

branching from a current solution, while simultaneously maintaining a set of bounds that prune the possible search 

space as it expands through branching. 

2.2 Metaheuristic Search 

This section provides a brief overview of three metaheuristic search techniques that have been most widely applied 

to problems in software engineering: hill climbing, simulated annealing and genetic algorithms. 

2.2.1 Hill Climbing 

Hill climbing (M. Harman 2000) starts from a randomly chosen candidate solution. At each iteration, the elements 

of a set of ‘near neighbors’ to the current solution are considered. Just what constitutes a near neighbor is problem 

specific, but typically neighbors are a ‘small mutation away’ from the current solution. A move is made to a 

neighbor that improves fitness. There are two choices: In next ascent hill climbing, the move is made to the first 

neighbor found to have an improved fitness. In steepest ascent hill climbing, the entire neighborhood set is 

examined to find the neighbor that gives the greatest increase in fitness. If there is no fitter neighbor, then the search 

terminates and a (possibly local) maxima has been found. Figuratively speaking, a ‘hill’ in the search landscape 

close to the random starting point has been climbed. Clearly, the problem with the hill climbing approach is that 

the hill located by the algorithm may be a local maxima, and may be far poorer than a global maxima in the search 

space. For some landscapes, this is not a problem because repeatedly restarting the hill climb at a different 

locations may produce adequate results (this is known as multiple restart hill climbing). Despite the local maxima 

problem, hill climbing is a simple technique which is both easy to implement and surprisingly effective (Mitchell 

2002).  

2.2.2 Simulated Annealing 

Simulated annealing (Metropolis 1953) can be thought of as a variation of hill climbing that avoids the local 

maxima problem by permitting moves to less fit individuals. Simulated annealing is a simulation of metallurgical 

annealing, in which a highly heated metal is allowed to reduce in temperature slowly, thereby increasing its 

strength. As the temperature decreases the atoms have less freedom of movement. How ever, the greater freedom 

in the earlier (hotter) stages of the process allow the atoms to ‘explore’ different energy states. A simulated 

annealing algorithm (Bouktif 2006) will move from some point x1 to a worse point x0 with a probability that is a 

function of the drop in fitness and a ‘temperature’ parameter that (loosely speaking) models the temperature of the 

metal in metallurgical annealing. The effect of ‘cooling’ on the simulation of annealing is that the probability of 

following an unfavorable move is reduced. At the end of the simulated annealing algorithm, the effect is that of 

pure hill climbing. However, the earlier ‘warmer’ stages allow productive exploration of the search space, with the 
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hope that the higher temperature allows the search to escape local maxima. The approach has found application in 

several problems in search based software engineering (Mitchell 2002). 

2.2.3 Genetic Algorithms 

Genetic algorithms (J. H. Holland 1975) use concepts of population and of recombination. Of all optimization 

algorithms, genetic algorithms have been the most widely applied search technique in SBSE, though this has 

largely been for historical reasons, rather than as a result of any strong theoretical indications that these approaches 

are in some way superior. A generic genetic algorithm (Clark 2003) is presented in Figure 1. 

An iterative process is executed, initialized by a randomly chosen population. The iterations are called generations 

and the members of the population are called chromosomes, because of their analogs in natural evolution. The 

process terminates when a population satisfies some pre-determined condition (or a certain number of generations 

have been exceeded). On each generation, some members of the population are recombined, crossing over 

elements of their chromosomes. A fraction of the offspring of this union are mutated and, from the offspring and 

the original population a selection process is used to determine the new population. Crucially, recombination and 

selection are guided by the fitness function; fitter chromosomes having a greater chance to be selected and 

recombined. There are many variations on this overall process, but the crucial ingredients are the way in which the 

fitness guides the search, the recombinatory and the population based nature of the process. There is an alternative 

form of evolutionary computation, known as evolution strategies (Schwefel 1998), developed independently of 

work on Genetic Algorithms. However, evolution strategies have not been applied often in work on SBSE. An 

exception is the work of Alba and Chicano (Alba 2009), which shows that evolution strategies may outperform 

genetic algorithms for some test data generation problems. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1: A Generic Genetic Algorithm 

There is also a variation of genetic algorithms, called genetic programming (Koza 1992), in which the 

chromosome is not a list, but a tree. The tree is the abstract syntax tree of a simple program that is evolved using a 

similar genetic model to that employed by a genetic algorithm. Genetic programs are typically imperfect programs 

that are, nonetheless, sufficiently good for purpose. Fitness is usually measured using a testing-based approach that 

seeks to find a program best adapted to its specification (expressed as a set of in-put/output pairs). Genetic 

programming has been used in SBSE to form formulate that capture predictive models of software projects and in 

testing. 

 3.  Literature Survey 

The term Search Based Software Engineering was coined by Harman and Jones in 2001 (Harman 2001).  SBSE 

tries to solve the problems associated with the balancing of competing constraints, trade-offs between concern and 

requirements imprecision. 

SBSE have been applied to a number of software engineering activities right from requirements engineering 

(Bagnall 2001), project planning and cost estimation (Antoniol 2004), testing (Briand 2005), to automated 

maintenance (Bouktif 2006), service oriented software engineering (Canfora 20005), compiler optimization 

(Cohen 2006) and quality assessment (Bouktif 2006).   

The Idea of Swarm Particle Intelligence was first proposed the French entomologist Pierre-Paul Grass´ e (Grass 

1946). He observed that some species of termites react to what he called “significant stimuli”. He used the term 

stigmergy (Grass 1959) to describe this particular type of communication in which the “workers are stimulated by 

the performance they have achieved”. 

Set generation number, m: = 0 

Choose the initial population of candidate solutions, P (0) 

Evaluate the fitness for each individual of P (0), F (Pi (0)) 

Loop 

Recombine: P (m):= R (P (m)) 

Mutate: P (m):= M (P (m)) 

Evaluate: F (P (m)) 

Select: P (m+1):= S (P (m)) 
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Christian Blum (Christian 2005) in his paper explains the Basics of Swarm Intelligence and Ant Colonies social 

behavior, types of ants and their structure. The author elaborates the ACO algorithm with detail examples and its 

theoretical studies. 

Marco Dorigo (Dorigo 2006) in his paper briefly describes the basic theme of Swarm Intelligence, its biological 

inspiration and Ant Colony Optimization Algorithm. The author applied the ACO on Traveling sales person (TSP) 

problem, metaheuristic optimization techniques including Simulated Annealing, Tabu search and on evolutionary 

algorithms. Furthermore the author justifies the ACO algorithms through some theoretical results. In this paper the 

author highlights the applications of ACO algorithm through NP-Hard problems, Telecommunication Networks 

(firstly on telephone network (Schoonderwoerd 1996), packet switched networks (Dicaro 1998) and further on 

Mobile networks (Ducatelle 2005), (DiCaro 2005) and its industrial applications. In the end the author list the hot 

issues related to ACO and points out some latest research areas in the ACO like dynamic optimization, stochastic 

problem, Multi objective optimization, Parallel implementation and finally continuous optimization issues. 

Marco Dorigo (Dorigo 2000) in this technical report paper describes the history of Optimization algorithms from 

local search problems (greedy algorithms) to Ant colony optimization algorithm. In this report the author elaborate 

the ACO Algorithm, its application on static as well as dynamic problems. Author highlights the examples of ACO 

which includes, Single Machine total weighted tardiness scheduling problem, the generalized assignment problem, 

the set covering problem and Ant net for network routing problem. In the end the author highlights the future 

direction in the ACO algorithms by emphasizing on the Dynamic Optimization as the core area of research. 

Zhi-hui Zhan (Zhan 2009) in his paper extends the study of ACO algorithm and proposes a new algorithm namely 

Discrete Particle Swarm Optimization (DPSO) for Multiple Destination Routing Problems, The author describes 

the algorithm and shows its empirical results comparisons with other comparative algorithms.  

Guohui Zhang (Zhang 2009) in his paper applies Flexible job-shop scheduling problem (FJSP) as an extension of 

the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain 

preferable results in solving the mono objective FJSP. However, they are very difficult to solve multi-objective 

FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are 

combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which 

integrates local search and global search scheme possesses high search efficiency. The computational results have 

proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, 

especially for the problems on a large scale. 

Zhi-Hui Zhan (Zhan 2009), in his paper, proposes an extension to Particle Swarm Optimization (PSO) algorithm 

through Adaptive Particle Swarm Optimization (APSO) Algorithm. This progress in PSO has been made possible 

by ESE, which utilizes the information of population distribution and relative particle fitness, sharing a similar 

spirit to the internal modeling in evolution strategies. Based on such information, an evolutionary factor is defined 

and computed with a fuzzy classification method, which facilitates an effective and efficient ESE approach and, 

hence, an adaptive algorithm. The author justifies his proposed work through statistical as well as empirical 

validation. 

Yu Bin (Bin 2009) proposes an improved ant colony optimization (IACO), to vehicle routing problem (VRP), a 

well-known combinatorial optimization problem, holds a central place in logistics management. In this paper the 

author argues that IACO possesses a new strategy to update the increased pheromone, called ant-weight strategy, 

and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported 

and compared to those of other metaheuristic approaches.  

4.  Proposed Methodology: 

All applications of SBSE concerned should be termed as ‘static’ or ‘offline’ optimization problems. That is, 

problems where the algorithm is executed off line in order to find a solution to the problem in hand. This is to be 

contrasted with ‘dynamic’ or ‘on line’ SBSE, in which the solutions are repeatedly generated in real time and 

applied during the lifetime of the execution of the system to which the solution applies. The static nature of the 

search problems has tended to delimit the choice of algorithms and the methodology within which the use of search 

is applied. Particle Swarm Optimization and Ant Colony Optimization techniques have not been used in the SBSE 

literature. These techniques work well in situations where the problem is rapidly changing and the current best 

solution must be continually adapted. For example, the paradigm of application for Ant Colony Optimization is 

“dynamic network routing”, in which paths are to be found in a network, the topology of which is subject to 

continual change. The ants lay and respond to a pheromone trail that allows them quickly to adapt to network 

connection changes.  

4.1 Workflow Model for Dynamic Optimization 
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Figure 4.1: Workflow model for dynamic optimization 

 
5.  Conclusion: 

Search Based Software Engineering (SBSE) is used for finding a near optimal solution for different software 

activities throughout software development life cycle. SBSE has been applied to problems having static nature, but 

yet not applied to problems having dynamic nature. On the other hand Swarm Particle Intelligence techniques, 

such as Ant Colony Optimization (ACO) uses ants behavior and structure to find the real world problems, using AI 

technique to SBSE dynamic search problem will probably find the objective which yet not been achieved. 

Dynamic Network Routing problem using ACO will yield this objective. Results will be statistically and 

empirically tested and compared with other competitive studies to validate the research being proposed.  
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