
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

23

Advanced Searching Algorithms and its Behavior on Text
Structures

Abid Thyab Al Ajeeli,

Higher Education Committee, C.O.R, Iraq

Abstract
This research investigates the behavior of the Boyer-Moore-Horspool (BMH) and the Boyer-Moore-Raita (BMR)
string-matching algorithms using multilingual texts. The performance is computed based on searching for
patterns in master strings. Experiments are conducted using a number of pattern lengths with many experiments
repetition. The experimental results show that on average the number of comparisons per character passed in the
case of the BMR is less than the number encountered by the BMH variant. The improvement is due to properties
of the text structures. These experiments may lead to more theoretical and practical studies to develop new
variants of algorithms. Using multilingual text structures provide more insight into the theory and structure of
algorithms as multilingual text structures have different set of characters and dependencies, and the character
properties have different type of structures. Since many applications of today depend on searching algorithms,
therefore researchers need to explore every possibility that lead to improving the efficiency of searching and
matching mechanisms. The time performance of exact string pattern matching can be greatly improved if an
efficient algorithm is used. Considering, for example, the growing amount of text handled in the electronic
patient records, it is worth and essential, in these cases and others, to searching for an efficient algorithm to deal
with such huge items of information.
Keywords: Matching, Boyer-Moore, Raita algorithm, Searching, multilingual

1. Introduction
There has been much research in recent years on string searching methods. String searching is one of the most
frequent operations encountered in many of today’s applications such as word processing, natural language
processing, computerized library systems, virus scanning, computer security, signal processing, search engines,
satellite transmissions, and in genetic sequences. The problem of string searching is considered as finding the
position (s) of occurrence (s) of a given pattern P of length m characters in a text string T of length n where m <=
n. In practical situations n is very large compared with m.
Throughout the paper we adapt the following notations (Knuth et al. 1977):
T = t1t2…tn { the master text string to be searched. Its length is equal to n}
P = p1p2…pm { the pattern to search for in text string T. Its length is equal to m }
n { the master string length}
m { the pattern length}
ti { the ith character in the master text string }
pj { the jth character in the pattern}
Σ { the alphabet}
σ { the alphabet size}

One of the fastest known algorithms is that of the Boyer and Moore (Boyer & Moore 1977). Many
researchers have studied it extensively. In this paper, we investigate the performance of the fastest two variations
of the Boyer-Moore (BM) method (Boyer-Moore-Horspool), BMH, and Boyer-Moore-Raita, (BMR). The
algorithms are applied to text/patterns from Arabic alphabet in order to identify whether the performance is due
to properties of the texts being searched or to any other guarding factors.

The motivation for conducting this study was the articles published by Raita (1992) and smith (1994)
who claim inconsistent conclusions when they applied the algorithms on English texts. In our experiment, Arabic
text is used for the investigation of the performance of the BMH and BMR algorithms. This is accomplished by
transforming the preprocessing character set of the algorithms into Arabic character set.

In order to acquaint readers with a brief description of Arabic structure, we illustrate below some basic
characteristics. The structure of the Arabic language is different from other English and European language
structures. For example the Arabic script is written from right to left and it is an inflectional language. Arabic
language is distinguished by its high syntactical flexibility (Xu et al. 2002). This flexibility includes: the
omission of some prepositional phrases associated with verbs; the possibility of using several prepositions with
the same verb while preserving the meaning (Young-Suk et al. 2003).

Arabic rules allow a great deal of freedom in the ordering of words in a sentence. A sentence in Arabic
may consist of one word only, which provides a complete meaning such as "�أ'&%$#"!ھ". It is a sentence made up
of verb, subject, object, and pronouns. This characteristic makes the application of searching algorithm very
interesting. The average length of Arabic words, for example, is 5.7 letters. It is the longest length compared

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

24

with French words which is 4.84 letters and the 4.5 letters of the English. The number of ASCII codes for the
Arabic language is 36 based on Nafitha software developed in Bahrain.

Three experiments have been conducted to calculate the distribution of Arabic letters. The first
experiment was perfumed on texts collected from a book. The second experiment was performed on article
appeared in an Arabic newspaper based in London known as “Al-Sharaq AlAwsat”. The third experiment
performed on the whole holly Quran texts. The average has been calculated to draw the distribution as in figure 1.

Figure 1: Distribution of Arabic letter frequencies

The frequency can be grouped into four categories starting from the lowest frequency to highest as
shown in table 1.

Table 1: Arabic letter frequency groups
Group I ة ج ى خ ص ش ض ط ز ث ء ئ آ غ ظ ؤ
Group II ه ر ت ب ع ك ف أ ق د س ح ذ إ
Group III م ن و ي
Group IV ا ل

The remainder of this paper is organized as follows: the next section presents background information
on related work in the area of string matching techniques. It outlines the fastest two algorithms, BMH and BMR.
A number of experiments are demonstrated in the empirical investigation section. Finally, the last section draws
conclusions and suggests future works.

2. Related Work
The study of detecting the occurrences of a particular sub-string in another string has received much attention
from the computer scientists from both theoretical and practical points of views. One of the basic strings
searching technique was the straightforward algorithm. In this algorithm, the searching mechanism starts by
aligning pattern P against the leftmost portion of the text string T. The algorithm starts comparing the
corresponding characters of the pattern and the text from left to right one by one. If at some point during
comparisons, a mismatch occurs the pattern P is realigned with T by shifting P one position to the right of T and
the comparison processes re-start again.

During the last two decades, several string-searching algorithms have been developed. The earliest two
practical algorithms on string searching were the algorithm developed by Knuth, Morris and Pratt (KMP) (1977)
and the algorithm developed by Boyer and Moore (BM) (1977). The complexity of both algorithms in the worst
case is bounded by Θ (n+km), where k is the total number of matches. there are a number of variations of the
BM algorithm available. For example, Boyer-moore-horspool (BMH) (1980) and Raita (1992) are two variants.
The performance of these variations and the KMP algorithm are ducumented in smit (1982) and Hume and
Sunday (1991). An improved version of BM is well documented in Takaoka (1996).

S. O. Fageeri and R. Ahmad (2014) emphasized the need for improving structure of searching

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

25

algorithms. They developed a binary-based approach for frequency mining of a database log file. The approach
includes the use of algorithms along with its supportive data structures. Construction of the approach began with
evaluation of some of the existing methods and identifying their drawbacks. They claim the new algorithms were
developed and tested. Initial experimentation of the approach reveals a significant improvement in terms of the
execution time of the log file's frequency mining calculation. They did not outlined how fast the execution time
compared with other frequently used searching algorithm.

Although the BM algorithm has been analysed extensively, as mentioned above, it is still considered to
be the foundation of most of the variations. In the preprocessing phase of the BM algorithm, P is scanned to form
two tables. The first table defines a match heuristic where the pattern, P, is matched from right to left.. This table,
D, tells how long the pattern can be moved to the left. It is a function of the text character j at which the
mismatch occurred.

D[j] = min {k | k = m or (0 ≤ k ≤ m and pm-k = j)}
The second table expresses the rightmost occurrences of the text symbol x in the pattern. In other word,

this table DD, is a function of the position in the pattern at which the mismatch occurred (Crochemore 1997;
Lecroq 1995; Berry & Ravindran 1999):

DD[j] = min {k + m – j | k >= 1 and ((k ≥ I or pi-k = pi); j < I ≤ m)
 And (k ≥ j or pj-k ≠ pj)}

The relevant works in the field of string matching (searching) fall into two camps, ones measure the
performance by computing the CPU times and the others are based on character comparisons. Our study is based
on the character comparisons camp. For the purpose of this study we will review two matching algorithms.

2.1.The Boyer-Moore-Horspool Algorithm
The Boyer-Moore-Horspool algorithm is a variant of the BM algorithm. It uses only one table rather than two
tables as in BM. The comparison between the pattern and the text string is made from right to left. The algorithm
is expressed as a C++ class abstraction as follows (Horspool 1980):
 const AlphabetSize = 256;
 int delta[AlphabetSize];
 int m;
 char* Pat;
 public:
 Search (char*);
 int find (char*);
 };

 Search :: Search (char* P)
 {
 assert (P);
 Pat = P;
 m = strlen(Pat);
 int k = 0;

 for (k = 0; k < AlphabetSize; k++)
 delta [k] = m;

 for (k = 0; k < m-1; k++)
 delta [Pat[k]] = m -k -1;
 cout<<"\ninside Search"<< delta[Pat[100]];

 }

 int Search :: find (char* Master)
 {
 assert(Master);
 int n = strlen(Master);
 if (m > n) return -1;

 int k = m-1;
 while (k < n) {
 int j = m-1;

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

26

 int i = k;
 while (j >= 0 && Master[i] == Pat[j]) { j--; i--;}
 if (j == -1) return i+1;
 k += delta[Master[k]];
 }
 return -1;
 }

2.2.Boyer-Moore-Raita Algorithm
Raita (1992) noticed that the BMH algorithm implementation performed well when searching for a random
pattern in random texts. In general, text is not random; hence there usually exists strong dependencies between
successive symbols (Barnbrook 1996). This variation (BMR) implements a strategy of checking pairs at the end,
beginning, and middle of alignment of pattern text. The aim of this variation is to maximize the length of the
shifts. The implementation is outlined as follows (Raita 1992):
void Raita(char Master[], char pat[], int StringLength, int PatLength)
{
 MidPoint = PatLength/2;
 MidChar = pat[MidPoint + 1];
 MMinusMid = PatLength - MidPoint - 1;
 int k = 0;
 found = false;
 for(k = 0; k < AlphabetSize; k++) Delta[k]=PatLength;
 for (k = 0 ;k < PatLength-1; k++) Delta[pat[k]]=PatLength - k-1;
 i = PatLength;
 mminusone = PatLength - 1;
 last = pat[PatLength];
 first = pat[0];
 pat[0]=Symbol_not_in_text; //Replace the first pattern symbol by a sentinel
 while ((i < StringLength) && !found)
 {
 if (Master[i] == last)
 if (Master[i-mminusone] == first)
 if (Master[i-MMinusMid] == MidChar)
 {
 k= i -1;
 j = mminusone;
 while (Master[k] == pat[j]) {k--; j--; }
 if (j== 1){
 cout<<"\n match at position : "<< k;
 found= true;
 }
 }
 i += Delta[Master[i]];
 }

In his paper, Raita [3] described a number of modifications on the BMH algorithm. The improvement
was attributed to the existence of character dependencies of the searched text. Smith, in his paper [11] which
referred to run time, found that the improvements were due to the addition of guards before the main loop and
not to properties of the text being searched. Our experiments on text from Arabic language show that the
improved running time on BMR was mainly attributed to the existence of character dependencies and partly to
the addition of guards. We present in the next section a number of case studies supporting our findings.

Many of today applications depend heavily on searching and matching techniques. The effectiveness of
these applications is influenced by the efficiency of such searching and matching algorithms. For example, text
editors and digital libraries or search engines need searching algorithms in order to find patterns in a text. It has
also shown in multimedia and computational biology that a much more generalized theoretical basis of pattern
matching could be of tremendous benefit. In computational biology, for example, one may be interested in
finding a close mutation, in communications one may want to adjust for transmission noise, and in texts it may
be desirable to allow common typing errors. In multimedia one may want to adjust for loss compressions,
occlusions, scaling, affine transformations or dimension loss. The largest overlap heuristic for finding the
shortest common superstring has been used in DNA sequencing.. The time performance of exact string pattern

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

27

matching, therefore, can be greatly improved when an efficient algorithm is used. Considering the growing
amount of text handled in the electronic patient records, it is worth and essential searching for an efficient
algorithm to deal with such huge items of information (Singla & Garg 2012).

3. Empirical Investigations
Many variations of the BM algorithm have been investigated in previous works. Boyer and Moore showed that
their algorithm makes fewer than i + m comparisons before finding the pattern at location i, That is; the
complexity is O(n+km) where k is the total number of matches. The complexity of BMH and BMR is O (cn); c
∈ (0,1). BM variation was implemented using English text. Our experiments use Arabic text, which, unlike
English text, has various properties among characters. The two algorithms, BMH and BMR, were implemented
in their most efficient forms as suggested by their authors. The most important variables in our experiments are
pattern length, finding zero or more occurrences, and whether the text and pattern are random or linguistic.
Case 1
This experiment computes the average number of comparisons for different pattern lengths. Each experiment is
repeated n times. The pattern positions and length are chosen arbitrarily from the text.
Organization: The average number of comparisons is computed for each pattern length as follows:

Where xi represents the number of references to the text string before finding the pattern at position i, and
xiposition represents the position of the first occurrence of the pattern in the text string.
The percentage of saving is computed as follows:

Algorithm:
Input: Pattern and Text, arrays of pattern and text characters; m>0 and n>0, the number of characters in Pattern
and Text, respectively.
Processing: calls BMH and BMR algorithms.
Output: The number of references to the text before finding the pattern.

In this first experiment, we investigated a string of length 6930 characters from real Arabic text with
different pattern lengths of 5, 6, 9, 15, 25, 27, and 30 characters. The seven-pattern lengths are chosen arbitrarily
to make experiments unbiased. Each experiment is repeated four times on different pattern positions. Table 1
shows average number of comparisons required to find occurrences of a pattern.

Table I. Number of Comparisons for BMH and BMR on Arabic texts

Pattern Length

xBMH

xBMR

%Saving

5 1316.2 1199.2 8.89
6 972.2 891.4 8.31
9 778.8 746.1 4.20
15 660.8 562.5 14.88
25 535.2 421.1 21.32
27 401.7 376 6.40
30 398.5 386.2 3.09

The results in table I show that the BMR algorithm has better performance than the BMH algorithm. It
saves a remarkable amount of computation. The saving range is from 3% to 21%. The variation of the amount of
saving indicates that it is caused by the variation of text properties. The saving is displayed in figure (2).

∑

∑ ×
==

itionsOverallPos

i

itionsOverallPos

ii

positionsx

positionsxx

xAverage

100]/)[(×
−−

−
−

= BMHxBMRxBMHxSaving

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

28

Saving

0

5

10

15

20

25

5 6 9 15 25 27 30

Pattern Length

%

S
a
v
in

g

 Figure (2): % Saving Costs

In order to do a profound analysis of both algorithms, we conducted n experiments on each algorithm
and the results were treated as one sample of n pairs. We computed, for each pair, the difference in performance.
We use confidence intervals (CI) to guide us during the process of taking a decision. A confidence interval is,
in general easier to understand and explain to the decision-makers. Confidence intervals are constructed and
along with other measurements are displayed in table 2.

Table 2: Descriptive Statistics for Performance

Differences

Measures Values

Mean 68.7

Standard Error 16.7208

Median 80.8

Standard Deviation 44.23909

Sample Variance 1957.097

Kurtosis -2.26916

Skewness -0.19298

Range 104.7

Minimum 12.3

Maximum 117

Sum 480.9

Count 7

Confidence
Level(90.0%)

32.49154

From table 2, sample mean = 68.7, sample variance = 1957.097, and sample standard deviation =
44.23909. The 100(1- α)% confidence interval (CI) is given by
 (x - t[1- α/2; n-1] s/ √n , x + t[1- α/2; n-1] s/ √n)

The t[1- α/2; n-1] is the (1- α/2)-quantile of a t-variate with n-1 degrees of freedom. In this case, from table
2, the CI is 32.49154 at the 90% confidence level, i.e.
 68.7± 32.49154 = (36.20846, 101.19154)

The confidence interval does not include zero. The only significant differences between BMH and
BMR are the order of character comparisons within the pattern, and if that makes a difference, it must be because
it is utilizing some statistical properties of the underlying texts.
Case 2.
This experiment aims to demonstrate the number of comparisons for different pattern lengths ranging from n1
characters to n2 characters; n1< n2. The pattern has been chosen to be a proper phrase known to be not in text.
Organization: The number of comparisons is computed for each search pattern of length xk where xk is defined
as follows:
 xk = n1 + k for k = 0, 1, …, n2-n1 and xk ∈ [n1, n2]

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

29

The percentage of saving is computed as follows:
 Saving = [(xBMH – xBMR)/ xBMH] × 100
Algorithm
Input: Pattern and Text, arrays of pattern and text characters; m > 0 and n > 0, the number of characters in
Pattern and Text, respectively.
Processing: calls BMH and BMR algorithms.
Output: The number of references to the text before finding the pattern.

The patterns length chosen to be a proper Arabic sentence or phrase \]ا ^_ `abcde$ `afdg �f"hi jk'"” that
is known to be not in the master text. The search patterns of length m, for each m from 3 to 30. The results are
outlined in table 3.
 Table 3. Number of Comparisons for BMH and BMR on Arabic texts with patterns not in the text
PatLen 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BMH 2503 2014 1693 1745 1388 1262 1192 1058 1012 1168 862 798 755 706
BMR 2336 1841 1512 1385 1330 1161 1092 1005 916 863 801 762 716 703
Saving 7 9 11 25 4 8 9 5 10 35 7 4 5 0
PatLen 17 18 19 20 21 22 23 24 25 26 27 28 29 30
BMH 636 613 612 720 604 588 553 556 647 498 519 533 611 647
BMR 624 592 554 563 526 548 548 521 503 477 449 513 490 440
Saving 1 3 10 27 14 7 0 6 28 4 15 3 24 47

Some measures of central tendency for the difference between performance of the BMH and BMR
algorithms are outlined in table 4.

Table 4: Statistical Measures

Measures Values

Mean 97.21429

Standard Error 16.75464

Median 65.5

Mode 58

Standard Deviation 88.65721

Sample Variance 7860.101

Kurtosis 2.080643

Skewness 1.454561

Range 357

Minimum 3

Maximum 360

Sum 2722

Count 28

Confidence Level(95.0%) 34.37765

From table 4, the sample size = n= 28, the mode = 58, the mean = 97.21429, and std. Deviation. =
88.65721. The t[1- α/2; n-1] is the (1- α/2)-quantile of a t-variate with 27 degrees of freedom. In this case, from
table 4, the CI is 34.37765 at the 95% confidence level, i.e.
 97.21429 ± 34.37765 = (62.8366, 131.592)

The confidence interval does not include zero. Therefore, there are real differences between the two
algorithms’ structures. The performance of BMR algorithm cost saving is plotted in figure (3).

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

30

Figure (3): Percentage Saving
The facts displayed by figure (3) lead to the conclusions that improvements are mainly due to character

dependencies.
Case 3.
This experiment aims to demonstrate the behavior of the BMH and BMR algorithms on Arabic text with fixed
pattern length but with different combinations of letters. The aim is to show whether the properties of the pattern
have any effects on the performance of the algorithms.
Organization: The number of comparisons is computed for each pattern and for each algorithm. The percentage
saving is computed as in case 2.
Algorithm:
Input: Pattern and Text, arrays of pattern and text characters; m > 0 and n > 0, the number of characters in
Pattern and Text, respectively.
Processing: calls the BMH and BMR algorithms.
Output: The number of references to the text before finding a pattern.
Interested findings were reported in table 5.

Table 5. Number of Comparisons for the BMH and BMR algorithms on Arabic text with equal pattern
length and different character types

Pattern ي _^ت^_ abإ def gh_ ijk ااا imn ojp iqp
BMH 2554 2611 2615 2447 2403 2594 2710 2512 2672 2505
BMR 2493 2493 2578 2376 2346 2422 2470 2315 2433 2336
%Saving 2.4 4.5 1.4 2.9 2.4 6.6 8.9 6.4 8.9 6.7

Pattern drk skر djن ivس djp xjس xjش iqن iqz {rط

BMH 2627 2654 2555 2479 2509 2458 2455 2546 2501 2563
BMR 2547 2438 2482 2323 2433 2429 2424 2380 2332 2488
%Saving 3 8.1 2.9 6.3 3.0 1.2 1.3 6.5 6.8 2.9

From table 5, one can see that the saving is varied depending on the type of characters. These
investigations may lead to more theoretical and practical studies to develop new variants of the BMH’s
algorithm. The savings are presented in figure (4).

Performance of BMR Cost Saving

0

10

20

30

40

50

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

Pattern Length from 3-30

C
o
s
t

S
a
v
in

g

Saving

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

31

0
2
4
6
8

10

1 3 5 7 9 11 13 15 17 19

S
a
v
in
g

% Saving

Figure (4): % Saving

In table 6, more investigation is performed using z-test for the difference between the means of the
performance of the BMH and BMR algorithms

Table 6: z-test - Two Sample for Means

Measures BMH BMR

Mean 2548.5 2426.9

Known Variance 6820.579 5619.779

Observations 20 20

Hypothesized Mean Difference 0

Z 4.875646

P(Z<=z) one-tail 5.43E-07

z Critical one-tail 1.644853

P(Z<=z) two-tail 1.09E-06

z Critical two-tail 1.959961

We set α = 0.05, the critical value for this test, with 18 degrees of freedom is 4.875646. Because zobserved

(4.875646) > tcritical (1.959961), reject the null hypothesis as true. The exact P-value, for z18 = 4.875646, is P =
1.09E-06. In other words, there is a significance difference in the performance of the BMH and BMR algorithms.
Case 4.
This experiment aims to demonstrate the behavior of BMH and BMR algorithms. The master text is of length n.
We perform k search patterns of length m1,…,mk. Experiments were replicated j times at different positions for
each pattern of length mi; i =1,…,k. The first (k-1) repetitions assume successful search deep into the text. The
last replica assumes no match occurs. The average number of comparisons per character passed is computed as
follows:

The master text and the patterns were chosen from Arabic text string of length approximately 15000
characters. The patterns used in the investigations are of length 3,4,6,15,20,24,27, and 30 characters. The eight
pattern lengths are chosen arbitrarily to make the experiments unbiased. The experiments have been repeated
four times. The first three repetitions assume successful search deep into the master text located roughly at equal
intervals. The fourth repetition assumes no match occurs. Hence the algorithm searches all characters of the
master text. In each case, the number of comparisons computed and the results for the BMH algorithm were
summarized in tables 6.

k

nPenetratioCost

ChPassedAverage

k

i

ii∑
== 1

)/(

)(

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

32

Table 6: Number of comparisons using BMH algorithm

Avg(Chpass) Not-Found Third Second First PatLength
0.36601 5805 3920 1954 793 3

0.285292 4347 3024 1627 608 4
0.215944 3152 2276 1229 486 6
0.158149 2583 1685 820 343 9
0.113074 1519 1316 577 279 15
0.101294 1273 1027 646 239 20
0.097244 1110 940 448 331 24
0.091185 1069 931 554 238 27
0.079333 1059 779 412 223 30
 14,373 11, 309 5,312 2,294 Positions

Average of comparisons per character passed for pattern, for example, of 3 characters length is:

Tables 7 summarized the number of comparisons for each pattern length and for each repetition for BMR
Table 7: Number of comparisons using BMR algorithm

Avg(Chpass) NotFoundd Third Second First PatLength
0.346494 4830 3905 1854 786 3

0.265768 4183 2944 1449 590 4
0.198785 2860 2273 1020 482 6
0.145548 2399 1608 797 321 9
0.110833 1499 1254 575 266 15
0.091473 1231 975 480 227 20

0.08845 829 860 439 258 24
0.083709 987 929 406 229 27
0.077011 866 771 387 216 30
 14,373 11,309 5,312 2,294 Positions

The resultant graph of the average number of comparisons per number of character passed against the
pattern length from table 6 and 7 is shown in figure 4.

From figure 4, one can see that the performance of BMR (the lower curve) is better than BMH. One can
also see that for patterns of length 4 for example, only 0.15 comparisons are made per character passed. For the
BMR algorithm, the number of comparisons also drop to less than 0.1 per character passed or nine-tenth of the
characters passed over are not examined when the patterns length, m > 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9
A
v
e
ra
g
e
/C
h
a
ra
te
r
P
a
s
s
e
d

Patterns

Average Comparisons / Character
Passed for BMH and BMR

Figure 4: Number of Comparisons / Character Passed

36601.0)
14373

5805

11309

3920

5312

1954

2294

793
(

4

1
)(=+++=ChPassedAverage

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

33

4. Hypothesis testing and Confidence Intervals
For a specified level of confidence (α), a confidence interval specifies plausible values for µ. If those values do
not overlap with the value specified by the null hypothesis, it is safe to reject the null hypothesis. Determine if
group means differ from each other. State null H0 and alternate hypotheses Ha:
H0: Properties of text has no effects. In other words H0: µ1 = µ2
Ha: There are some effects. i.e. Ha: µ1 ≠ µ2
We apply the hypothesis on the average number of comparisons per character passed in table 6 and table 7. The
z-test is outlined in table 8:

Table 8: z-Test: Two Sample for Means at 25%

 BMH BMR

Mean 0.237075 0.167503

Known Variance 0.02235 0.010199

Observations 9 9

Hypothesized Mean Difference 0

Z 1.156887

P(Z<=z) one-tail 0.123659

z Critical one-tail 0.67449

P(Z<=z) two-tail 0.247319

z Critical two-tail 1.150349

We set α = 0.25, the critical value for this test, with 16 degrees of freedom is 1.150349. Because zobserved

(1.156887) > tcritical (1.150349), reject the null hypothesis as true. The exact P-value, for z16 = 1.156887, is P =
0.247319.

Table 9: t-Test: Two-Sample Assuming Unequal Variances at 5%

 BMH BMR

Mean 0.237075 0.167503

Variance 0.02235 0.010199

Observations 9 9

Hypothesized Mean Difference 0

Df 14

t Stat 1.15688

P(T<=t) one-tail 0.13334

t Critical one-tail 1.761309

P(T<=t) two-tail 0.26668

t Critical two-tail 2.144789

We believe that the reasons for improvement are due to properties of text being searched. However, a
proportion of the improvement is due to the addition of guards before the main loop as experienced by (Smith
1994; Gey & Oard 2002).
Case 5.
In this experiment we have chosen Corpus Data from Arabic newspaper. Total number of characters in the
chosen article was 4810. The experiment is repeated for patterns of length 7, 14, 21, 28, and 35. It has been
performed for patterns that were known in the master text and for patterns not in the master text. Results were
recorded in table 10.

Table 10: Corpus Data from Arabic Newspapers
Pattern
Length

Pat In Text Pat not In Text

 BMH BMR Diff BMH BMR Diff
7 1132 805 327 1363 956 407

14 474 442 32 572 516 56
21 413 373 40 521 432 89
28 484 344 140 591 397 194
35 275 260 15 342 318 24

Overall averages
The overall averages were computed for the case of pattern in the text which shows that the number of

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

34

comparisons for BMH = 442 and BMR = 355.6. In the mean time, the overall averages were computed for the
case of patterns that were not in the text. Result shows that the number of comparisons for BMH = 542.9333 and
BMR = 430.8.
Case 6
In this experiment, the BMH and BMR algorithms are used to search for random Arabic text. The text characters
were generated randomly and independently from the same character alphabet used in real Arabic text.

Table 11: Search times for BMH and BMR on Random Arabic text

Pattern
Length

BMH BMR %Saving

3 4068 3946 3

4 5293 5219 1

5 4313 4192 3

6 3676 3564 3

7 3191 3104 3

8 2831 2736 3

9 2544 2462 3

10 2251 2190 3

11 2119 2043 4

12 1976 1911 3

13 1787 1739 3

14 1684 1629 3

15 1590 1552 2

16 1498 1434 4

17 1434 1395 3

18 1346 1310 3

19 1316 1278 3

20 1255 1215 3

21 1194 1146 4

22 1158 1114 4

23 1078 1042 3

24 997 973 2

25 1011 967 4

26 1044 1015 3

27 971 941 3

28 929 908 2

29 923 905 2

30 926 897 3

When we apply statistical measures on table 11, the measures are computed in table 12.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

35

Table 12: statistical measures

Descriptors Measures

Mean 2.964285714

Standard Error 0.130952381

Median 3

Mode 3

Standard Deviation 0.692934867

Sample Variance 0.48015873

Kurtosis 1.471700231

Skewness -0.672485365

Range 3

Minimum 1

Maximum 4

Sum 83

Count 28

Confidence Level
(95.0%)

0.268691911

The results, in table 12, indicate that the percentage saving is nearly constant with approximately equal
values for the mean, mode, and median. These results support our conclusions that improvement is mainly
because of the text character properties which are supported by (Gurung et al. 2016).

5. Conclusions
In today’s applications finding the appropriate content in minimum time is very important. String searching
algorithms perform a vital role for this. Researchers, all over the world, are hard working on software and
hardware levels to make pattern searching faster. The aim is to find algorithms that can be able to reduce
complexity and also reduce computation time. it has been noted that most applications uses Boyer Moore, BMH
or BMR variant algorithms for their effective and efficient functionality and other applications uses the basics of
these algorithms for their functionalities as the BMR algorithm has less time complexity and Boyer Moore and
BMH algorithms has preprocessing time complexity less. Other algorithms depends upon the type of input and is
efficient for certain or particular application.

The work in this paper evaluates the behavior of two variants of matching algorithms BMH and BMR.
The paper outlined the techniques used in the comparisons. A number of experiments were conducted and results
were recorded in tables. The results show that on average the number of comparisons per character passed in the
case of the BMR is less than the number encountered by the BMH variants. The improvement is due to
properties of the text structures.

These experiments may lead to more theoretical and practical studies to develop new variants of
algorithms. Using Arabic text structures provided more insight into the structure of the algorithm as the Arabic
language has a different set of characters and its characters properties have different structures. Improvement on
string searching algorithms has many real world applications including the extraction of relevant data from web
pages.

References
Knuth, D. E., Morris Jr, T. H. & Pratt, V. B. (1997), “Fast Pattern Matching in Strings”, SIAM J. Computing,

Vol. 6, No. 2, pp. 323-350, 1977.
Boyer, R. S. & Moore, J. S. (1977), “A fast String Searching Algorithm”, Communications of the ACM, Vol.

20, No. 10, pp. 762-772, October 1977.
Horspool, R. N. (1980, “Practical Fast Searching in Strings”, Software Practice and Experience, 10, pp.501-506,

1980.
Raita, T. (1992), “Tuning the Boyer-Moore-Horspool String Searching Algorithm”, Software Practice and

Experience, Vol. 22, No. 10, pp.879-884, 1992.
Smit, G. (1982), “A Comparison of Three String Matching Algorithms”, Software-Practice and Experience, Vol.

12, pp.57-66, 1982.
Hume, A. & Sunday, D. M. (1991), “Fast String Searching”, Software-Practice and Experience, 21, pp.1221-

1248, 1991.
Takaoka, T. (1996), “A Left-to-Right Preprocessing Computation for the Boyer-Moore String Matching

Algorithm”, The Computer Journal, Vol. 39, No. 5, 1996.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.6, 2016

36

Crochemore, M. (1997), “Off-line Serial Exact String Searching”, in Pattern Matching Algorithms, A.
Apostolico and Z. Galil ed., Chapter 1, pp 1-53, Oxford University Press, 1997.

Lecroq, T. (1995), “Experimental Results on String Matching Algorithms”, Software Practice and Experience,
Vol. 25, No. 7, pp. 727-765, 1995

Berry, T. & Ravindran, S. (1999), “ A Fast String Matching Algorithm and Experimental Results”, Proceedings
of the Prague Stringology Club Workshop’99, J. Holub and Simanek ed., Collaborative Report DC-99-
05, Czech Technical Univ., Prague, Czench Republic, pp. 16-26, 1999.

Smith, P. D. (1994), “On Tuning the Boyer-Moore-Horspool String Searching Algorithm”, Software-Practice
and Experience, Vol. 24 (4), 435-436 (April 1994).

Barnbrook, G. (1996), “Language and computers: A practical Introduction to the Computer Analysis of
Language”, Edinburgh University Press, 1996.

Gey, F. C. & Oard, D. W. (2002), The TREC-2001 cross-language information retrieval track: Searching Arabic
using English, French, or Arabic queries. In TREC 2001. Gaithersburg: NIST, 2002.

Xu, J., Fraser, A. &Weischedel, R. (2002), Empirical studies in strategies for Arabic retrieval. In Sigir 2002.
Tampere, Finland: ACM, 2002.

Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam & Hany Hassan (2003), Language Model
Based Arabic Word Segmentation, for Computational Linguistics, July 2003, pp. 399-406.
Proceedings of the 41st Annual Meeting of the Association.

Fageeri, S. O. & Ahmad, R. (2014), An Efficient Log File Analysis Algorithm Using Binary-based Data
Structure, Procedia - Social and Behavioral Sciences, Volume 129, 15 May 2014, Pages 518–526.

Gurung, D. , Chakraborty, U. & Sharma, P. (2016), Intelligent Predictive String Search Algorithm, 7th
International Conference on Communication, Computing and Virtualization, At Mumbai, 2016.

Singla, N. & Garg, D. (2012). String Matching Algorithms and their Applicability in various Applications
International Journal of Soft Computing and Engineering (IJSCE), Volume-I, Issue-6, January

