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Abstract

Finding an optimal path to the fixed goal stateagfroblem instance lying in an enormous searchespac
may be described in the framework of the convenfign algorithm. However, the estimated distance to
the goal state, so calléd value must be generated by an admissible heuristic thathit is not larger than
but still as close as the unknown real distandbéogoal. In this paper, we suggest a method ofrgeing

a heuristic with that property. After analyzinguanmber of devised partial problems, some are seldotbe
combined to produce a properly informed heuridticsolving a complex problem with a fixed goal, som
depth of fixed backward states is pre-stored. Thsbgtc backward states are also used for panttddiem
backward searches. For a given problem instaneefdiward search is first performed for each of its
partial problem. The dynamically generated spaamimbined with the static search space to prodoee t
temporary search space, which is used to aid ingdrmeration of each state heuristic for the cowofse
problem solving. A novel method of constructing teenporary search space for each partial problem is
suggested, in which each forward state found in gtegic backward space is back-propagated and
propagated in the forward space. To show the éffaoess of our method, it has been massively
experimented for instances of Rubik’'s cube probleihrsome difficulty whose search space of states
reachable from any given start state is known tecd3+13® states, the number of which even an 64-bit
unsigned integer cannot hold.

Keywords: A, admissible heuristic, partial problems, dynamiosMard search, static backward search,
Rubik’s cube

1. General Framework for Solving a Complex Problem

Most complex problems are technically classifiedN&hard problems, which mean that as the size of a
problem instance gets larger, its optimal solutigets virtually impossible to obtain. That is why
heuristic-based knowledge is generally used foregeing a good solution instead of the optimal one.
However, to get the optimal (or even near optinoal® for a somewhat larger size of a problem inganc
the framework of A algorithm may be tried. Figure 1 describes thealgorithm (Nilssonet al. 1968;
Luger 2008) modified to utilize the pre-stored istéackward space of states. Two auxiliary funciane
additionally used in the algorithm.

void Stateset_H) { /* heuristic for calculatingh_value*/ }
unsigned int Stateget_{) { returng_value+ h_value }
bool Modified_A {
priority_queue<State> OPEN;
set<State> CLOSED; // CLOSED is a set of states
STARTg_value= 0; STARTset_If); OPEN.push(START); // START into OPEN
while (true ) {
if (OPEN.isempty()) return false; // no solutierists
State P = OPEN.top(); OPEN.pop(); //get statd wiax f
if (P in pre-stored static backward search spfce)

1 This work is supported in part by Hongik UniveysResearch Fund 2012.
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print path from START through P to GOAL,; raturue; }
for (each child C of P) {
Cg_value= Pg_valuet 1; Cset_H);
if (C exists as oldC in OPEN or CLOSED)
{if (C.get_f)>oldCget_{)) { delete(oldC); OPEN.push(C); } }
else OPEN.push(C);
} /I end of for each child ...
CLOSED.delete(P);
} /I end of while ( true)

} 1/ end of Modified_A
Figure 1. General Framework of the Modified algorithm

Let START denote the state of the given instancE@OAL be the static final state. In this versi@QAL

is one of the states in the pre-stored static baottwpace, and does not explicitly appear in Figutgach
state hag_value the number of steps from START to it, dmdvalue the number of estimated steps from
it to GOAL. (Those two values may be differentlyfided in terms of moving costs instead of the numbe
of steps. However, without loss of generality weuase the latter.) The sum of the two valuegalue
(returned by the functioget_{)) is used to guide OPEN, the max priority queaklimg the states ready to
expand. If theh_valueof a state could always be set to its unknown actwmber of steps (called
h"_valug, A" algorithm would reduce to an ideal analytic solnti#he main issue here is how to derive the
admissible (or nearly admissible) heuristic, indtionset ), such that its value is as large as possible
but still not larger tham”_value A static pattern database (Korf 1997) may help, le suggest a more
complicated method.

2. Generating Properly Informed Admissible Heuristics

We assume the problem has the fixed GOAL statetlamdtatic backward search space of states of some
depth has been pre-computed, which is just a one-job. This may be classified as a method which
generates and combines some partial problem sptufleee & Kim 2012).

2.1 Preliminary procedure for the problem domain

For the given problem domain (e.g., Rubik’s cultkeg, following preliminary procedure must be done to
decide which partial problems must be used, antdpare the corresponding static spaces.

2.1.1 Construction of static backward search space

Make a spac@SSof states reachable (in the breadth first way) fré®@AL to be used for backward
searches. Its deptld,_back may be a design parameter and can be decideddedng the disk space
reserved for storing static backward states.

2.1.2 Design of partial problems and their indexsahemes

Generate partial problems of the given problemv&ashem in the framework of ‘Aor some (say 50)
random problems. The partial problems must be semallugh to generate their optimal solutions fast, b
big enough to generate larde valuesusable for solving the original problem. The diffiet hashing
scheme suitable for each partial problem shouldidsgned to access the same pre-stored statichsearc
space. Its details will not be discussed in thisepa

2.1.3 Selection of partial problems and construttiof BSS_PARTIAL(i), the static backward part of
SS_PARTIAL(i)
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Select some partial problems whose rhaxaluesare large enough. Let’s call the backward seapeltes
for thei-th selected partial probleBSS_PARTIAL). The new heuristic is defined to be the maximain
theh_valuesof all selected partial problems.

2.1.4 Design of the proper depth of the dynamiwé&rd search space

Decide the proper forward deptt, for, by considering the mak_value found from partial problems
subtracted by the pre-stored depth of static baaks@arch space.

2.2 Procedure for a given instance
For each new problem instance, the following procedan be used.

2.2.1 Construction of FSS_PARTIAL(i), forward pafrSS_PARTIAL(i)

We already havd8SS_PARTIAQ), the static part oSS _PARTIAL). Now the dynamic forward part of
FSS_PARTIAL) is built in this stage. While buildingSS_PARTIA(L), any newly generated state for the
i-th partial problem is tested if it already exist8SS PARTIAL. If that is the case, the known valueof
the old one is the neWw_valueof the new one, and it is back-propagated bacRTART in the forward
search space. In addition, afle8S_PARTIA() is temporarily constructed, dil valuesof the states from
START to the final depth of the forward space mastpropagated such that thevaluesof any adjacent
states cannot be different by more than 1. Therighgo which reflects this is as follows.

for (inti = 0; i < #selected_partial_problems; }+

/I make a dynamic forward search spa&&_PARTIA()
STARTh_value=d_for+d_back STARTg_value= 0; //h set to max valueg set to #steps from START
vector<State> V; V.addrear(START); // V is usedhdsig array ; start form START
ind = 0; State Cur, C, P;
while (ind < V.size() ) {

CUR = V[ind++];
if (CUR.g_value<d_for) // init & push each child except for deepest Hept
for (each child C of CUR) { ®@._value= CURh_value-1; Cg_value= CURg_valuerl; V.addrear(C); }
if (CUR already exists iBSS_PARTIAR) {
CURh_value=the depth of the stored state;
C=CUR;
/I back-propagate the newly acquitedvalue
while (C != START) {
Let P be the parent state of C;
if (P.h_value<= (Ch_value+ 1)) break; // no more back-propagation
Ph_valueCh_value-1; // lower P'sh_value
C = P; // for one step back
} // end of while (C != START) {
}// end of if (CUR...
}// end of while (ind < V.size() ) {
/I Now propagation begins
for (intind = 1; ind < V.size(); ind++) {
/I start from level 1, not level O
C = VJ[ind]; Let P be the parent state of C;
if (Ch_value> (Ph_value-1)) Ch_value= Ph_value+ 1; // lower C'sh_value
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}// end of for (intind...
Store vector V aBSS_PARTIA()

2.2.2 h_value calculating function, set_h

Please note that the above procedure is done @nce diven problem instance. Those spaces forgbarti
problem instances are used throughout the probddving. The heuristic-calculating function utiliz8sose
fixed spaces. For each state of a problem spaedatbest of all partial probledm_valuesis the wanted
h_value That value andj_value the number of steps (i.e., depths) from STARTh current state, are
added to produce thie value of a state. The OPEN priority queue, which corttdine states ready to
expand, is designed such thattdp function returns the state with the largestalue

void Stateset_H) {
h_value=0;
for (inti=0; i < #selected_partial problenst) {
if (this state ir8S_PARTIA()) new_h = its storetl_value
else new_h d_back+ 1; // defaulted to 8 fai_backset to 7

if (new_h >h_valug h_value= new_h;

face name | 7 | K |L |F | R | B

}
}
716 |5
4 | K |3
21110
o1 |2
3|1 7|4
516 |7
oj1rjz2joj1j2jo|1|2|o0|l |2
S|K[4 3 |L |4 |3 |F|4]|3|R |4
5|67 |5|6|7|5|6 7|56 |7
NERE face # o |1 ]2 |38 |4 |5
3|8 |4
516 |7

Figure 2. TFace and Tile Number Notation

3. The problem Space for Experiments

Just to clarify the validity of our method, we i#dd a well-known game problem, Rubik’s cube, wydel
considered to be the world’s best-selling toy (Imd&007). As of January 2009, 350 million cubes baen
sold worldwide (Adam 2009)(Jamieson 2009). A nundfegolutions have been developed which can solve
the cube in wee under 100 moves (Marshall 2005yB8aster 1981), which are far from optimal, and we
are not interested in them.

Frey & Singmaster (1982) that the number of movesded to solve any Rubik’s cube, given an ideal
algorithm, might be in “the low twenties”. Kunkle &ooperman (2007) used computer search methods to
demonstrate that any Rubik's cube can be solved6irmoves or fewer. Rokicki (2008) lowered that
number to 22 moves, and in July 2010, researcimetading Rokicki, with about 35 CPU-years of idle
computer time donated by Google, proved the s@ddiGod’s number” to be 20 (Flatley 2010). More
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generally, it has been shown that an n x n x n Rsibube can be solved optimally in the order of log(n)
moves (Dermainet al. 2011).

In this paper, we tested the effectiveness of oggssted method in solving an optimal or near ogitim
solution of a given Rubik’s cube of some difficuity20 or less steps.

3.1 The problem space

The Rubik’'s cube has 6 faces each of which hate8. tBecause center tiles are fixed during any move
every cube state can be defined by 48 tiles asgnZ For the puzzle to be solved, each face rhast
returned to consisting of one color(Dempsey 1988).

The 48 tiles can be divided into two groups, 8 eortubies of three tiles and 12 edge cubies oftil@s.
Corner (Edge) cubies move only to corner (edge)ecpbsitions. The entire space is also known tesisbn

of 12 separate but isomorphic sub-graphs with gallenoves between them (Korf 1997). Therefore, the
total number of states reachable from a given $sa(@2!*2'3*(81*3%)/12 = 43,252,003,274,489,856,000,
which is greater than the max number even an uadigd-bit integer can hold (i.e., 17.592*10e18).

Because we know the number of reachable state§sad® number is 20, the average branching faotor
from depth 0 to 20 can be calculated to be 9.538dlying the equation of the sum of 21 terms of the
geometric sequence, i.e., 1b6¥{— 1) / b - 1) = 43.252 * 18.

Table 1. Static backward and dynamic forward seapetes

pre-stored backward
dynamic forward search space
search space
depth
depth #states
#states

0 11|20 43,252,003,274,489,856,000
1 19 | 19 ~43e18
2 262 | 18 ~42e18
3 3,502 | 17 ~13e18
4 46,741 | 16 ~1.2e18
5 621,649 | 15 98,929,809,184,629,089
6 8,240,087 | 14 7,564,662,997,504,768
7 109,043,123 | 13 575,342,418,679,410
8 1,441,386,411 | 12 43,689,000,394,782
9 19,037,866,206 | 11 3,314,574,738,534
10 251,285,929,522 | 10 251,285,929,522

3.2 Storing the static space for backward search

The bi-directional search helps to reduce the espace. For example, Table 1 (Rokicki 2010) shibnat

if 10-step forward search space and 10-step backeearch space is used, we may deal with the space
0.5e12 states, whereas 20-step forward search wegldre a space of 43*e18 states. That reductta r
corresponds to 1 versus one hundred million. Eaghin the table shows the number of states gerterate
for problem solving. For example, backward spaceegith 9 can be used with forward space of 11.

Because the GOAL state is fixed, we can pre-caleute space of backward search and store it kn(dis
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physical memory, depending on its size). Contratihe forward space is different for each problem
instance and must be dynamically generated. If veesfored_backstep backward states, the forward
search can be limited to the depth of M®ack because we now know that the total depth carafmys
limited to 20, God's number. Considering one steteds 40 bytes, we can deduce from Table 1 that the
pre-stored disk space is 0.3 Gigabytes for depth4b Gigabytes for depth 7, 57.7 Gigabytes for ket
761.5 Gigabytes for depth 9, and 10.1 Terabyteslépth 10. This may be time-consuming, but it sthoul
be noted that it should be done and stored oncthéRubik’s cube domain. In our experiments, thkie

of d_backis set to 7, and moderate 4.4 Gigabytes are usatidt.

Table 2.h_valuescalculated for partial problems of 50 random peabinstances

a. b. C. d. e. 2-pairs 3-pairs 4-pairs

0&1 2&3 4&5 1&2 3&5 a&b a&c a&d a&e abc abd abe abcd | abce

max 13 13 12 13 12 13 13 13 13 13 13 13 13 13

avg. | 1080 | 1098 | 10.74 | 1084 | 10.84 | 1144 | 11.22 11.14 | 11.38 | 11.56 11.54 | 11.64 | 11.60 11.68

o 1.00 0.91 0.84 0.78 0.78 0.83 0.73 0.85 0.69 0.70 0.75 0.62 0.69 0.61

4. Selection of Partial problems

Table 2 summarizes the results obtained by comdipartial problems of two faces. Face numbers 0-5
denoteTop, Back Left, Front, Right andBottomfaces. For the experimental purpose, fifty randarmes
generated by sufficiently many moves have beeizetil All the partial problems of two faces havete
solved in not more than 13 steps. Out of thosesichzartial problems, some pairs of theirvalueshave
been combined. The last case of 3 pairs is a gdmice in that its averagh_valueis sufficiently
high(11.64), with relatively low(0.62) standard d#ion(c), which indicates the stability of the method.
That happens to be the case of using 3 partiallgmub of faces (a) 0 & 1, (b) 2 & 3, and (¢) 3 & 5,
implying that using 5 faces with one face overlappgy be better than using all of 6 faces

5. Experimental Results

For the experimental purpose, a series of Rubilitseecproblem instances with their optimal lengthE48-
were consistently used. We counted the numbemtésstored while running the maina@gorithm.

Table 3 summarizes the experimental results. Tise dxperiment was done using a heuristic (calkagbh
here) which is the number of misplaced tiles oftla#i edge cubies divided by 4, and whose max Jalue
limited to 6. We won't delve into its details hef@ther experiments are all based on our suggesétidoch
with different max depthd( for) of dynamic forward search space, set to 5-7. tbée shows that as the
value ofd_for grows, harder problems may be solved with a muchallemnumber of states stored. The
value of the static space depth,back is currently set to 7 such that it requires fugdiga byte disk space
to hold pre-stored states, but practically we caalde it to even 10 because it requires 10.1 bgta disk,
which is acceptable in modern computers, and bed#isonstruction is just one time job. The vabdfihe
dynamic search space dephfor, can be effectively raised as long as memory céypatiows.
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Table 3. Experimental results with 7-step pre-stdrackward states

(a) forw. heuristic=heu6 (b) forw. heuristinyh(d_for=5)

states stored for partial problems forward states
# forward #
0-1 2-3 35 stored
steps | states stored steps
467414 5-bfs inside
8 9 8 711 556 446 9
9 66 9 423 202 198 24
10 957 10 475 267 346 63
11 33,987 11 321 269 297 237
12 628,964 12 253 137 132 837
13 9,558,799 13 184 134 92 1,321,397
14 > 50M 14 203 125 99 > 50M
(c) forw. heuristic=myh(d_for=6) (d) forwetrristic=myh(d_for=7)
states stored for partial states stored for partial
forward states forward states
# problems of faces # problems of faces
stored stored
steps | O-1 2-3 3-5 steps 0-1 2-3 3-5
621,649+ 6-bfs inside 8,240,087+ 7-bfs inside
8 5,363 | 4,152 3,534 9 8 48,900 42,709 | 53,760 9
9 3,914 2,371 2,108 93 9 41,226| 27,290| 25,593 84
10 5,069| 2,921 3,733 120 10 52,007| 34,389 | 41,757 510
11 3,897| 2,971 3,215 504 11 43,741 34,120 37,265 *10,338
12 2,805| 1,877 1,658 1,011 12 32,881 | 24,237 | 22,430 12,747
13 2,240 | 1,773 1,503 8,896 13 26,710| 23,501| 20,435 96,696
14 2,407 | 1,839 1,467 46,545,179 14 30,604 | 24,658| 20,167 198,515

6. Conclusion

The optimal solution of a complex problem is veaydhto obtain as the size of the problem instamoe/g)
Therefore its heuristic-based suboptimal solut®roften tried. If its optimal or near optimal sadut is
really necessary, it can be tried in the framewafrR™ algorithms. The admissible heuristic for, A_value
is the guess of the actual number of stépsyalue from the current state to the goal state and most
exceed it. The generation of admissible (or alnadshissible) and sufficiently informed heuristic,value
for each state is the most important, given a gmbihstance.

We suggested a bidirectional search paradigm whi¢h static backward search space and the dynamic
forward search space which utilizes the heuristtu® generated by combining each devised partial
problem instance heuristic. For a problem domaig.(®ubik’s cube), some partial problems are $etec
and their hashing schemes are designed to maitht@inown static backward spaces. For every problem
instance given, its dynamic forward space of stestgenerated to be combined with its own statacsplf

any new state being generated in the forward spbaepartial problem already exists in the corresjiog
backward space, its old_valueis back-propagated to the start state, and prépdga the dynamic
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forward search space. The newly combined spacedoh partial problem is used to calculate its own
h_value The maximum of all tha_valuesrecommended by each partial problem is used as thaueof
each newly generated state of the given probletarics.

To show the effectiveness of our suggested metihdds been successfully experimented for a sefies
Rubik’s cube problem instances of some difficulty.
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