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Abstract 

Finding an optimal path to the fixed goal state of a problem instance lying in an enormous search space 
may be described in the framework of the conventional A* algorithm. However, the estimated distance to 
the goal state, so called h_value, must be generated by an admissible heuristic such that it is not larger than 
but still as close as the unknown real distance to the goal. In this paper, we suggest a method of generating 
a heuristic with that property. After analyzing a number of devised partial problems, some are selected to be 
combined to produce a properly informed heuristic. In solving a complex problem with a fixed goal, some 
depth of fixed backward states is pre-stored. Those static backward states are also used for partial problem 
backward searches. For a given problem instance, the forward search is first performed for each of its 
partial problem. The dynamically generated space is combined with the static search space to produce the 
temporary search space, which is used to aid in the generation of each state heuristic for the course of 
problem solving. A novel method of constructing the temporary search space for each partial problem is 
suggested, in which each forward state found in the static backward space is back-propagated and 
propagated in the forward space. To show the effectiveness of our method, it has been massively 
experimented for instances of Rubik’s cube problem of some difficulty whose search space of states 
reachable from any given start state is known to cover 43*1018 states, the number of which even an 64-bit 
unsigned integer cannot hold. 

Keywords: A*, admissible heuristic, partial problems, dynamic forward search, static backward search, 
Rubik’s cube 

 

1. General Framework for Solving a Complex Problem 

Most complex problems are technically classified as NP-hard problems, which mean that as the size of a 
problem instance gets larger, its optimal solution gets virtually impossible to obtain. That is why 
heuristic-based knowledge is generally used for generating a good solution instead of the optimal one. 
However, to get the optimal (or even near optimal) one for a somewhat larger size of a problem instance, 
the framework of A*  algorithm may be tried. Figure 1 describes the A* algorithm (Nilsson et al. 1968; 
Luger 2008) modified to utilize the pre-stored static backward space of states. Two auxiliary functions are 
additionally used in the algorithm. 

 

void State::set_h() { /* heuristic for calculating h_value */ } 

unsigned int State::get_f() { return g_value + h_value; } 

bool Modified_A* { 

priority_queue<State> OPEN; 

set<State> CLOSED; // CLOSED is a set of states 

START.g_value = 0; START.set_h(); OPEN.push(START); // START into OPEN 

while ( true ) { 

  if (OPEN.isempty()) return false; // no solution exists 

  State P = OPEN.top(); OPEN.pop(); //get state with max f 

  if (P in pre-stored static backward search space) { 

                                                      
1 This work is supported in part by Hongik University Research Fund 2012. 
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     print path from START through P to GOAL; return true; } 

  for (each child C of P) { 

    C.g_value = P.g_value + 1; C.set_h(); 

    if (C exists as oldC in OPEN or CLOSED) 

{ if (C.get_f()>oldC.get_f()) { delete(oldC); OPEN.push(C); } } 

    else OPEN.push(C); 

  } // end of for each child … 

  CLOSED.delete(P); 

} // end of while ( true ) 

} // end of Modified_A* 

Figure 1. General Framework of the Modified A*  algorithm 

Let START denote the state of the given instance and GOAL be the static final state. In this version, GOAL 
is one of the states in the pre-stored static backward space, and does not explicitly appear in Figure 1. Each 
state has g_value, the number of steps from START to it, and h_value, the number of estimated steps from 
it to GOAL. (Those two values may be differently defined in terms of moving costs instead of the number 
of steps. However, without loss of generality we assume the latter.) The sum of the two values, f value 
(returned by the function get_f()) is used to guide OPEN, the max priority queue holding the states ready to 
expand. If the h_value of a state could always be set to its unknown actual number of steps (called 
h*_value), A* algorithm would reduce to an ideal analytic solution. The main issue here is how to derive the 
admissible (or nearly admissible) heuristic, i.e. function set_h(), such that its value is as large as possible 
but still not larger than h*_value. A static pattern database (Korf 1997) may help, but we suggest a more 
complicated method. 

 

2. Generating Properly Informed Admissible Heuristics 

We assume the problem has the fixed GOAL state and the static backward search space of states of some 
depth has been pre-computed, which is just a one-time job. This may be classified as a method which 
generates and combines some partial problem solutions (Lee & Kim 2012). 

 

2.1 Preliminary procedure for the problem domain 

For the given problem domain (e.g., Rubik’s cube), the following preliminary procedure must be done to 
decide which partial problems must be used, and to prepare the corresponding static spaces. 

 

2.1.1 Construction of static backward search space 

Make a space BSS of states reachable (in the breadth first way) from GOAL to be used for backward 
searches. Its depth, d_back, may be a design parameter and can be decided considering the disk space 
reserved for storing static backward states. 

 

2.1.2 Design of partial problems and their indexing schemes 

Generate partial problems of the given problem. Solve them in the framework of A*  for some (say 50) 
random problems. The partial problems must be small enough to generate their optimal solutions fast, but 
big enough to generate large h_values usable for solving the original problem. The different hashing 
scheme suitable for each partial problem should be designed to access the same pre-stored static search 
space. Its details will not be discussed in this paper 

 

2.1.3 Selection of partial problems and construction of BSS_PARTIAL(i), the static backward part of 
SS_PARTIAL(i) 
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Select some partial problems whose max h_values are large enough. Let’s call the backward search space 
for the i-th selected partial problem BSS_PARTIAL(i). The new heuristic is defined to be the maximum of 
the h_values of all selected partial problems. 

 

2.1.4 Design of the proper depth of the dynamic forward search space 

Decide the proper forward depth, d_for, by considering the max h_value found from partial problems 
subtracted by the pre-stored depth of static backward search space. 

 

2.2 Procedure for a given instance 

For each new problem instance, the following procedure can be used. 

 

2.2.1 Construction of FSS_PARTIAL(i), forward part of SS_PARTIAL(i) 

We already have BSS_PARTIAL(i), the static part of SS_PARTIAL(i). Now the dynamic forward part of 
FSS_PARTIAL(i) is built in this stage. While building FSS_PARTIAL(i), any newly generated state for the 
i-th partial problem is tested if it already exists in BSS_PARTIAL(i). If that is the case, the known h_value of 
the old one is the new h_value of the new one, and it is back-propagated back to START in the forward 
search space. In addition, after FSS_PARTIAL(i) is temporarily constructed, all h_values of the states from 
START to the final depth of the forward space must be propagated such that the h_values of any adjacent 
states cannot be different by more than 1. The algorithm which reflects this is as follows. 

 

for (int i = 0; i < #selected_partial_problems; i++) { 

  // make a dynamic forward search space FSS_PARTIAL(i) 

START.h_value = d_for+d_back; START.g_value = 0; // h set to max value; g set to #steps from START 

vector<State> V; V.addrear(START); // V is used as a big array ; start form START 

ind = 0; State Cur, C, P; 

while ( ind < V.size() ) { 

CUR = V[ind++]; 

if (CUR.g_value < d_for) // init & push each child except for deepest depth 

for (each child C of CUR) { C.h_value = CUR.h_value–1; C.g_value = CUR.g_value+1; V.addrear(C); } 

if (CUR already exists in BSS_PARTIAL(i)) { 

CUR.h_value = the depth of the stored state; 

C = CUR; 

// back-propagate the newly acquired h_value 

while (C != START) { 

Let P be the parent state of C; 

if (P.h_value <= (C.h_value + 1)) break; // no more back-propagation 

P.h_value=C.h_value+1; // lower P’s h_value 

C = P; // for one step back 

} // end of while (C != START) { 

} // end of  if (CUR… 

} // end of while (ind < V.size() ) { 

// Now propagation begins 

for (int ind = 1; ind < V.size(); ind++) { 

// start from level 1, not level 0 

    C = V[ind]; Let P be the parent state of C; 

    if (C.h_value > (P.h_value+1)) C.h_value = P.h_value + 1; // lower C’s h_value 
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} // end of for (int ind… 

Store vector V as FSS_PARTIAL(i) 

  } 

 

2.2.2 h_value calculating function, set_h 

Please note that the above procedure is done once for a given problem instance. Those spaces for partial 

problem instances are used throughout the problem solving. The heuristic-calculating function utilizes those 

fixed spaces. For each state of a problem space, the largest of all partial problem h_values is the wanted 

h_value. That value and g_value, the number of steps (i.e., depths) from START to the current state, are 

added to produce the f_value of a state. The OPEN priority queue, which contains the states ready to 

expand, is designed such that its top function returns the state with the largest f_value. 

 

 void State::set_h() { 

    h_value = 0; 

    for (int i = 0; i < #selected_partial problems; i++) { 

      if (this state in SS_PARTIAL(i)) new_h = its stored h_value; 

      else new_h = d_back + 1; // defaulted to 8 for d_back set to 7 

      if (new_h > h_value) h_value = new_h; 

} 

}  

Figure 2. TFace and Tile Number Notation 

 

3. The problem Space for Experiments 

Just to clarify the validity of our method, we utilized a well-known game problem, Rubik’s cube, widely 
considered to be the world’s best-selling toy (Indep. 2007). As of January 2009, 350 million cubes had been 
sold worldwide (Adam 2009)(Jamieson 2009). A number of solutions have been developed which can solve 
the cube in wee under 100 moves (Marshall 2005; Singmaster 1981), which are far from optimal, and we 
are not interested in them. 

Frey & Singmaster (1982) that the number of moves needed to solve any Rubik’s cube, given an ideal 
algorithm, might be in “the low twenties”. Kunkle & Cooperman (2007) used computer search methods to 
demonstrate that any Rubik’s cube can be solved in 26 moves or fewer. Rokicki (2008) lowered that 
number to 22 moves, and in July 2010, researchers including Rokicki, with about 35 CPU-years of idle 
computer time donated by Google, proved the so-called “God’s number” to be 20 (Flatley 2010). More 
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generally, it has been shown that an n x n x n Rubik’s cube can be solved optimally in the order of n2 / log(n) 
moves (Dermaine et al. 2011). 

In this paper, we tested the effectiveness of our suggested method in solving an optimal or near optimal 
solution of a given Rubik’s cube of some difficulty in 20 or less steps. 

 

3.1 The problem space 

The Rubik’s cube has 6 faces each of which has 9 tiles. Because center tiles are fixed during any move, 
every cube state can be defined by 48 tiles as in Fig. 2. For the puzzle to be solved, each face must be 
returned to consisting of one color(Dempsey 1988). 

The 48 tiles can be divided into two groups, 8 corner cubies of three tiles and 12 edge cubies of two tiles. 
Corner (Edge) cubies move only to corner (edge) cubie positions. The entire space is also known to consist 
of 12 separate but isomorphic sub-graphs with no legal moves between them (Korf 1997). Therefore, the 
total number of states reachable from a given state is (12!*212)*(8!*3 8)/12 = 43,252,003,274,489,856,000, 
which is greater than the max number even an unsigned 64-bit integer can hold (i.e., 17.592*10e18). 

Because we know the number of reachable states and God’s number is 20, the average branching factor b 
from depth 0 to 20 can be calculated to be 9.536 by solving the equation of the sum of 21 terms of the 
geometric sequence, i.e., 1 * (b21 – 1) / (b – 1) = 43.252 * 1018. 

Table 1. Static backward and dynamic forward search spaces 

pre-stored backward 

search space 
dynamic forward search space 

depth           

#states 
depth                    #states 

0 1 20 43,252,003,274,489,856,000 

1 19 19 ~43e18 

2 262 18 ~42e18 

3 3,502 17 ~13e18 

4 46,741 16 ~1.2e18 

5 621,649 15 98,929,809,184,629,089 

6 8,240,087 14 7,564,662,997,504,768 

7 109,043,123 13 575,342,418,679,410 

8 1,441,386,411 12 43,689,000,394,782 

9 19,037,866,206 11 3,314,574,738,534 

10 251,285,929,522 10 251,285,929,522 

 

3.2 Storing the static space for backward search 

The bi-directional search helps to reduce the search space. For example, Table 1 (Rokicki 2010) shows that 
if 10-step forward search space and 10-step backward search space is used, we may deal with the space of  
0.5e12 states, whereas 20-step forward search would require a space of 43*e18 states. That reduction ratio 
corresponds to 1 versus one hundred million. Each row in the table shows the number of states generated 
for problem solving. For example, backward space of depth 9 can be used with forward space of 11. 

Because the GOAL state is fixed, we can pre-calculate the space of backward search and store it in disk (or 
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physical memory, depending on its size). Contrarily, the forward space is different for each problem 
instance and must be dynamically generated. If we pre-store d_back-step backward states, the forward 
search can be limited to the depth of 20-d_back, because we now know that the total depth can be safely 
limited to 20, God’s number. Considering one state needs 40 bytes, we can deduce from Table 1 that the 
pre-stored disk space is 0.3 Gigabytes for depth 6, 4.4 Gigabytes for depth 7, 57.7 Gigabytes for depth 8, 
761.5 Gigabytes for depth 9, and 10.1 Terabytes for depth 10. This may be time-consuming, but it should 
be noted that it should be done and stored once for the Rubik’s cube domain. In our experiments, the value 
of d_back is set to 7, and moderate 4.4 Gigabytes are used for that. 

Table 2. h_values calculated for partial problems of 50 random problem instances 

 

a. b. c. d. e. 2-pairs 3-pairs 4-pairs 

0&1 2&3 4&5 1&2 3&5 a&b a&c a&d a&e abc abd abe abcd abce 

max 13 13 12 13 12 13 13 13 13 13 13 13 13 13 

avg. 10.80 10.98 10.74 10.84 10.84 11.44 11.22 11.14 11.38 11.56 11.54 11.64 11.60 11.68 

σ 1.00 0.91 0.84 0.78 0.78 0.83 0.73 0.85 0.69 0.70 0.75 0.62 0.69 0.61 

 

4. Selection of Partial problems 

Table 2 summarizes the results obtained by combining partial problems of two faces. Face numbers 0-5 
denote Top, Back, Left, Front, Right, and Bottom faces. For the experimental purpose, fifty random cubes 
generated by sufficiently many moves have been utilized. All the partial problems of two faces have been 
solved in not more than 13 steps. Out of those 5 basic partial problems, some pairs of their h_values have 
been combined. The last case of 3 pairs is a good choice in that its average h_value is sufficiently 
high(11.64), with relatively low(0.62) standard deviation(σ), which indicates the stability of the method. 
That happens to be the case of using 3 partial problems of faces (a) 0 & 1, (b) 2 & 3, and (c) 3 & 5, 
implying that using 5 faces with one face overlapped may be better than using all of 6 faces. 

 

5. Experimental Results 

For the experimental purpose, a series of Rubik’s cube problem instances with their optimal lengths 8-14 
were consistently used. We counted the number of states stored while running the main A* algorithm. 

Table 3 summarizes the experimental results. The first experiment was done using a heuristic (called heu6 
here) which is the number of misplaced tiles of all the edge cubies divided by 4, and whose max value is 
limited to 6. We won’t delve into its details here. Other experiments are all based on our suggested method 
with different max depths(d_for) of dynamic forward search space, set to 5-7. The table shows that as the 
value of d_for grows, harder problems may be solved with a much smaller number of states stored. The 
value of the static space depth, d_back, is currently set to 7 such that it requires just 4 Giga byte disk space 
to hold pre-stored states, but practically we could raise it to even 10 because it requires 10.1 Tera byte disk, 
which is acceptable in modern computers, and because its construction is just one time job. The value of the 
dynamic search space depth, d_for, can be effectively raised as long as memory capacity allows. 
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Table 3. Experimental results with 7-step pre-stored backward states 

(a) forw. heuristic=heu6            (b) forw. heuristic=myh(d_for=5) 

# 

steps 

forward 

states stored 
 

# 

steps 

states stored for partial problems forward states 

stored 0-1 2-3 3-5 

46741+α 5-bfs inside 

8 9  8 711 556 446 9 

9 66  9 423 202 198 24 

10 957  10 475 267 346 63 

11 33,987  11 321 269 297 237 

12 628,964  12 253 137 132 837 

13 9,558,799  13 184 134 92 1,321,397 

14 > 50M  14 203 125 99 > 50M 

(c) forw. heuristic=myh(d_for=6)            (d) forw. heuristic=myh(d_for=7) 

# 

steps 

states stored for partial 

problems of faces 
forward states 

stored  
# 

steps 

states stored for partial 

problems of faces 
forward states 

stored 
0-1 2-3 3-5 0-1 2-3 3-5 

621,649+α 6-bfs inside 8,240,087+α 7-bfs inside 

8 5,363 4,152 3,534 9  8 48,900 42,709 53,760 9 

9 3,914 2,371 2,108 93  9 41,226 27,290 25,593 84 

10 5,069 2,921 3,733 120  10 52,007 34,389 41,757 510 

11 3,897 2,971 3,215 504  11 43,741 34,120 37,265 *10,338 

12 2,805 1,877 1,658 1,011  12 32,881 24,237 22,430 12,747 

13 2,240 1,773 1,503 8,896  13 26,710 23,501 20,435 96,696 

14 2,407 1,839 1,467 46,545,179  14 30,604 24,658 20,167 198,515 

 

6. Conclusion 

The optimal solution of a complex problem is very hard to obtain as the size of the problem instance grows. 
Therefore its heuristic-based suboptimal solution is often tried. If its optimal or near optimal solution is 
really necessary, it can be tried in the framework of A* algorithms. The admissible heuristic for A* , h_value, 
is the guess of the actual number of steps, h*_value, from the current state to the goal state and must not 
exceed it. The generation of admissible (or almost admissible) and sufficiently informed heuristic, h_value, 
for each state is the most important, given a problem instance. 

We suggested a bidirectional search paradigm with the static backward search space and the dynamic 
forward search space which utilizes the heuristic value generated by combining each devised partial 
problem instance heuristic. For a problem domain (e.g., Rubik’s cube), some partial problems are selected 
and their hashing schemes are designed to maintain their own static backward spaces. For every problem 
instance given, its dynamic forward space of states is generated to be combined with its own static space. If 
any new state being generated in the forward space of a partial problem already exists in the corresponding 
backward space, its old h_value is back-propagated to the start state, and propagated in the dynamic 
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forward search space. The newly combined space for each partial problem is used to calculate its own 
h_value. The maximum of all the h_values recommended by each partial problem is used as the h_value of 
each newly generated state of the given problem instance. 

To show the effectiveness of our suggested method, it has been successfully experimented for a series of 
Rubik’s cube problem instances of some difficulty. 
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