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Abstract 

Online shopping for clothing products is growing rapidly. In order to avoid choice overload and match consumers 

with the most suitable products, retailers use recommender systems. However, unlike other products, 

recommending clothes can be challenging. Most customers not only search a clothes by their popularity or price 

but also by style. We present a Collaborative Filtering recommender system based on the traditional Matrix 

Factorization which incorporates items’ contextual information in order to discover users’ aesthetic preferences. 

We apply a style-aware recommender model in a real-world dataset of Amazon for experimental evaluation, 

demonstrating that our algorithm outperforms the state-of-the-art CF-based recommender approach. 

Keywords: Recommender Systems, E-commerce, Collaborative Filtering 

 

1. Introduction 

Over the last decade there has been tremendous interest towards recommender systems from e-retailers. 

Recommender systems (RSs) can be defined as information filtering system that predicts the relative products that 

might be of interest to consumers (Adomavicius & Tuzhilin, 2005).  

Collaborative Filtering (CF) technique is being applied extensively in e-commerce recommender systems 

(Zhao et al., 2015). CF analyzes relationships between users and between items in order to discover new user-item 

patterns (Koren et al., 2009). However, unlike books or technology products, recommending clothes can be 

challenging. Majority of customers not only search a clothing product by its popularity or price but also by style 

(such as, vintage, boho, classic, modern). Therefore it is necessary to develop a personalized recommender system 

that predicts the items that are relevant to user’s aesthetic preferences (Viriato de Melo et al., 2015) (Hu et al., 

2014). 

In this paper, we describe a Collaborative Filtering-based recommender system in terms of its ability to 

discover user’s aesthetic preference. We obtain this feature by building a set of item similarities using items’ 

contextual information, then we implement these results to compare the recommending item with the set of users’ 

purchased items, and incorporate these similarities into our recommendation model. Finally, for our experimental 

evaluation, we apply the proposed model in a real-world dataset of Amazon, demonstrating that our model 

outperforms the state-of-the-art CF-based recommender approach. 

The rest of the article is organised as follows. In the following section, we discuss related work, while the 

proposed Style-Aware CF model is described in Section 3. In Section 4, we present experimental evaluation on 

the Amazon dataset, after which Section 5 concludes.  

 

2. Related Research 

For several years great effort has been devoted to the study of overcoming major drawbacks of CF. For example, 

majority existing clothing recommender systems implement visual appearances of items (He, 2015) in order to 

capture users’ fashion requirements. Wang et al. (2015) proposed a human-perception-based fashion recommender 

system using fuzzy cognitive maps that treats both consumer’s body shape and the fashion style. An interesting 

approach to this issue has been proposed by He, R. and McAuley, J. (2016) using users’ past feedback and items’ 

visual features which also aims to prevent cold-start problem. Whereas, an approach proposed by Viriato et al. 

(2015) combines visual features, textual attributes and human visual attention. Meanwhile, McAuley et al. (2015) 

had stressed a focus on identifying topics in the product reviews and descriptions which are useful as features for 

predicting links between products which detects substitutes and compliments network. Also, He (2015) proposed 

a similar approach which retrieves fashionable items creating an image-based query system which extends standard 

matrix factorization by modeling visual dimensions and latent features simultaneously. Etsy.com1 recommender 

system uses Latent Dirichlet Allocation (LDA) to discover trending categories and styles in order to match with 

user’s preference profile.  

Our approach for recognizing style is different from all other approaches that use visual features. Our 

goal is to create a recommender system for a clothing online store which extracts style preference from the user’s 

                                                           
1 an e-commerce website focused on handmade or vintage items and supplies 
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previously purchased items and recommends items based on these preferences.  

Hence, our proposed model is built based on the following concerns about (a) the ability of our 

recommendation approach to achieve better accuracy in predictions than the traditionally recognized models. (b) 

whether our recommendation approach will achieve better accuracy in recommendations.  

 

3. A Style-Aware Collaborative Filtering Recommender System 

The notion of style is difficult to be described. However, we regard rated items as signals of individual tastes. 

Hence there is a linear relationship between individual preferences and product purchases, (Banks, 1950) 

individuals reveal their styles by purchasing the items.  

Our approach, in order to recommend items to a user, extracts styles from the user’s activity patterns and 

recommends the items which have similar styles. Therefore, in this section we concentrate on the formulation of 

three main parts of our model: 

1) Creating a dictionary of item styles (using TF-IDF topic modeling technique); 

2) Discovering users’ style preferences (using Cosine similarity measure); 

3) Incorporate the outcome in a traditional Matrix Factorization model. 

 

3.1. Model Formulation 

Consider a model (Adomavicius & Tuzhilin, 2005) where U is the set of all users of a recommender system, and 

let I be the set of all thousands of items of Clothing department data, such as shoes, dresses, or jeans, that can be 

recommended to users in U . We assume each individual has a consistent set of ordinal preferences with respect 

to her rated items which can be summarized by the utility function that represents the preference of item Ii∈  by 

user Uj∈  is defined as RIUu →×:  where R  represents a numeric scale used by the users to evaluate each 

item, usually on the scale of 1 to 5. Then, for each user Uj∈ , we want to choose such item Ii∈  that maximizes 

the user’s utility.  

To formulate mathematically:  

 ).,(=, ijuargmaxiUj Iij ∈∈∀                             (1) 

Moreover, in order to distinguish between the actual and predicted ratings of the recommender system, we let the 

),( jiR  denote a known rating (i.e., the actual rating that user j  gave to item i , and make the ),(
^

jiR  notation 

to represent a predicted rating (i.e., the predicted rating for item i  that user j  has rated before). Each user in the 

user space U  has a unique element, such as User ID. Similarly, each item in the item space I  can be represented 

by its ID, title and description. For the mathematical simplicity, let iContent  be the title and description of the 

item i .  

 

3.2. Discovering user’s style 

3.2.1. TF-IDF: Creating a dictionary of item styles 

In order to model users’ preferences, we describe each item’s contextual information as keywords. The importance 

of each keyword is represented with a weight. In turn, to identify keyword weights, we choose the term frequency-

inverse document frequency (TF-IDF) measure (Adomavicius & Tuzhilin, 2005). TF-IDF converts the contextual 

information of items into a vector space model, which represents each item’s information as a vector of numbers 

i.e. 
iContentkf , - the number of times keyword k appeared in iContent . Let’s mathematically formulate our 

problem:  

For each item i, 

i) Compute 
iContentkTF , : We create a dictionary of keywords existent in iContent - 

iContentkf , . First, we select 

all keywords from the item i’s content and convert it to a dimension in the vector space. It is important to note that 

stopwords such as "the, at, on, etc." are ignored. Therefore, 
iContentkTF ,  is defined as below: 

i

i

i

Contentzz

Contentk

Contentk
f

f
TF

,

,

,
max

=                               (2) 

ii) Compute Inverse Document Frequency ( kIDF ) defined as: 

k

k
i

I
IDF log=                                      (3) 
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kIDF  decreases the weight of frequently detected keywords in iContent  and increases the weight of rarely 

detected keywords. 

iii) Finally, compute TF-IDF weight: 

kContentkContentk IDFTFw
ii
×= ,,                              (4) 

 

Once we get each item’s TF-IDF results, we calculate the Cosine Similarity between the first item content with 

each of the other item contents of the set in the next section. 

3.2.2. Identifying users’ style preference 

The Cosine Similarity is a common way to compute item-to-item similarity in the traditional Item-based CF 

(Deshpande, 2004). This metric is chosen because, in a normalized Content space, cosine similarity measure treats 

each Content as a vector and then takes the cosine angle between the two Content vectors as a similarity measure 

between the two items (Al-shamri, 2014). For example, suppose in iContent  the keyword “suede” appears 6 

times and in mContent  the keyword “suede” appears 2 times. Although, the Euclidean distance between 

iContent and mContent will be high but the cosine angle between contents will be small.  

We define the cosine similarity measure as below:  

 

)()(

)()(
=)(cos

mi

mi

ContentvContentv

ContentvContentv
→→

→→

ξ                            (5) 

Having retrieved the item-to-item similarity matrix, our next problem is to define user j ’s style by 

comparing the similarity value of the recommending item to the each of items which user j  rated before. 

Formula (10) calculates average style similarity score, where 
),( jiS  is the average style similarity score 

of user j  with the item i . Average style similarity score will be close to 1, if an item i  is similar to the user j ’s 

previously purchased items, otherwise the score will be close to 0. 
jM  is the set of all user j ’s rated items in 

the category.  

j

mi

Mmji

M

S
S

∑
∑ ∈

),(

),( =                                 (6) 

Similarity values of a recommending item to each user’s style 
jistyle ,
 can be represented in a matrix 

jiQ ×∈φ  wherein the dimension and cells of this matrix are the same as the matrix 
jiQR ×∈ . 

Thus, we assume that there is a linear relationship between users’ style and users’ given ratings, we input 

this criteria in a classic MF model.  

 

3.3. Matrix Factorization 

In MF (Koren et al. 2009), user and item interactions are modeled as dot products in a joint latent factor space i.e. 

users and items are represented by feature vectors inferred from user-item rating patterns. Each item i  in a set of 

I and each user j in a set of U are attributed to vectors 
ix and 

jθ  feature vectors, respectively. The resulting 

inner products of vectors, which in turn, is associated with the overall interest of user j in the item i , thus 

estimating user j ’s rating to the item i . Moreover, µ is the overall average rating, while bias parameters 
jb and 

ib in turn, corresponds user and item effects.  

The traditional MF can be expressed as therefore:  

 ))()(())()((=min
22

222,

,,

ijijijiTjji

jix

xbbbbxr ++++−−−−∑
∈

θλµθ
δθ

      (7) 

The last part of the equation represents the regularization of learnt parameters in order to avoid overfitting. Hence, 
2

jθ  and 
2

ix  are the Frobenius norms of θ  and x , respectively. λ  in turn, is the regularization parameter. 

 

3.4 Style-Aware Collaborative Filtering Recommender Model (Style-Aware CF) 

Having generated users’ preferences, we now incorporate it in MF model. The parameters can be estimated by 
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solving the following minimization problem.  

 

).)()()((

))()()((min=),(

22
222

2,,

,,,,

ijjij

jijijiTjji

jixb

xbb

stylebbxrxL

+++++

−−−−−∑
∈

θβλ

βµθθ
δθβ

              (8) 

Minimization of the loss function in Equation (8) can be solved by a well-acknowledged technique - Stochastic 

Gradient Descend (SGD) with fixed θ  and x  which produces a local minimum solution (Bottou, 2010). 

Therefore, the gradients of Equation (8) with respect to θ  and x  are computed as follows:  

 )(2= , jjij

j
beb

b

L
λα −+

∂

∂
                              (9) 
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i
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b

L
λα −+

∂

∂
                              (10) 
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j
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∂

∂
                           (11) 
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i
xex

x

L
λθα −+

∂

∂
                           (12) 

  

 )(2= ,, jjijij

j
stylee

L
λβαβ

β
−+

∂

∂
                      (13) 

Algorithm1: Style-Aware Collaborative Filtering-based Recommender System 

Input: R - User-Item rating matrix MN × , δ  - set of known rating in matrix R , 
jθ  - User feature matrix 

lN × , 
i

x  - Item feature matrix lN × , 
j

b  - bias of user j , 
i

b  - bias of item i , µ  - average rating of all 

users, l  - number of latent features to be trained, φ  - Normalized user style similarity matrix, 
jβ  - style 

weight, 
ji

e
,

 - error between predicted and actual rating, α  - learning rate, λ  - overfitting regularization 

parameters, stop condition - ε . 

 

Output: Style-Aware recommendation list.    

1: procedure INITIALIZE 
ij

x,θ  AND VECTORS 
jβ , 

j
b , 

i
b  WITH RANDOM VALUES 

2: Fix values of l , α , and λ    

3: Compute 
)(tL  as in Equation (8)   

4: repeat till error converges ]<)(1)([ εsteperrorsteperror −−  

))()()((

))()((=)(

22
222

2,,

ijjij

jijijiTjji

xbb

stylebbxrsteperror

+++++

−−−−−

θβλ

βµθ
  

5: for each δ∈R  do 

Compute ))()((= ,,, jijijiTjjiji stylebbxre βµθ −−−−−  

Modify training parameters: 
j

L

θ∂

∂
, 

ix

L

∂

∂
, 

j

L

β∂

∂
, 

jb

L

∂

∂
, 

ib

L

∂

∂
.    

6. end for 

7. return 
jθ , 

i
x , 

jβ , 
j

b , 
i

b    

8. for each δ∈R   do predict the rating for user and item 
jir ,ˆ    

9. end for 

10. end procedure=0    
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Style-Aware Collaborative Filtering based recommender system algorithm is depicted in Algorithm1. This 

completes the formulation of the model in order to use in an experimental setup in the following section. 

 

4. Experimental Evaluation 

4.1. Experimental Setup 

4.1.1. Data description 

The e-commerce dataset we use for our experiments is from Amazon (McAuley et al., 2015) The data is gathered 

in the span of 2003–2014. The characteristics of dataset are given in TABLE 1. For technical convenience, we 

select a subset of the data. We consider a clothing category, namely Women’s and Men’s Clothing, Shoes and 

Jewelry. The subset of data consists of 19491 ratings given by 4462 users to 1446 items. The rating sparsity is 

defined as below (Guo, 2014): 

%100)
##

#
1( ×

×
−=

ItemsUsers

Ratings
Sparsity                        (14) 

The data is found to be 99.7% sparse, it means users only rated a small number of items. 

 

The dataset is randomly divided into 80/20% split into training and test data. The recommendation approaches are 

applied to the training data, while test data is used to evaluation of our approaches. Experimental procedure is 

repeated 50 times, and generated the average of the evaluation metrics.  

Table 1. The characteristics of experimental data 

Category Clothing, Shoes and 

Jewelry 

Number of Users 4462 

Number of Items 1446 

Total ratings 19491 

Rating sparsity 99.7% 

 

4.1.2. Evaluation Metrics 

We shall compare our model’s performance to the baseline algorithm Item-based CF and Popularity-based model.  

In order to evaluate the models, we choose standard approaches for evaluating the quality of our model, namely 

Precision and Recall measure and root-mean-squared error (RMSE) metric. 

(1) Precision and Recall measure. This metric is a good indicator of the recommender performance.  

Precision at k  is defined as below:  

Let kp be a vector of the k highest ranked recommendations for a user i , let a be the set of items for that user. 

Hence, the precision is: 

100)( ×
∩

=
k

pa
kP

k
                               (15) 

While, recall at k is: 

100)( ×
∩

=
a

pa
kR

k
                               (16) 

In order to evaluate precision and recall, a recommendation list of ktop −  items has been performed for each 

user based on the baseline model CF and our proposed model for both datasets.  

 

(2) The RMSE measure.  

In order to evaluate our model’s rating prediction accuracy, we use root-mean-squared error (RMSE) metric. We 

compute the average difference between the estimed and actual ratings, as below:  

∑
=

−=
N

i

ii RR
N

RMSE
1

2
^

)(
1

                           (17) 

While, R and 
^

R are vectors of length N , wherein R is the actual ratings, and 
^

R  is the predicted ratings of the 

items.  

  

4.2. Experimental Results and Discussions 

In our experiment, the number of latent features and regularization parameters are kept constant and values are 
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selected in such a way that they achieve the best results: 8=l , 0091 −= eλ and 0091 −= eβ . (The results 

with high number of latent features ( 32=l ) did not achieve high accuracy.) 

4.2.1. Accuracy in predictions.  

The results of RMSE derived using (17) on two datasets are presented in Table 2. According to Table 2, the 

testRMSE  value of our approach in Clothing, Shoes and Jewelry dataset is 1.446, while Item-based CF 

testRMSE  value is 1.516. By comparing  our model, we find that discovering unique tastes in items‘ contextual 

information and implementing in RS improves recommendation quality.  

Table 2. Experimental results on real-world datasets. Performance measure by RMSE, lower RMSE indicates 

better prediction accuracy. 

Dataset 
trainingRMSE  testRMSE  Recommender 

Method 

Clothing, Shoes and Jewelry 0.675 1.446 Style-Aware CF 

Clothing, Shoes and Jewelry 0.718 1.516 CF 

Best results are highlighted. 

4.2.2. Accuracy in recommendations.  

The overall accuracy measurement results are summarized in Table 3 and Table 4. The results show that Style-

Aware RS attains best precision and recall values compared to CF approach. By contrast, as revealed from the 

Popularity based RS results, recommending popular items lead to zero values of Precision and Recall. This means 

that, users’ purchase intention is not based on items’ popularity, but on users’ aesthetic preferences.  

Table 3. Accuracy in Recommendations. Precision at k (in percentage) 

Dataset Recommender Method Number of Recommendations 

5 10 20 

Clothing, Shoes and Jewelry Style-Aware CF 0.1 0.1 0.1 

CF 0.1 0.1 0.09 

Popularity-based 0 0 0 

 

Table 4. Accuracy in Recommendations. Recall at k (in percentage) 

Dataset Recommender Method Number of Recommendations 

5 10 20 

Clothing, Shoes and Jewelry Style-Aware CF 0.6 1 1 

CF 0.4 0.6 1 

Popularity-based 0 0 0 

Consider Figure 1, which represents a comparison of Precision and Recall at 10−top recommendations 

of our model versus Item-based CF and Popularity based approaches calculated using (15) and (16). As shown in 

Figure 1, our approach achieved a better performance than the other models. The figure also indicates that 

Popularity-based model achieved worse results than two other methods; therefore the outcome is consistent with 

other studies which have shown that users’ aesthetic tastes are more important in purchasing behavior. 

It is also important to comment that, small differences between the driven results are associated with the 

data sparsity (Sparsity in Clothing, Shoes and Jewelry dataset is 99.7%) i.e. the percentage of rated items per user 

is very small and also, we selected a small amount of data for our technical convenience. 
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Figure 1. Precision and recall at top-10 recommendations for Clothing, Shoes and Jewelry dataset. 

4.2.3. Discussions 

These notable findings provide important insights for clothing e-stores and researchers to overcome limitations of 

CF technique.  First, advantage of our algorithm is that, under data sparsity problem, and small amount of data, 

our algorithm is able to discover users’ tastes and generate recommendations. The results derived from our model 

revealed that using contextual information of purchased items helps discovering unique tastes of a user. Second, 

item cold-start problem in e-commerce RSs still remain to be a salient part of research. Although we have not 

tested diversity of recommending items on our approach, we believe that recommending items based on users’ 

aesthetic preferences may mitigate item cold-start problem.  

Therefore, establishing a style detector in RSs would be a key strategy for online retailers to promote 

diverse products. Thus, we conclude that the proposed Style-Aware recommender approach has been validated by 

a real-world dataset evaluation with RMSE and precision-recall metrics. 

 

5. Conclusion 

This paper presented a Style-Aware Collaborative Filtering based recommender system for Clothing e-stores. We 

model user preferences using TF-IDF metric incorporating the outcome in CF. Specifically, for each user-item 

pair our model derives an estimate whether the item is close to user’s preference while adding this feature in 

traditional CF model. We deployed our approach on a real-world Amazon dataset, showing our model achieves 

better recommendation accuracy than the traditional CF model. Moreover, our attention was focused not only 

improving recommendation performance, but also alleviating data sparsity problem. Although the proposed 

method can be readily used in practice, more experiments will be needed to verify the diversity of a recommending 

list. Therefore, work on the remaining issues is continuing and will be presented in future papers.  
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