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Abstract 

The present study compares the capabilities of Thematic Mapper (TM) and Operational Land Imager (OLI) sensors 

of Landsat satellite and analyzes the results of image classification on their multi-spectral data. To achieve this, 

LANDSAT 5-TM (2011) and LANDSAT 8-OLI (2016) imageries were used to map the land-use and land-cover 

for a study area located on Pelasjan sub-basin, in Isfahan, Iran. First, radiometric and atmospheric corrections were 

performed, and then the overall status of the area was determined by reviewing topographic maps, visual 

interpretation of the satellite imageries and field studies.  Consequently, a three-level land matrix hierarchy 

including 1) General level, 2) Mid-level, and 3) The level of details was established. Land matrix hierarchy maps 

were produced with proper methods using hybrid classification. The comparative analysis in this study showed 

that the hybrid classification method generates accurate results from the OLI sensor data in comparison to TM 

imageries. This was particularly evident for residential areas, irrigated agriculture, rain-fed agriculture, sparse, and 

dense rangelands. Although the results of image classification showed more accuracy for the OLI imagery, the 

error matrix in Z-test did not identify any statistically significant difference between the two datasets. This 

highlights the importance of image classification method selection, which can overcome the possible limitations 

of satellite imageries in land-use and land-cover mapping. 

Keywords: OLI and TM Sensors, land matrix hierarchy, hybrid classification, LULC, error matrix. 

 

1. Introduction   

Land use land cover (LULC) mapping is typically based on remotely sensed data and image classification 

(Chrysoulakis et al. 2010; Kantakumar & Neelamsetti 2015) and plays an indispensable role in many LULC 

inventories, biodiversity conservation research, environmental modeling and … (Anderson 1976; Yu et al. 2014; 

Yu et al. 2015). There are several ways for producing LULC using remote sensing data (Purkis & Klemas 2011; 

Kantakumar and Neelamsetti 2015; Al-doski et al. 2013). In unsupervised classification, pixels were classified by 

paying attention to their digital number DN without field study (Balaji & Misra 2015).  In supervised form, field 

observations are used to train a classifier to predict the LULC of an area from its spectral radiance or reflectance, 

texture (Purkis et al. 2006) and, in object-based classification, the shape, size and context of image segments 

(Blaschke 2010; Vieira et al. 2012; Phinn et al. 2012) but when land surface objects have similar reflectance or 

have small area most of them can’t provide high accurate maps (Gao and Xu 2016). 

Accurate LULC mapping needs proper data and image classification schemes. One of the main issues, 

when LULC maps are generated from digital images, is the confusion of spectral responses from different features 

(Estoque and Murayama 2015; Kntakumar and Neelamsetti 2015).  

According to interference spectral reflectance of phenomena of the earth's surface in large scale, 

hierarchical image classification method can solve this problem. In this method, thematic maps of the earth surface 

from general to details will be produced by paying attention to the area characters and objects (Anderson 1976; 

Gregorio 2005; Homer et al. 2004; Disperati et al. 2015). 

Landsat series of satellites are the most common Earth Observation (EO) data sources for LULC mapping 

(Malmir et al. 2015). Landsat Thematic Mapper (TM) started providing multispectral observations in 1984. 

Recently, with the launch of Landsat 8, carrying the Operational Land Imager (OLI) and the Thermal Infrared 

Sensor (TIRS), a new orthorectified dataset (L1T) became available (Roy et al. 2014; Knudbya et al. 2014; 

Kantakumar & Neelamsetti 2015). Having a nominal spatial resolution of 30 m, Landsat OLI, TIRS and TM 
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imagery are considered low resolution (LR) (Strahler et al. 1986)   . Nevertheless, they can be used for mapping 

land surface, especially with complex landscape (Poursanidis et al. 2015).  

By using low resolution imagery, land classification is challenging due to the spectral mixing of different 

surface elements and the landscape complexity (Julien et al. 2011; Stenzel et al. 2016). This is one of the main 

problems currently hampering the quantitative comparison of LULC maps by region or time period, even after 

time-consuming attempts at harmonization (Vancutsem et al. 2012; Disperati et al. 2015). 

Hierarchical a-priori nomenclatures are the most robust and useful tools for LULC mapping (Di Gregorio 

2005) over wide areas (i.e. at the scale of a country or larger) because they allow easier integration of data derived 

from different sources or different interpretation procedures. This concept also applies to multi temporal LULC 

analysis: maps related to different periods may accurately reveal changes only when they adopt the same 

nomenclature. Although alternative approaches such as hybrid, method can be useful for this purpose (Mirsa & 

Balaji 2015; Kantakumar & Neelamsetti 2015).   

Several studies have also compared the obtainable accuracies between image classification methods and 

imageries’ capability for producing accurate LULC maps (Benfield et al. 2007; Alves.V et al, 2012; Vieira et al. 

2012; Al-doski et al. 2013; Knudbya et al. 2014; Estoque and Murayama 2015; Mei et al. 2015; Disperati et al. 

2015; Poursanidis et al. 2015; Mirsa and Balaji 2015; Knudby et al. 2015 ).  

The objective of this study is to compare the performance of Landsat 8 OLI against Landsat TM for 

LULC mapping in semi natural area mapping using best-designed method. 

In this study, to reduce mixed pixel from different LULCs of Plasjan from Zayandehrood river sub-basin 

and sensors disability compensation, we applied a CORINE Land Cover (CLC) classification system to the study 

area and used a new hybrid classification scheme to develop TM and OLI sensors data.  

The CLC system, prepared from national and European description, has proved to be an excellent 

decision-making support tool for environmental policy makers and spatial planners.  (Feranec et al. 2007; Feranec 

al. 2010). 

 

2. Materials and methods 

2.1. Study area 

The study is Pelasjan that is the sub-basin of Gavkhooni (Zayandehrood) basin located in the west of Isfahan 

Province in Iran 424,600 hectares area. It is located in 57˚49 to 47 ˚50 E and 16˚32 to 11 ˚ 33 north latitude. Figure 

1 shows the location of the study in Gavkhooni Basin. This area has the highest share in water gains of the river. 

The area has diverse topography from plains to the high mountains, and is classified as cold and wet according to 

Domarton Method. Pelasjan area has small towns and villages, dams, rivers, soils, rangeland and rain-fed 

agricultural land areas covered with snow and mines (Matin et al. 2016). 

 
Figure 1. Pelasjan, located in the west part of the Zayandehrood Basin 

 

2.2. Input data 

Cloud free Landsat 5 TM sensor images acquired from August, June and February 2011, and June and August 

2016 from Landsat 8 OLI sensor images were downloaded from the USGS website. Considering the fact that the 

study area was located between two columns, 164 and 165, two images were taken for each month.  
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Table1. Satellite imagery specification 

Pixel size  Proc level  Sensor ID Sensor  Satellite   Date of path 

30  Ortho  Path/row 165/37 TM  Landsat  13-AUG-2011 

30 Ortho Path/row 164/37  TM  Landsat  06-AUG-2011  

30  Ortho  Path/row 165/37 TM  Landsat  10-JUN-2011  

30 Ortho Path/row 164/37  TM  Landsat  03-JUN-2011  

30  Ortho  Path/row 165/37 TM  Landsat  2-FEB-2011  

30  Ortho  Path/row 165/37 OLI  Landsat  09-JUN-15  

30  Ortho  Path/row 164/37 OLI  Landsat  02-JUN-15  

30  Ortho  Path/row 165/37 OLI Landsat 12-AUG-15 

30  Ortho  Path/row 165/37 OLI Landsat 5-AUG-15 

Aerial photography, digital elevation model, topographic and pedological maps were also used. Field 

studies were also undertaken to capture training areas for each LULC class to be used in the image classification 

phase. Table 2 lists all the acquired data for this study.  

Table2. Acquired data were used in the study 

Data Scale/Resolution Source Date 

Topographic maps  (1/25,000) Iran National Geographical Organization  2002 

Historical aerial photo (1/25,000) National Cartographic Center, Iran 2010 

Digital Elevation Model (1/25,000) National Cartographic Center, Iran 2014 

Pedological maps (1/25,000) Isfahan University of Technology 2014 

Satellite imagery  (1/50,000) USGS web site 2016 

Field studies   2016 

 

2.3. LULC classification 

Based on the available data and field studies, 10 LULC classes were defined for the study area (Table 3). 

Table 3. LULC classification 

Short description Class   

Agricultural area, irrigated with rain and other sources of water Irrigated agriculture 1 

agriculture area, irrigated only with rain water Rain-fed agriculture 2 

vegetation cover crown more than 50% 

-natural vegetation upper than 50%  and agriculture area 

Dense vegetation 3 

Vegetation cover crown less than 50% and salinity less than 4 dSm Sparse vegetation 4 

Housing developments Residential area 5 

Vegetation cover crown less than 50% and salinity greater than 4 dSm Salt land  6 

Vegetation coverage less than 50% with  more than 50% gravel  Stone and rock 7 

water bodies including; dam, natural and manmade lakes Water body  8 

Snow cover Snow 9 

Mining activities Mine 10 

Various cultivated crops’ details are shown in table 4. 

 

Table 4. Details about cultivation activitis in Pelasjan  

Cultivation and harvastion time   Crope type  Cod  

It is ciltvated in October and and has highest cover crown in first of Junary and 

harvested in mid Jully 

 All wheat 

kinds  

1 

It is ciltvated in June and has highest cover crown in Aguest, alsoit harvested in October  Corn  2 

It is ciltvated in the end of September and and has highest cover crown in the first of 

June 

 Alfalfa  3 

It is ciltvated in the end of June and has highest cover crown in the seecend half of 

August, also is harvested in Ocrober 

Potato   4 

Time of leaf in early May and the fall in the second half of October Orchard   5  

Random systematic sampling method was performed for each LULC class. Position of the lands under 

cultivation was determined with GPS. In addition, some information was prepared about cultivated crops density. 

Vegetation cover crown percentage (VCCP) sampling was done in areas with homogenous VCCP in at least nine 

30 * 30 m adjacent. To check the status of the vegetation cover, 270 sampling areas and the vegetation cover crown 

was measured. VCCP was assessed using plots with 7 * 3 dimensions. Plot dimensions were determined using the 

Minimum Effective Area. To evaluate the accuracy of the maps, sampling was done on four percent of the number 

of pixels in each class. Saline soils, with more than 4 dSm salinity, were also mapped with 0.81 accuracy using 
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the data provided in a previous study carried out by Isfahan University of Technology in 2014.  

 In order to prepare the training site data for image classification, aerial photographs and interviews with local 

residents were used to validate the data. 

 

2.4. Satellite image Pre-processing  

The area was located in tow seen of imageries, and therefore for each date, images were mosaicked together by 

nearest neighbor method. 

Radiometric correction was also applied on all the images using images Meta data in ENVI 5.1 software 

area. Images were atmospherically corrected using FLAASH (Fast Line-of-Sight Atmospheric Analysis of 

Spectral Hyper cubes) module. The output of this procedure is an image in apparent surface reflectance pixel units 

(resulting from rationing at-surface irradiance to at-surface radiance) (Kruse 2004). 

 

2.5. Satellite image processing 

2.5.1. Hierarchical mapping 

At first, for image processing, the conceptual model of the three-level earth's surface matrix that was shown in 

Figure 2 was applied on both TM and OLI images. 

 
Fig.2 Hierarchical structure of Pelasjan matrix 

 

First level mapping 

By putting together, the visual interpretation of satellite images, field studies’ results and slope layer, generated 

from the digital elevation model, it was determined that dense rangelands are often located in areas with slopes 

greater than 30 percent and, there is no agricultural activity in these areas. Thus, 30 percent threshold was used to 

map the first level at the hierarchical model (Figure 2). 

Second level mapping 

At this level, the lower CCP of rain-fed agriculture was considered as the threshold of 50% cover crown 

for separated dense vegetation (agriculture and dense rangeland) from sparse vegetation (sparse rangeland and 

other LULC). Consequently, in the second level of hierarchical model, dense vegetation and sparse vegetation 

were mapped for both slope classes identified in the first level. 

One of the most common vegetation indices used in vegetation studies with satellite data is normalized 

difference vegetation index (NDVI), which has the ability to describe data from biophysical conditions of the 

plants such as fractional cover, condition, and the plant biomass (Mie et al. 2015; Estoque & Murayama 2015). 

To map VCCP, NDVI index was used as follows (Formula: 1): 

NDVI = 
REDNIR

REDNIR

+

−
      

Where NIR is band 5 in and RED is band 5, band 4 in OLI sensor, also band 4, and band 3 in TM sensor, 

respectively.  
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Using 250 VCCP measurements’ sampling results, simple linear regression was done between samples 

taken as the dependent variable, and their NDVI values for each image as independent variable. Using prepared 

VCCP models, the VCCP maps were prepared in two levels. Because the less CCP in rain-fed agriculture was 50 

percent, it was determined as threshold for dense and separate vegetation, then threshold value of 50% in NDVI 

index was used to classify the vegetation coverages with less or more than 50% cover crown. 

 

Third level mapping 

On the third level of the hierarchical model (Figure 2), three categories of irrigated, rain-fed agriculture and dense 

rangeland were considered as the sub-classes for the dense vegetation (>50% vegetation coverage). Seven 

categories were also determined as the sub-classes for the low-density vegetation (<50%) including residential 

areas, sparse rangeland, land under water, stone and gravel, soils, mines, and land under snow. In the third level 

mapping, dense mountain rangeland map was provided by overlaying area with more than 30 percent slope on 

dense vegetation map provided in level 2. In addition, the Fisher supervise classification was performed on areas 

with a slope more than 30 and less than 50 VCCP images; and areas with stone and gravel, snow, mining areas, 

waterbody areas were mapped. The remaining pixels, which were not in this class, were considered as low-density 

rangelands. 

In areas with lower than 30% slope, in both TM and OLI sensor imageries, irrigated agriculture was 

mapped using Fisher method. In OLI images, rain-fed agricultural areas were separated from rangeland using 

Fisher classification method. In TM images, it could not be possible to separate rain-fed agriculture from rangeland 

accurately; therefore, they were separated using Object-Based Classification method of rangeland due to their 

geometric shape. Moreover, for separating dense rangeland from irrigated agriculture, this method was used. 

After separating agricultural lands from others, using VCCP models, sparse rangeland was separated from 

dense rangeland for each date.   

For the June 2016 imagery using OLI imagery, in areas with lower 30% slope, all the other layers, mining 

activity areas, residential areas, water body, salt land, stone and rock, and snow were generated by applying Fisher 

supervised classification method. 

For the TM imagery, first and second level mapping were generated following similar steps undertaken 

for the June 2016 imagery. Lands covered by snow, water, and salt were mapped using Fisher method. Residential 

areas were identified using the Jan 2011 imagery, when the ground was completely covered with snow using band-

6 TM imagery. Thus, the threshold value of residential areas without snow and desert areas covered with snow 

was determined, and then by applying the reclassification method, these layers were mapped. The mining area was 

mapped manually through visual assessment using Digital Viewer. 

Finally, all the individual layers were combined, and consequently, of the LULC, maps were generated using the 

hybrid classification methods described in the previous sections.  

 

2.6.  Maps accuracy assessment  

To assess the accuracy of the research method, the capabilities of each sensor in producing the LULC maps, four 

percent of the identified classes in the third level maps were collected as polygon data. We were ensured that the 

samples were reflective of all the different land cover classes. Additionally, to validate the generated maps, field 

samples, aerial photographs, and interpretation of FCC images, community consultation and matrix of error were 

used. The overall accuracy and Kappa coefficient, producer accuracy, user accuracy, commission error and 

omission were also determined. 

 

3. Results and discussion 

Understanding surface reflectance patterns is useful in accreted mapping. In this study, some details about each 

LULC reflectance were obtained using clustering supervised classification.  

Image classifications’ results have shown that LULC classes with the same reflectance values in different 

bands have more errors. Moreover, small patches of isolated land covers can also increase the classification errors 

because of impact of the reflections from the adjacent pixels (Luna & Cesar 2003; Yuan et al. 2005; Kamusoko & 

Aniya 2007; Kantakumar & Neelamsetti 2015; Estoque & Murayama 2015). Therefore, the accuracy of the 

classification in unsupervised methods depends on the degree of differentiation among the spectral reflections of 

LULC (Kamusoko & Aniya 2007).     

Residential areas that were small patches were distributed across the study area, and therefore their 

reflectance was influenced by the neighboring pixels.  

Although Fisher classification method was able to separate the residential areas in both sensors, in some 

cases, residential areas and low-density rangeland were classified as one class in TM sensor images. 

Figures 3a and 3b show the spectral graph of each land cover class in Landsat TM and OLI sensors, 

respectively. As shown in the figures, the residential areas, low-density rangelands and even rain-fed lands follow 

a very similar reflectance pattern in all bands of the sensors. 
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Note: the values presented in the chart are average values for each LULC class. 

 
Fig. 3a, An example of the spectral profile for TM sensor 

 

 
Fig. 3b, An example of the spectral profile for OLI sensor 

Because of radiometric resolution, in the OLI sensor, reflectances of different phenomena are more distinguishable. 

This distinction leads to more accurate classification results using the OLI sensor (Estoque & Murayama 2015). 

The error matrix table below provides more details on the above-mentioned classification errors. Given the 

physical characteristics of water and snow, the reflectance for these land cover classes were easily distinguishable 

and were mapped with higher accuracy.  

For separating lower and more than 50 VCCP, models were prepared for each imagery, and formulae 2 and 3 have 

shown the VCCP model. 

Equivalent 2:  Y = 179.3X + 24.89          R² = 0.89 P-value < 0.01 for 2016 

Equivalent 3:  Y =2 40.95x + 16.13         R² = 0.80 P-value < 0.01   for 2011 

Where Y is VCCP, X is values in NDVI index. 

The field sampling and overlaying false color images on gradient map also indicated that dense rangelands are 

normally located on slopes greater than 30 percent, while irrigated and rain-fed farming were located on slopes 

less than 30 percent slope. Thus, by applying the slope layer on the satellite images, dense rangeland ranges were 

separated. 

Finally, LULC map was defined using the conceptual model and with hybrid method for the area in 10 layers for 

January 2016 and 2011. Figures 5 and 6, a and b show LULC maps of the area in the second and third stages. The 

area is shown in hectares and the total area ratio of the area of each class is shown in table 5. 
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Table 5. Plasjan sub basin LULC area (Hectare) 

 

 

Maps’ accuracy assessment was done with re-sampling and using data that were not used in the analysis. Error 

Matrix of the final map of 2011 related to TM sensor and 2016 OLI sensor produced, and kappa coefficient, overall 

accuracy, precision of producer and user, commission and omission errors were calculated and shown in Tables 6 

and 7. 

  

10  9  8  7  6  5  4  3  2  1  LULC code 

Area  

66245  46604  68884  131519  2800  28590  66288  4336  1571  15  Area 2011  

58054  25511  53380  179639  4110  21386   67932  3670  6101  156  Area 2016   
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Table 6. LULC error matrix for TM image 2011 
 1 2 3 4 5 6 7 8 9 10 User 

Accuracy 
Error 

O  

1 25573 994 423 615 53 1 0 0 0 27659 0.925 0.075 

2 203 10126 329 292 2 310 0 0 0 11262 0.899 0.101 

3 28 48 21724 50 0 180 166 0 2 22198 0.979 0.021 

4 13 170 1036 76802 1 1299 199 0 0 79520 0.966 0.034 

5 
 

0 0 0 0 1785 2 0 0 0 1787 0.999 0.001 

6 

 

2 63 29 1639 2 7787 0 0 0 9522 0.818 0.182 

7 
 

0 0 205 317 0 0 27184 0 1 27707 0.995 0.018 

8 0 0 0 0 0 0 0 1183 0 1183 1.000 0.000 

9 0 0 0 1 0 0 0 0 2714 2715 1.000 0.000 

10 25819 11401 23746 79716 1843 9579 27549 1183 2717 183553 

Producer 
accuracy 

0.998 0.804 0.956 0.985 0.979 0.695 0.994 1.000 0.997 Corrected 
pixels  

Error C 0.009 0.112 0.085 0.036 0.031 0.187 0.013 0.000 0.001 174878 

Kappa 

Coefficient 

0.936 

Overall 

accuracy 

0.952 

Table 7. LULC error matrix for OLI image 2016 
Land 

use/cover 

1 2 3 4 5 6 7 8 9 10 User 

Accuracy 

Error 

O 
  

1 28728 3748 1594 16 88 12 0 0 0 34186 0.840 0.160 

2 352 14891 1078 187 7 644 0 0 0 17159 0.868 0.132 

3 51 871 24980 1580 12 1139 443 0 0 29076 0.859 0.141 

4 34 104 2188 55997 4 1849 743 0 5 60924 0.919 0.081 

5 0 35 0 0 1488 0 0 0 0 1523 0.977 0.023 

6 0 52 0 189 2 9046 1 0 0 9290 0.974 0.026 

7 0 34 9 453 6 9 28253 0 15 28779 0.982 0.018 

8 0 0 0 0 0 0 0 1927 0 1927 1.000 0.000 

9 0 0 0 0 0 0 10 0 679 689 0985 0.015 

10 29165 19735 29859 58422 1607 12699 29450 1927 699 183553 

Producer 

accuracy 

0.985 0.755 0.837 0.958 0.926 0.712 0.959 1.000 0.971 Corrected 

pixels 

Error C 0.015 0.245 0.163 0.042 0.074 0.288 0.041 0.000 0.029 165989 

Kappa 
Coefficient 

0.880 

Overall 

accuracy 

0.904 

As shown in tables 6 and 7, irrigated agricultures were separated correctly from other LULC using Fisher 

classification method in both imageries. Tables 6 and 7 show that most errors are related to relating rain-fed area 

and dense rangeland to irrigated agricultural. Due to their similar nature in dense areas, these two land uses have 

similar reflectance characteristics close to irrigated agriculture (fig 3a and 3b), and some pixels of dense dryland 

farming have a DN close to dense peripheral irrigated areas’ pixels. For this reason, corrected separation of the 

two layers, using an 8-bit image of TM sensor, was not possible. 

Error matrix obtained from the two sensors indicates that in the map prepared by OLI sensor image, rain-

fed agriculture, irrigated agriculture and dense and sparse rangeland were separated correctly. However, eventually 

misclassified pixels in produced maps using OLI images in irrigated agriculture, rain-fed and dense rangeland 

existed.  

Due to the small size of residential areas in the study area, it is not possible to provide accurate maps 

using TM images. Field measurements have shown that human activities have made these areas warmer than 

peripheral areas. The TM image corresponding to the period when the area was covered with heavy snow for 

February has shown that residential areas did not have snow cover after some days.  

In prepared maps, some irrigated agricultural pixels in both images are wrongly related to residential 

areas because of small green spaces in residential areas. 

The highest errors on the maps were in attributing low-density rangeland and saline soils to each other 

because of similarities in provided hierarchical structure, definitions, and similar reflection of these two layers in 

some areas due to the change in vegetation cover crown of these layers. Thus, in some saline lands with an increase 

in the percentage of the vegetation cover, they were related to low-density rangeland. Water and snowy body’s 

maps in both TM and OLI sensor images were prepared with high accuracy, which is due to different reflecting 

behaviors of water compared to other phenomena (FIG 3 a and 3b). 
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4. Conclusion 

Today, several remote sensing data from satellites and various sensors are available to users. Landsat satellites 

have different sensors such as MSS, TM, ETM + and recently OLI. TM is a useful sensor with a resolution of 8-

bit radiometric on Landsat 5, and OLI sensor is the newest generation of Landsat sensors on Landsat 8 with 16-bit 

radiometric resolution (Peña & Brenning 2015). 

Results have shown that LULC area and spectral distance are affected on accurate mapping; also in this 

study classical methods could not provide accurate maps (Stenzel et al. 2016). In hybrid method that were used 

different methods such as fisher supervised classification, object based classification, NDVI index and Slope layer 

and also was carried out step by step, more accurate LULC maps were produced (Al-doski et al. 2013). However, 

the results have shown that even this method was not able to produce a map with overall accuracy of more than 

80 percent. Therefore, by attention to field studies, characteristics of the land and capabilities of the sensors were 

tried to prepare final LULC maps in the third stages. Therefore, LULC maps of the area were possible by 

combining hybrid classification method and hierarchy concept of land matrix. In this study, Fisher classification 

method for the separation of residential areas and object-based classification method for separating rain-fed 

agricultural areas were carried out from rangeland.  

More radiometric resolution of OLI sensor, and the youthfulness of this sensor compared to TM sensor 

enabled better separation of ground-level phenomena. Figures 3a and 3b show that although some phenomena in 

the Landsat TM images have similar reflectance behaviors to OLI, the numerical distance between graphs has been 

raised in the OLI sensor graphs making it possible to separate some LULCs, which were close to each other in 

Landsat TM.  

Maps’ accuracy, assessed using samples that were not used in the analysis of satellite images, led to the 

prevention of false increased accuracy of the maps provided due to using these data. 

Error matrices show that the mean and variance of classified map by Landsat TM and OLI are not 

significant in any of the rows and columns. However, statistical analysis T-TEST has shown predictable excellence 

in the map provided by OLI sensor, especially in mapping different vegetation types and separating land surfaces 

such as residential areas. However, lack of significant difference is due to the methods used that had been prepared 

for each image regarding area status.  

Considering the similarity of reflecting land phenomena in this study, the existence of some features such 

as residential areas with relatively small areas, and by considering reflective similarities and the hierarchy concept 

of matrix, hybrid method was used. Thus, the possibility of providing detailed maps of LULC areas that have small 

areas with reflective interference with other phenomena was provided through appropriate methods for each of the 

classes defined for both sensors. 
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