
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

19

An Enhanced Pairwise Search Approach for Generating

Optimum Number of Test Data and Reduce Execution Time

Dr. Mohammod Abul Kashem

Faculty of Computer Science and Engineering

Dhaka University of Engineering and Technology (DUET)

Gazipur, Dhaka, Bangladesh

drkashem11@duet.ac.bd

Mohammad Naderuzzaman (Corresponding author)

Department of Computer Science and Engineering

Dhaka University of Engineering and Technology (DUET)

Gazipur, Dhaka, Bangladesh

nader_u@yahoo.com

Abstract: In recent days testing considers the most important task for building software that is free from

error. Since the resources and time is limited to produce software, hence, it is not possible of performing

exhaustive tests (i.e. to test all possible combinations of input data.) An alternative to get ride from this type

exhaustive numbers and as well to reduce cost, an approach called Pairwise (2 way) test data generation

approach will be effective. Most of the software faults in pairwise approach caused by unusual combination

of input data. Hence, the demand for the optimization of number of generated test-cases and reducing the

execution time is growing in software industries. This paper proposes an enhancement in pairwise search

approach which generates optimum number of input values for testing purposes. In this approach it searches

the most coverable pairs by pairing parameters and adopts one-test-at-a-time strategy for constructing a final

test-suite. Compared to other existing strategies, Our proposed approach is effective in terms of number of

generated test cases and of execution time.

Keywords:, Software testing, Pairwise testing, Combinatorial interaction testing, Test case

generation.

1 Introduction

In software engineering, software testing and debugging is the integral part of software development life

cycle, but this process is very much labor-intensive as well expensive [1]. Currently in any software

development project around 50% money goes for the software testing. Because of this problem, the focus is

to find ways for software testing which will be automatic and cost-effective and to find debugging techniques

to ensure high quality of released software product [2]. Current researches on software testing focuses on

test-case generation problem, test coverage criterion design, regression testing problem, test oracle problem

and fault localization problem [1]. Among all these problems, test-case generation problem is one of most

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

20

important issue to reduce cost and effort to produce error free software [1]. Pairwise strategy (i.e. two-way

interaction) has been known as an effective test case reduction strategy is used to solve this problem. This

strategy is able to detect 60 to 80 percent of the faults [4].

As an example, let us take the ‘proofing’ tab under ‘option’ dialog box in Microsoft word 2007,

there are maximum 13 possible configuration needed to be tested. And each configuration has two values

(checked or unchecked) to choose from, other than these, the ‘French Modes’ have 3 possible values and

also there are ‘Writing Style’ mode has 2 possible values. In this case to test this proofing tab exhaustively,

the number of test cases needs to be executed are 213 x 2 x 3 i.e. 49,152. Let us assume that in each test case

may consume 4 minutes to execute in average; which results around 136 days to complete the exhaustive

test for this tab [3,4].

The case is similar as the hardware products test. Let us say, if a product has 20 on/off switches, for testing

all possible combination it may need 220 = 104,85,76 test cases, and may take around 8 year to complete the

test by considering 4 minutes for each single test case [4]. Current trend of research work in

combinatorial testing aims for generating the least possible test cases [5]. Non-deterministic

polynomial-time hard (NP-hard) may be the solution of this problem [6]. Till today many approaches have

been proposed by many scientists and also many tools have been developed for finding out the least

possible test suits in polynomial time [5-8, 10-14] but yet to find the most optimum one. In this paper we

introduce an enhanced pairwise search approach for generating pairwise test data in terms of optimum in

size and least time consumption.

The paper was organized in the way that the detail related work is described in the section 1.1 followed by

the proposed algorithm details, the experimental results with discussions and comparison and finally the

conclusion suggests for the future work.

1.1 Related Work On Pairwise Test Data Genertion

Empirical facts shows that one of the major sources of software and systems bug/errors [7,8] is the lack of

testing for both functional and nonfunctional. NIST (National Institute of Standard and Technology) have

shown that an estimated cost of $ 6X 1010 wastes as a result of software failure, which was the 0.6 percent of

GDP [9, 10]. The research showed that more than one-third of this cost can be reduced by improving software

testing mechanism. In this case, automatic testing is of critical concern [11]. For the automation, software

can become more practical and scalable. But the automated generation of test data case is challenging [12].

Underlying problem for this is known to be not-decidable and NP-hard, so researchers have focused on the

techniques that search to find near optimal test data sets in a reasonable time [13, 14].

A very significant and promising approach called Pairwise testing approach to software testing is used as it

often provides efficient error detection at a very low cost. It keeps a well balance between the magnitude

and effectiveness of combinations. This requires every combination of any two parameter values to be

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

21

covered by at least one test case [14,15]. In the pairwise approach there are some pre-defined rules to

calculate the test cases data directly from the mathematical functions; those are known as algebraic strategy

[4]. On other hand, computational approaches are based on the calculation of coverage of generated pairs,

followed by an iterative or random search technique for creating test cases.

Computational approach is used in the IRPS algorithm [6]. This approach is a deterministic strategy that

generates all pairs and stores it into the linked list. At the end it searches the entire list, from there it selects the

best list and empties the list. In this way when all list become empty, the collection of best list is determined

and set as the final test data suite.

By using computational approach, Automatic Efficient Test Generator (AETG) [16] and its divergence

mAETG [6], generates pairwise test data. In this approach it uses the ‘Greedy technique’ to build test cases

based on covering as much as possible un-covered pairs. A random search algorithm is used in AETG [16].

Ant Colony Algorithm (ACA) and Genetic Algorithm (GA) are the variants of AETG [16]. Genetic

Algorithm [17] creates an initial population of individuals (test cases), then the fitness of those individuals are

calculated. After this it starts discarding the unfit individuals by individual selection methods. The genetic

operators such as crossover and mutations are applied on the selected individuals. This process continues

until a set of best individuals found. In Ant Colony Algorithm [17] the candidate solution is associated with

the start and end points. If an Ant chooses one edge from different edges, it would choose the edge with a

large amount of pheromone, which gives better result with the higher probability.

In case of In-Parameter-Order (IPO) [12] strategy, it starts with an empty test set and adds one test

parameter at a time for pairwise testing. By combination of the first two parameter it creates the test cases,

then it adds third and calculate how many pair has been covered. This way it goes on until all the values of

each parameter is checked. This is a deterministic approach.

A popular algorithm called AllPairs [18], can generate test suites covering all pairwise interactions within

a reasonable time. This strategy looks like to be a deterministic strategy because the same test suit are

generated every run time.

A deterministic strategy called the Simulated Annealing (SA) [22] algorithm with the same generated test

suite for every run time.

Another algorithm called G2Way (Generalization of Two Way test data) is one of the excellent tools based

on computational and deterministic strategy. This strategy based on backtracking algorithm and uses

customized markup language to describe base data. This G2Way backtracking algorithm tries to combine

generated pairs so that it covers highest pairs. Finally covering all the pairs, the test case treats as final test

data suite.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

22

1.2 Our Proposed Strategy

Our proposed algorithm works as follows: Initially, it creates pair parameters and their values. Values of

one pair is combined with another pair by calculating the highest possible coverable pairs. This way it

constructs a test case and adds to the final test suit. Let’s have an example for easy understanding of the

algorithm. The scenario is presented as follows:

In Table 1, there are 6 parameters A, B, C, D, E, and F, each of them having 2 values (i.e. a1, a2, b1, b2

etc.). The proposed algorithm first generates pair parameters which are AB, CD, EF and then generate the

exhaustive test cases as shown in Table 2.

According to the algorithm every AB pair tries to combine with one CD pairs. If the combined pairs give

highest coverage or maximum coverage, then it tries to combine with the next available values (i.e EF pairs).

In this case the test case generation approach is in greedy manner and constructs test cases one at a time.

From Table 2, proposed algorithm tries to combine [a1, b1] with 4 possible values of CD in the list [[c1,

d1], [c1, d2], [c2, d1], [c2, d2]]. We can see that the first pair which gives the highest coverage looks for the

available pairs, which is [[e1, f1], [e1, f2], [e2, f1], [e2, f2]] as shown in Table 3. The highest coverage will

then added to the final test suit.

Table 3 shows, one of AB pairs [a1, b1] searches for the best pairs among the available pairs of CD and the

output from this should be only one, which is [a1, b1, c1, d1] as the first uncovered final test-case with full

coverage. Again, generated pair [a1, b1, c1, d1] search for the available pairs of EF and the generated output

is [a1, b1, c1, d1, e1, f1]. This same procedure is followed by other AB pair parameters to generate other

final test cases from the list. This way the highest coverable pairs are stored on the final test set. Figure 1

shows the test cases generation algorithm and Figure 2 shows the corresponding flowchart.

1.3 Experimental Results

To evaluate the efficiency of our proposed algorithm, for pairwise test data generation, we have considered

5 different system’s configurations. Among these systems the first 3 system are uniform parameterized

values and the rest systems are non-uniform show as follows:

S1: 3 3-valued parameters,

S2: 4 3-valued parameters,

S3: 13 3-valued parameters,

S4: 10 5-valued parameters,

S5: 1 5-valued parameters, 8 3-valued parameters and 2 2-valued parameters.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

23

Consideration of the parameters and assumptions are taken according to some of the related existing

algorithms that support pairwise test case generation to compare our results with those.

Table 4 shows the comparison of generated test suite size by our proposed algorithm with others. The

shadowed cells show the best performance in term of generated test case size. It shows that our proposed

algorithm produces the best results in S1, S2, and S4 (shaded) but not for S3 and S5. Since the test case

production is a NP-complete problem hence it is well known that no strategy may perform the best for all

cases. It shows best performances in three cases, which is highest among all related algorithms.

For a good comparison of execution time (i.e., complexity) for all related test strategies, either computing

environment should be equal (normally this will not be possible) or need the source code of the method (

which is also not available in most of the cases). All Pairs tool [18] which is free to download and can execute

using any computing platform. Hence we have managed to compare the execution time of R2Way with our

proposed method using the same platform as follows: Intel Dual Core 2.66 GHz, 1 GB RAM, Java

programming language, and OS environment was Windows XP.

1.4 Conclusion

In this paper we have proposed pair parameter based search algorithm which will generate test cases for

pairwise testing. The suitability of the proposed algorithm is noticeable. The proposed system combines two

parameters together (a single pair) and searches for another pair. In this system the architecture and the

algorithm is far different than other existing algorithms because at first the parameters create the pair among

themselves and all the pairs look for other pairs to obtain the highest coverage. The main strategy of this

algorithm is to generate test cases from the parameter pairs. We have shown the design and description of the

algorithm has been shown in other sections. At the end the experimental result shows the efficiency of the

algorithm. We have shown that the proposed algorithm is efficient in terms of execution time and able to

generate much reduced test suites to fulfill the current demand by the software development companies. The

proposed algorithms could be further extended to support higher t-way interaction testing where there are

scopes for further research.

References

[1] Xiang Chen, Qing Gu, Jingxian Qi, Daoxu Chen, “Applying Particle Swarm optimization to Pairwise

Testing”, in proceedings of the 34th Annual IEEE Computer Software And Application Conference,

Seoul, Korea, 2010.

[2] Yingxia Cui, Longshu Li, Sheng Yao, “A New strategy for pairwise test case generation”, in

proceedings of the third international Symposium on Intelligent Information Technology Application,

NanChang, China, 2009.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

24

[3] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J.Lawrence, "IPOG: A general strategy for t-way software

testing”, in proceedings of the 14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, Tucson, Arizona, 2007.

[4] M. I. Younis, K. Z. Zamli, N. A. Mat Isa, “Algebraic Strategy to Generate Pairwise Test Set for Prime

Number Parameters and Variables”, in proceedings of the IEEE international conference on computer

and information technology, Kuala Lumpur, Malaysia, 2008.

[5] Mohammad F. J. Klaib, Sangeetha Muthuraman, Noraziah Ahmad, and Roslina Sidek, “A Tree Based

Strategy for Test Data Generation and Cost Calculation for Uniform and Non-Uniform Parametric

Values”, in proceedings of the 10th IEEE international conference on computer and information

technology, West Yorkshire, UK, 2010.

[6] M. I. Younis, K. Z. Zamli, N. A. Mat Isa, “IRPS - An Efficient Test Data Generation Strategy for Pairwise

Testing,” in Proceedings of the 12th international conference on Knowledge-Based Intelligent

Information and Engineering Systems, Lecture Notes In Artificial Intelligence, Springer-Verlag, 2008.

[7] D. Leffingwell and D. Widrig, “Managing Software Requirements: A Use Case Approach”, Addison

Wesley, 2003.

[8] R. L. Glass, “Facts and Fallacies of Software Engineering”, Addison Wesley, 2002.

[9] National Institute of Standards and Technology, “The Economic Impacts of Inadequate Infrastructure for

Software Testing,” Planning Report, 2-3 May, 2002.

[10] Mark Harman and Phil McMinn, “A Theoretical and Empirical Study of Search-Based Testing: Local,

Global, and Hybrid Search”, IEEE Transactions on Software Engineering, vol. 36, no. 2, pp-226-247,

2010.

[11] P. McMinn, “Search-Based Software Test Data Generation: A Survey,” Software Testing, Verification

and Reliability, vol. 14, no. 2, pp. 105-156, 2004.

[12] Y. Lei and K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for Pairwise Testing", in

proceedings of the 3rd IEEE International conference on High-Assurance Systems Engineering,

Washington, DC, USA, 1998.

[13] D. Gong, X. Yao, “Automatic detection of infeasible paths in software testing” IET Software, vol. 4, no.

5, pp-361-370, 2010.

[14] Jangbok Kim, Kyunghee Choi, Daniel M. Hoffman, Gihyun Jung, “White Box Pairwise Test Case

Generation”, in proceedings of the IEEE Seventh International Conference on Quality Software, Oregon,

USA, 2007.

[15] Zainal Hisham Che Soh, Syahrul Afzal Che Abdullah, Kamal Zuhari Zamli, “A Parallelization

Strategies of Test Suites Generation for t-way Combinatorial Interaction Testing”, in proceedings of the

IEEE International conference on Information Technology, International Symposium , Kuala Lumpur,

Malaysia, 2008.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG System: An Approach to

Testing Based on Combinatorial Design," IEEE Transactions on Software Engineering, vol. 23, no. 7, pp.

437-444, 1997.

[17] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using Artificial Life Techniques to Generate Test Cases for

Combinatorial Testing," in proceedings of the 28th Annual Int. Computer Software and Applications

Conf. (COMPSAC’04), Hong Kong, 2004.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

25

[18] J. Bach, "Allpairs Test Case Generation Tool", Available from:

http://tejasconsulting.com/open-testware/feature/allpairs.html (Last access date: 27th Sep. 2009)

[19] "TConfig," Available from: http://www.site.uottawa.ca/~awilliam/. (Last access date: 27th Sep. 2009)

[20] M. Harman and B.F. Jones, “Search-based Software Engineering & Information and Software Technology”, pp.

833-839, 2001.

[21] Xiang Chen, Qing Gu, Xin Zhang, Daoxu Chen, “Building Prioritized Pairwise Interaction Test Suites with Ant

Colony Optimization”, in proceedings of the 9th International IEEE Conference on Quality Software, Jeju, Koria,

2009.

[22] James D. McCaffrey, “Generation of Pairwise Test Sets using a Simulated Bee Colony Algorithm”, in proceedings

of the IEEE International Conference on, Information Reuse & Integration, Las Vegas, USA, 2009.

[23] M. F. J. Klaib, K. Z. Zamli, N. A. M. Isa, M. I. Younis, and R. Abdullah, "G2Way – A Backtracking Strategy for

Pairwise Test Data Generation," in proceedings of the 15th IEEE Asia-Pacific Software Engineering Conf, Beijing,

China, 2008.

Table 1: Example parameters with values

Parameters A B C D E F

Values

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

Table 2: Pair parameters with exhaustive test cases

Pair

Parameters
AB CD

EF

Generated all

possible test

cases

[a1, b1] [c1, d1] [e1, f1]

[a1, b2] [c1, d2] [e1, f2]

[a2, b1] [c2, d1] [e2, f1]

[a2, b2] [c2, d2] [e2, f2]

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

26

Table 3: Example of pair search and final test case generation

Initial pairs
Available

pairs
Best uncovered pairs

Available

Pairs

Best uncovered

pairs

[a1, b1]

[c1, d1]

[a1, b1, c1, d1]

[e1, f1]

[a1, b1, c1, d1, e1,

f1]

[c1, d2] [e1, f2]

[c2, d1] [e2, f1]

[c2, d2] [e2, f2]

[a1, b2]

[c1, d1]

[a1, b2, c1, d2]

[e1, f1]

[a1, b2, c1, d2, e1,

f2]

[c1, d2] [e1, f2]

[c2, d1] [e2, f1]

[c2, d2] [e2, f2]

[a2, b1]

[c1, d1]

[a2, b1, c2, d1]

[e1, f1]

[a2, b1, c2, d1, e2,

f1]

[c1, d2] [e1, f2]

[c2, d1] [e2, f1]

[c2, d2] [e2, f2]

[a2, b2]

[c1, d1]

[a2, b2, c2, d2]

[e1, f1]

[a2, b2, c2, d2, e2,

f2]

[c1, d2] [e1, f2]

[c2, d1] [e2, f1]

[c2, d2] [e2, f2]

Algorithm to Generate Test Suits ()

This algorithm was implemented with C language#

Begin

Let PP = {} represents the set of all possible pairs

Let PS = {} represents the pairs where all the PS stores in PP

Let PB = {} represents the best pairs set which cover highest pairs

Let PF = {} as empty set represents the Final test suits

Let CB as number = 0 represents the best covering number

Let CC as number = 0 represents the current covering number

For each PS as P1 in PP

 For each next PS as P2 in PP

 Add P1 with P2 and put in P

 CC = Get coverage pair number of P

 IF CB is less or equal to CC

 Put CC into CB

 Put P2 into PB

 End IF

 End For

Add P1 with PB and store to PF

End For

End

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

27

Figure 1: Proposed Algorithm pseudo code for test case generation.

Figure 2: Flow chart of the proposed Algorithm

Table 4: Comparison based on the generated test size

Sys
AETG

[15]

AETGm

[6]

IPO

[18]

SA

[26]

GA

[15]

ACA

[15]

ALL

Pairs

[16]

G2Way

[17]
Proposed

system

S1 NA NA NA NA NA NA 11 11 11

S2 8 10 8 8 8 8 10 10 8

S3 15 17 17 16 17 17 22 19 22

S4 NA NA 47 NA NA NA 49 43 42

S5 17 19 NA 14 14 16 21 22 22

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol.4, No.1, 2013

28

Table 5: Comparison Based on Execution Time (in seconds)

Sys
ALL Pairs

[18]

Proposed

System

S1 0.07 0.017

S2 0.23 0.07

S3 0.40 0.15

S4 0.92 1.22

S5 0.35 0.38

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. There’s no deadline for

submission. Prospective authors of IISTE journals can find the submission

instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

