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Abstract: In recent days testing considers the most important task for building software that is free from 

error. Since the resources and time is limited to produce software, hence, it is not possible of performing 

exhaustive tests (i.e. to test all possible combinations of input data.) An alternative to get ride from this type 

exhaustive numbers and as well to reduce cost, an approach called Pairwise (2 way) test data generation 

approach will be effective. Most of the software faults in pairwise approach caused by unusual combination 

of input data.  Hence, the demand for the optimization of number of generated test-cases and reducing the 

execution time is growing in software industries. This paper proposes an enhancement in pairwise search 

approach which generates optimum number of input values for testing purposes.  In this approach it searches 

the most coverable pairs by pairing parameters and adopts one-test-at-a-time strategy for constructing a final 

test-suite.  Compared to other existing strategies, Our proposed approach is effective in terms of number of 

generated test cases and of execution time.  

Keywords:, Software testing, Pairwise testing, Combinatorial interaction testing, Test case 

generation. 

1   Introduction 

In software engineering, software testing and debugging is the integral part of software development life 

cycle, but this process is very much labor-intensive as well expensive [1]. Currently in any software 

development project around 50% money goes for the software testing. Because of this problem, the focus is 

to find ways for software testing which will be automatic and cost-effective and to find debugging techniques 

to ensure high quality of released software product [2]. Current researches on software testing focuses on 

test-case generation problem, test coverage criterion design, regression testing problem, test oracle problem 

and fault localization problem [1]. Among all these problems, test-case generation problem is one of most 
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important issue to reduce cost and effort to produce error free software [1].  Pairwise strategy (i.e. two-way 

interaction) has been known as an effective test case reduction strategy is used to solve this problem. This 

strategy is able to detect 60 to 80 percent of the faults [4]. 

 

As an example, let us take the ‘proofing’ tab under ‘option’ dialog box in Microsoft word 2007, 

there are maximum 13 possible configuration needed to be tested. And each configuration has two values 

(checked or unchecked) to choose from, other than these, the ‘French Modes’ have 3 possible values and 

also there are ‘Writing Style’ mode has 2 possible values. In this case to test this proofing tab exhaustively, 

the number of test cases needs to be executed are 213 x 2 x 3 i.e. 49,152. Let us assume that in each test case 

may consume 4 minutes to execute in average; which results around 136 days to complete the exhaustive 

test for this tab [3,4]. 

 

The case is similar as the hardware products test. Let us say, if a product has 20 on/off switches, for testing 

all possible combination it may need 220 = 104,85,76 test cases, and may take around 8 year to complete the 

test by considering 4 minutes for each single test case [4].  Current trend of research work in 

combinatorial testing aims for generating the least possible test cases [5]. Non-deterministic 

polynomial-time hard (NP-hard) may be the solution of this problem [6]. Till today many approaches have 

been proposed by many scientists and also many tools have been developed for finding out the least 

possible test suits in polynomial time [5-8, 10-14] but yet to find the most optimum one. In this paper we 

introduce an enhanced pairwise search approach for generating pairwise test data in terms of optimum in 

size and least time consumption.  

 

The paper was organized in the way that the detail related work is described in the section 1.1 followed by 

the proposed algorithm details, the experimental results with discussions and comparison and finally the 

conclusion suggests for the future work.   

1.1 Related Work On Pairwise Test Data Genertion 

Empirical facts shows that one of the major sources of software and systems bug/errors [7,8] is the lack of 

testing for both functional and nonfunctional. NIST (National Institute of Standard and Technology) have 

shown that an estimated cost of $ 6X 1010 wastes as a result of software failure, which was the 0.6 percent of 

GDP [9, 10]. The research showed that more than one-third of this cost can be reduced by improving software 

testing mechanism.  In this case, automatic testing is of critical concern [11]. For the automation, software 

can become more practical and scalable. But the automated generation of test data case is challenging [12]. 

Underlying problem for this is known to be not-decidable and NP-hard, so researchers have focused on the 

techniques that search to find near optimal test data sets in a reasonable time [13, 14].   

 

A very significant and promising approach called Pairwise testing approach to software testing is used as it 

often provides efficient error detection at a very low cost.  It keeps a well balance between the magnitude 

and effectiveness of combinations. This requires every combination of any two parameter values to be 
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covered by at least one test case [14,15]. In the pairwise approach there are some pre-defined rules to 

calculate the test cases data directly from the mathematical functions; those are known as algebraic strategy 

[4]. On other hand, computational approaches are based on the calculation of coverage of generated pairs, 

followed by an iterative or random search technique for creating test cases. 

 

Computational approach is used in the IRPS algorithm [6]. This approach is a deterministic strategy that 

generates all pairs and stores it into the linked list. At the end it searches the entire list, from there it selects the 

best list and empties the list. In this way when all list become empty, the collection of best list is determined 

and set as the final test data suite.  

By using computational approach, Automatic Efficient Test Generator (AETG) [16] and its divergence 

mAETG [6], generates pairwise test data. In this approach it uses the ‘Greedy technique’ to build test cases 

based on covering as much as possible un-covered pairs. A random search algorithm is used in AETG [16]. 

Ant Colony Algorithm (ACA) and Genetic Algorithm (GA) are the variants of AETG [16]. Genetic 

Algorithm [17] creates an initial population of individuals (test cases), then the fitness of those individuals are 

calculated. After this it starts discarding the unfit individuals by individual selection methods. The genetic 

operators such as crossover and mutations are applied on the selected individuals. This process continues 

until a set of best individuals found. In Ant Colony Algorithm [17] the candidate solution is associated with 

the start and end points. If an Ant chooses one edge from different edges, it would choose the edge with a 

large amount of pheromone, which gives better result with the higher probability.   

 

In case of In-Parameter-Order (IPO) [12] strategy, it starts with an empty test set and adds one test 

parameter at a time for pairwise testing. By combination of the first two parameter it creates the test cases, 

then it adds third and calculate how many pair has been covered. This way it goes on until all the values of 

each parameter is checked. This is a deterministic approach. 

 

A popular algorithm called AllPairs [18], can generate test suites covering all pairwise interactions within 

a reasonable time. This strategy looks like to be a deterministic strategy because the same test suit are 

generated every run time. 

 

A deterministic strategy called the Simulated Annealing (SA) [22] algorithm with the same generated test 

suite for every run time. 

 

Another algorithm called G2Way (Generalization of Two Way test data) is one of the excellent tools based 

on computational and deterministic strategy. This strategy based on backtracking algorithm and uses 

customized markup language to describe base data. This G2Way backtracking algorithm tries to combine 

generated pairs so that it covers highest pairs. Finally covering all the pairs, the test case treats as final test 

data suite. 
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1.2 Our Proposed Strategy 

Our proposed algorithm works as follows: Initially, it creates pair parameters and their values. Values of 

one pair is combined with another pair by calculating the highest possible coverable pairs. This way it 

constructs a test case and adds to the final test suit. Let’s have an example for easy understanding of the 

algorithm. The scenario is presented as follows: 

 

In Table 1, there are 6 parameters A, B, C, D, E, and F, each of them having 2 values (i.e. a1, a2, b1, b2 

etc.). The proposed algorithm first generates pair parameters which are AB, CD, EF and then generate the 

exhaustive test cases as shown in Table 2. 

 

According to the algorithm every AB pair tries to combine with one CD pairs. If the combined pairs give 

highest coverage or maximum coverage, then it tries to combine with the next available values (i.e EF pairs). 

In this case the test case generation approach is in greedy manner and constructs test cases one at a time.  

 

From Table 2, proposed algorithm tries to combine [a1, b1] with 4 possible values of CD in the list [[c1, 

d1], [c1, d2], [c2, d1], [c2, d2]]. We can see that the first pair which gives the highest coverage looks for the 

available pairs, which is [[e1, f1], [e1, f2], [e2, f1], [e2, f2]] as shown in Table 3. The highest coverage will 

then added to the final test suit. 

 

Table 3 shows, one of AB pairs [a1, b1] searches for the best pairs among the available pairs of CD and the 

output  from this should be only one, which is [a1, b1, c1, d1] as the first uncovered final test-case with full 

coverage. Again, generated pair [a1, b1, c1, d1] search for the available pairs of EF and the generated output 

is [a1, b1, c1, d1, e1, f1].  This same procedure is followed by other AB pair parameters to generate other 

final test cases from the list. This way the highest coverable pairs are stored on the final test set. Figure 1 

shows the test cases generation algorithm and Figure 2 shows the corresponding flowchart. 

 

1.3 Experimental Results 

To evaluate the efficiency of our proposed algorithm, for pairwise test data generation, we have considered 

5 different system’s configurations. Among these systems the first 3 system are uniform parameterized 

values and the rest systems are non-uniform show as follows: 

 

S1: 3 3-valued parameters, 

S2: 4 3-valued parameters, 

S3: 13 3-valued parameters, 

S4: 10 5-valued parameters, 

S5: 1 5-valued parameters, 8 3-valued parameters and 2 2-valued parameters. 
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Consideration of the parameters and assumptions are taken according to some of the related existing 

algorithms that support pairwise test case generation to compare our results with those. 

 

Table 4 shows the comparison of generated test suite size by our proposed algorithm with others. The 

shadowed cells show the best performance in term of generated test case size. It shows that our proposed 

algorithm produces the best results in S1, S2, and S4 (shaded) but not for S3 and S5. Since the test case 

production is a NP-complete problem hence it is well known that no strategy may perform the best for all 

cases. It shows best performances in three cases, which is highest among all related algorithms. 

 

For a good comparison of execution time (i.e., complexity) for all related test strategies, either computing 

environment should be equal (normally this will not be possible) or need the source code of the method ( 

which is also not available in most of the cases). All Pairs tool [18] which is free to download and can execute 

using any computing platform. Hence we have managed to compare the execution time of R2Way with our 

proposed method using the same platform as follows:  Intel Dual Core 2.66 GHz, 1 GB RAM, Java 

programming language, and OS environment was Windows XP. 

 

1.4 Conclusion 

In this paper we have proposed pair parameter based search algorithm which will generate test cases for 

pairwise testing. The suitability of the proposed algorithm is noticeable. The proposed system combines two 

parameters together (a single pair) and searches for another pair. In this system the architecture and the 

algorithm is far different than other existing algorithms because at first the parameters create the pair among 

themselves and all the pairs look for other pairs to obtain the highest coverage. The main strategy of this 

algorithm is to generate test cases from the parameter pairs. We have shown the design and description of the 

algorithm has been shown in other sections. At the end the experimental result shows the efficiency of the 

algorithm. We have shown that the proposed algorithm is efficient in terms of execution time and able to 

generate much reduced test suites to fulfill the current demand by the software development companies. The 

proposed algorithms could be further extended to support higher t-way interaction testing where there are 

scopes for further research. 
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Table 1: Example parameters with values 

Parameters A B C D E F 

 

Values 

a1 b1 c1 d1 e1 f1 

a2 b2 c2 d2 e2 f2 

 

 

Table 2: Pair parameters with exhaustive test cases 

Pair 

Parameters 
AB CD 

EF 

Generated all 

possible test 

cases 

 

[a1, b1] [c1, d1] [e1, f1] 

[a1, b2] [c1, d2] [e1, f2] 

[a2, b1] [c2, d1] [e2, f1] 

[a2, b2] [c2, d2] [e2, f2] 
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Table 3: Example of pair search and final test case generation 

Initial pairs 
Available 

pairs 
Best uncovered pairs 

Available 

Pairs 

Best uncovered 

pairs 

[a1, b1] 

[c1, d1] 

[a1, b1, c1, d1] 

[e1, f1] 

[a1, b1, c1, d1, e1, 

f1] 

[c1, d2] [e1, f2] 

[c2, d1] [e2, f1] 

[c2, d2] [e2, f2] 

[a1, b2] 

[c1, d1] 

[a1, b2, c1, d2] 

[e1, f1] 

[a1, b2, c1, d2, e1, 

f2] 

[c1, d2] [e1, f2] 

[c2, d1] [e2, f1] 

[c2, d2] [e2, f2] 

[a2, b1] 

[c1, d1] 

[a2, b1, c2, d1] 

[e1, f1] 

[a2, b1, c2, d1, e2, 

f1] 

[c1, d2] [e1, f2] 

[c2, d1] [e2, f1] 

[c2, d2] [e2, f2] 

[a2, b2] 

[c1, d1] 

[a2, b2, c2, d2] 

[e1, f1] 

[a2, b2, c2, d2, e2, 

f2] 

[c1, d2] [e1, f2] 

[c2, d1] [e2, f1] 

[c2, d2] [e2, f2] 

Algorithm to Generate Test Suits () 

# This algorithm was implemented with C language# 

Begin 

Let PP = {} represents the set of all possible pairs 

Let PS = {} represents the pairs where all the PS stores in PP 

Let PB = {} represents the best pairs set which cover highest pairs 

Let PF = {} as empty set represents the Final test suits  

Let CB as number = 0 represents the best covering number 

Let CC as number = 0 represents the current covering number 

For each PS as P1 in PP 

 For each next PS as P2 in PP  

  Add P1 with P2 and put in P 

  CC = Get coverage pair number of P 

  IF CB is less or equal to CC 

   Put CC into CB 

   Put P2 into PB 

  End IF 

 End For 

Add P1 with PB and store to PF 

End For 

End 
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Figure 1: Proposed Algorithm pseudo code for test case generation. 

 

Figure 2: Flow chart of the proposed Algorithm 

Table 4: Comparison based on the generated test size 

Sys 
AETG 

[15] 

AETGm 

[6] 

IPO 

[18] 

SA 

[26] 

GA 

[15] 

ACA 

[15] 

ALL 

Pairs 

[16] 

G2Way 

[17] 
Proposed 

system 

S1 NA NA NA NA NA NA 11 11 11 

S2 8 10 8 8 8 8 10 10 8 

S3 15 17 17 16 17 17 22 19 22 

S4 NA NA 47 NA NA NA 49 43 42 

S5 17 19 NA 14 14 16 21 22 22 
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Table 5: Comparison Based on Execution Time (in seconds) 

Sys 
ALL Pairs 

[18] 

Proposed 

System 

S1 0.07 0.017 

S2 0.23 0.07 

S3 0.40 0.15 

S4 0.92 1.22 

S5 0.35 0.38 
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