
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

16

Fast Retrieval Algorithm Using EMD Lower and Upper

Bounds and a Search Algorithm in multidimensional index

Bahri abdelkhalak , Hamid zouaki

Department of Mathematics and computer science, Faculty of Science, El Jadida

Modélisation Mathématiques et Informatique Décisionnelle

Bahri_abdelkhalak@yahoo.fr

Hamid_zouaki@yahoo.fr

Abstract. Comparison of images requires a distance metric that is sensitive to the spatial location of objects

and features. The Earth Mover’s Distance was introduced in Computer Vision to better approach human

perceptual similarities. Its computation, however, is too complex for usage in interactive multimedia

database scenarios. We develop new upper bounding approximation techniques for the Earth Mover’s

Distance which satisfy high quality criteria and fast computation. In order to enable efficient query

processing in large databases, we propose an index structure LUBMTree (Lower and Upper Bounds

MTree), based of using the lower and upper bounds for the EMD to improve the search time.

Experiments show the performance of research in the LUBMTree compared with those obtained by the

research in the MTree.

Keywords : indexing, similarity, search, signature, metric EMD, MTree, MAM.

1. Introduction

Any image database, whether a newspaper photo archive, a repository for biomedical images, or a

surveillance system, must be able to compare images in order to be more than an expensive file cabinet.

Content-based access is key to making use of large image databases, such as a collection of decades’ worth

of diverse photographs or the torrent of images from new, high-throughput microscopes [1]. Having a

notion of distance is also necessary for global analyses of image collections, ranging from general-purpose

techniques such as clustering and outlier detection to specialized machine learning applications that attempt

to model biological processes. Comparing two images requires a feature extraction method and a distance

metric. A feature is a compact representation of the contents of an image. The MPEG-7 standard [2]

specifies a number of image features for visual browsing. A distance metric computes a scalar distance

between two features: examples are the Euclidean (L2) distance, the Manhattan (L1) distance, and the

Mahalanobis distance [3]. The choice of image feature and distance metric depends on the nature of the

images, as well as the kind of similarity one hopes to capture. For many classes of images, the spatial

location is important for whether two images should be considered similar. For example can be constructed

from photographs or surveillance images where one wishes to discount small rotations or translations in

defining image similarity. The earth mover’s distance (EMD), first proposed by Werman et al. [6], captures

the spatial aspect of the different features extracted from the images. The distance between two images

measures both the distance in the feature space and the spatial distance.

The EMD has strong theoretical foundations [7] and is robust to small translations and rotations in an

image. It is general and flexible, and can be tuned to be having like any Lp-norm with appropriate

parameters. It has also been successfully applied to image retrieval based on contours [10] and texture [11],

as well as similarity search on melodies [12], graphs [13], and vector fields [14].The complexity of the

EMD algorithm is O(N
3
log N) [1], where N is the number of clusters in the signatures. Some derivation

algorithms of the EMD have been proposed to reduce the time computation. Pele and Werman [16]

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

17

proposed the fast algorithm of�EMD . Ling and Okada [15] proposed the fast algorithm of EMD_ L1. The
�EMDcan be obtained by replacing the ground distance of the EMD with the threshold distance. EMD_L1

is a replacement of the ground distance with the L1 distance. Both �EMDand EMD_L1 are different from

the original EMD. They only indicate high-speed calculation methods in the case that the thresholded

distance and L1 distance were used as the ground distance.

To reduce the search time of the query image, we propose a new metric access method called LUBMTree

(Lower Upper Bound MTree), which is an extension of the MTree[10] index structure.

The rest of the paper is organized as follows. Section 2 Present the paper contributions. Section 3 Describe

the EMD distance measure. Section 4 present the lower bounds for the EMD, and introduces the upper

bounds for the EMD. Section 5 Describe the MTree and the proposed index structures LUBMTree . Section

6 evaluates the search in the proposed index structure experimentally. Section 7 discusses related work,

before Section 8 concludes the paper. Finally, section 9 the future work.

2. Paper contributions:

This paper presents the upper bounds for the EMD, and the index structure LUBMTree (Lower Upper Bound

MTree), that extend the index structure MTree[10]. This our index structure based of using the lower and

upper bounds for the EMD. The goal of this index structure is to speed up similarity search.

3. The Earth Mover distance

According to the classification result of pixel images, the signatures of images can be of different size, and

hence the Euclidean distance, Bhattacharyya distance…etc are not feasible, hence the choice of EMD (Earth

Mover Distance) [8] distance, and that one of the most efficient distance to compare sets of features, see e.g.

[17, 18].

The EMD is based on the well-known transportation problem. Suppose some suppliers, each with a given

amount of goods, are required to supply some consumers, each with a given limited capacity to accept goods.

For each supplier-consumer pair, the cost of transporting a single unit of goods is given. The transportation

problem is: Find a minimum expensive flow of goods from the suppliers to the consumers that satisfy the

consumers’ demand.

The Earth Mover's Distance [Rubner et al., 1998] is one of the distances that can work efficiently on

signatures which are not necessarily the same number of bins.

The EMD is the minimum amount of work to change a signature into another. The concept of "work" is based

on the quantity of the contents of the signature to be transported from one component to another and the

distance chosen by the user to measure the distance between two components. The number of components to

compare two signatures may be different, as well as the sum total of the components of the two signatures.

Two signatures are compared

{ }),(,),,(11 mm wpwpP L= }{ 1 1(,), ..., (,)n nand Q q u q u=

P is the first signature containing m clusters pi of weight wi, and Q the second signature containing n clusters

qj of weight uj. According to [1], the first step is to find all content portions of fij to carry the signature of the

component i to component j that minimize the cost (work) as follows:

∑∑
= =

m

i

n

j

ijij fd
1 1

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

18

Where F={fij} denotes a set of flows. Each flow fij represents the amount transported from the i-th supply to

the j-th demand.

D=[dij] the ground distance matrix, where dij is the ground distance between clusters pi and qj with the

following constraints:

∑∑ ∑ ∑

∑

∑

= = = =

=

=

=

≤≤≤

≤≤≤

≤≤≤≤≥

m

i

n

j

m

i

n

j

jiij

j

m

i

ij

n

j

iij

ij

uwf

njuf

miwf

njmif

1 1 1 1

1

1

),min(

1,

1,

1,1,0

The first constraint only allows movement of components from P to Q.

The following two constraints limit the amount of displaced components of P, and quantity of components

received by Q at their respective weights. The last constraint implies the maximum possible displacement of

components.

EMD distance is then defined as

1 1

1 1

(,)

m n

ij iji j

m n

iji j

d f
EMD q p

f

= =

= =

=
∑ ∑
∑ ∑

EMD distance is normalized to the minimum sum of weights of signatures to avoid favoring smaller

signatures when comparing signatures of different sizes.

Image Retrieval Using the EMD.

Color distribution data applied for CBIR models is extracted from color segmentation images. As shown in

Figure 1, the distribution consists of the weight, flow cost, and image feature. The weight is the number of

pixels in each region. The flow cost of each distribution can be obtained by calculating the Euclidean distance

between the image features in each region. The image feature of each region consists of the center position (x,

y) and the average color signature (Lab).

Weight: The number of pixels in each region

Flow cost: The Euclidean distance between image features

Image feature : The center position and color signature (Lab) in each region

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

19

 (a) (b)

Figure 1. An example of a color signature. (a) Color signature. (b) Original image.

4. the bounds for the EMD

4.1 Lower bound for the EMD.

In this section we describe several lower bounds for the EMD:

4.1.1 Rubner and AL. [8] defined the lower bound for the EMD by:

Theorem: EMD Lower Bound (Y. Rubner and C. Tomasi 2001)

 Given signatures P and Q, let pi and qj be the coordinates of luster i in the first signature, and cluster j in the

second signature respectively.

Then if

∑∑
==

=
n

j

qj

m

i

pi

11

ωω

Then QPQPEMD −≥),(

Where is the norm that induces the ground distance, and P and Q are the centers of mass of P and Q

respectively:
,

1

1

∑
∑

=

==
m

i pi

m

i ipi

w

pw
P

 ∑
∑

=

==
n

j qj

n

j qj

w

qjw
Q

1

1

Proof: See [8]

 4.1.2 I.Assent, A.Wenning, T.Seidl [19] Introduce the Lp-norm-based lower bounds defined are:

The advantages of using (weighted) Lp norms are twofold. First, a single comparison is computed in linear

time O(n) in an n dimensional histogram space. Secondly, these distance functions are immediately index

enabled and supported by any available multi-dimensional indexing structure.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

20

A. Weighted L1 lower bound [19]

Theorem Weighted L1 lower bound LBMan

For any metric ground distance encoded in a cost matrix C = [cij], the EMD between two histograms x = (x1,

. . . , xn) and y = (y1, . . . , yn) with the same total mass, i.e. ∑ ∑= =
==

n

i

n

i ii yxm
1 1

, is always greater than

or equal to the weighted Manhattan distance with weights









= ≠
m

c
w

ij

jiji
.2

min , . Formally:

ii

ij
n

i
j

yx
m

c
yxEMD

ji

−








≥ ∑
= ≠

.2
min),(

1

Proof: see [19]

B. Weighted L2 lower bound [19]

Theorem Weighted L2 lower bound LBEucli

For any metric ground distance encoded in a cost matrix C = [cij], the EMD between two histograms x = (x1,

. . . , xn) and y = (y1, . . . , yn) with the same total mass, i.e. ∑ ∑= =
==

n

i

n

i ii yxm
1 1

, we have :

∑
=

−








≤
≠

n

i

ii

ij

j
yx

m

c
QPEMD

ji1

22)()
.2

min(),(

Proof: see [19]

C. Weighted L∞ lower bound [19]

Theorem Weighted L∞ lower bound LBMax

For any metric ground distance encoded in a cost matrix C = [cij], the EMD between two histograms x = (x1,

. . . , xn) and y = (y1, . . . , yn) with the same total mass, i.e. ∑ ∑= =
==

n

i

n

i ii yxm
1 1

, we have :





















−








≥
≠

ij

ji

ii

ij

ji
yx

m

c
yxEMD minmax),(

Proof: see [19]

4.2 Upper bound for the EMD.

In this part we propose the upper bounds of the metric EMD that maximise the distance EMD between two

histograms. The upper bounds proposed based of the Lp-norm.

 4.2.1 Weight L1 upper bound

Theorem Weighted L1 upper bound UBMan

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

21

For any metric ground distance encoded in a cost matrix C = [cij], the EMD between two histograms x = (x1,

. . . , xn) and y = (y1, . . . , yn) with the same total mass, i.e. ∑ ∑= =
==

n

i

n

i ii yxm
1 1

, is always greater than or equal

to the weighted Manhattan distance with weights









= ≠
m

c
w

ij

jiji
.2

min ,
 . Formally:

ii

ij
n

i
j

yx
m

c
yxEMD

ji

−








≤ ∑
= ≠

.2
max),(

1

Proof:

∑ ∑
= =

≠

=
n

i

n

j

ij

ij

ji

f
m

c
yxEMD

1 1

),(

∑∑
≠

≠ == 







≤
n

j

ij

ij
m

i
j

ji
ji

f
m

c

11

max

ii

n

i

ij

j
yx

m

c

ji

−








≤ ∑
= ≠1

.2
max

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

22

4.2.2 Weighted L2 upper bound

Theorem Weighted L2 lower bound UBEucli

For any metric ground distance encoded in a cost matrix C = [cij], the EMD between two histograms x = (x1,

. . . , xn) and y = (y1, . . . , yn) with the same total mass, i.e. ∑ ∑= =
==

n

i

n

i ii yxm
1 1

, we have :

∑
=

−








≤
n

i

ii

ij
yx

m

c
QPEMD

1

22)()
.2

(max),(

Proof:

1

2.
(,) max

i j

n
ij

i i
j

i

c
EMD x y x y

m
≠=

 
≤ − 

 
∑

 2

1

)
.2

max(ii

ij
n

i
j

yx
m

c

ji

−








= ∑
= ≠

 ∑
=

−








≤
≠

n

i

ii

ij

j
yx

m

c

ji1

22)()
.2

max(

5. Metric access methods

Metric access methods (MAMs) [20] are index structures designed to perform efficiently similarity queries in

metric spaces. They only use especially the triangle inequality, to filter out objects or entire regions of the

space during the search, thus avoiding the sequential (or linear) scan over the database.

MAMs can be classified into two main groups: (1) Pivot based MAMs select from the database a number of

pivot objects, and classify all the other objects according to their distance from the pivots (2) MAMs based on

compact partitions divide the space into regions as compact as possible.

Each region stores a representative point (local pivot) and data that can be used to discard the entire region at

query time, without computing the actual distance from the region objects to the query object. Each region

can be partitioned recursively into more regions, inducing a search hierarchy.

5.1. M-Tree

A. Basic Principles

The M-tree [10] is a dynamic (meaning easily updatable) index structure that provides good performance in

secondary memory. The M-tree is a hierarchical index, where some of the data points are selected as centers

(local pivots) of regions and the rest of the objects are assigned to suitable regions in order to build up a

balanced and compact hierarchy of data regions. Each region (branch of the tree) is indexed recursively. The

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

23

data is stored in the leaves of the M-tree, where each leaf contains ground entries (grnd(Oi), Oi ∈ S). The

internal nodes store routing entries (rout(Oi), Oi ∈ S).

The M-tree organizes the objects into fixed-size nodes. Each node can store up to M entries—this is the

capacity of M-tree nodes. An entry for a routing object Or also include a pointer, denoted ptr(T(Or)), which

references the root of a sub-tree, T(Or), called the covering tree of Or, a covering radius r(Or) > 0, and d(Or,

P(Or)), the distance to the parent object P(Or), i.e. the routing object which references the node where the Or

entry is stored.

entry (Or) = [Or, ptr(T(Or)), r(Or), d(Or, P(Or))]

For each (ground) DB object, one entry having the format

entry(Oj) = [Oj, oid(Oj), d(Oj, P(Oj))]

is stored in a leaf node, where oid(Oj) is the identifier of the object, which is used to provide access to the

whole object resident on a separate data file.

Starting at the root level, a new object Oi is recursively inserted into the best subtree T(Oj), which is defined

as the one where the covering radius rOj must increase the least in order to cover the new object. In case of

ties, the subtree whose center is closest to Oi is selected. The insertion algorithm proceeds recursively until a

leaf is reached and Oi is inserted into that leaf, at each level storing the distance to the routing object of its

parent node (so-called to-parent distance). Node overflows are managed in a similar way as in the B-tree. If

an insertion produces an overflow, two objects from the node are selected as new centers, the node is split,

and the two new centers are promoted to the parent node. If the parent node overflows, the same split

procedure is applied. If the root overflows, it is split and a new root is created. Thus, the M-tree is a balanced

tree.

The semantics of the covering radius is the following: All the objects stored in the covering tree of Or are

within the distance r(Or) from Or, i.e. ∀Oi ∈ T(Or), d(Or,Oi) ≤ r(Or).

A routing object Or, hence, defines a region in the metric space M, centered on Or and with radius r(Or) (see

Figure 2).

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

24

Figure 2. An example of a MTree

The M-tree, therefore, organizes the space into a set of (possibly overlapping) regions, to which the same

principle is recursively applied. The covering radius, r(Or), and the distance between the object and its parent

object, d(Or, P(Or)), both stored in each entry of the tree, are used to “prune” the search space during the

search phase

B. Searching the M-tree

Before presenting specific algorithms for building the M-tree, we show how the information stored in nodes

is used for processing similarity queries. Clearly, the performance of search algorithms is largely influenced

by the actual construction of the M-tree, even though the correctness and the logic of search are independent

of such aspects.

In order to minimize both the number of accessed nodes and computed distances, all the information

concerning (pre-computed) distances which are stored in the M-tree nodes, i.e. d(Oi, P(Oi)) and r(Oi), is used

to efficiently apply the triangle inequality property.

The query range (Q, rQ) requests for all the database objects Oj , such that d(Oj,Q) ≤ rQ. Therefore, the

algorithm rangeQuery has to follow all such paths in the M-tree which cannot be excluded from leading to

objects satisfying the above inequality. Since the query threshold, rQ, does not change during the search

process, and provided the response set is required as a unit, the order with which nodes are visited has no

effect on the performance of rangeQuery algorithm.

Since, when accessing node N, the distance between Q and Op, the parent object of N, has already been

computed, it is possible, by applying the triangle inequality, to prune a whole sub-tree without computing any

new distance at all. The condition for pruning is as follows.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

25

Lemma 1 [25]

If d(Or,Q) > rQ + r(Or), then, for each object Oj in T(Or), it is d(Oj,Q) > rQ. Thus,

T(Or) can be safely pruned from the search.

Proof: Since d(Oj,Or) ≤ r(Or) holds for any object Oj in T(Or), it is

d(Oj,Q) ≥ d(Or,Q) − d(Oj,Or) (triangle inequality)

 ≥ d(Or,Q) − r(Or) (def. of covering radius)

 > rQ (by hypothesis)

In order to apply Lemma 1, the distance d(Or,Q) has to be computed. This can be avoided by taking

advantage of the following result.

Lemma 2 [25]

If |d(Op,Q) − d(Or,Op)| > rQ + r(Or), then d(Or,Q) > rQ + r(Or).

Proof: This is a direct consequence of the triangle inequality, which guarantees that both d(Or,Q) ≥ d(Op,Q)

− d(Or,Op) and d(Or,Q) ≥ d(Or,Op) − d(Op,Q) hold (see Figure 3).

 a) b)

Figure 3. How Lemma 2 is used to avoid computing distances. Case a): d(Or,Q) ≥d(Op,Q)−d(Or,Op) >

r(Q)+r(Or); Case b): d(Or,Q) ≥ d(Or,Op)−d(Op,Q) > r(Q)+r(Or). In both cases computing d(Or,Q) is not

needed.

Range query algorithm in M-tree[25]

Listing 1. (range query algorithm)

QueryResult rangeQuery(Node N, Query (Q,rQ))

{ // if N is root then d(Or,Op)=d(Op,Q)=0

 Let P be the parent rooting object of N

 If N is not a leaf then {

 For each root (Or) in N do {

 If |d(Op,Q) - d(Or,Op)| ≤ r(Or)+rQ then

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

26

 Compute d(Or,Q)

 If d(Or,Q)≤ ≤ r(Or)+rQ then

 rangeQuery(ptr(T(Or)),(Q, rQ))

 }

} /* for each….*/

 } Else{ For each grnd (Oj) in N do {

 If | d(Op,Q) - d(Oj,Op)| ≤ rQ then

 Compute d(Oj,Q)

 If d(Oj,Q)≤ rQ then

 Add Oj to the query result

 }

} /* for each….*/

}

} /* rangeQuery…*/

Range queries are implemented by traversing the tree, starting from the root. The nodes which parent region

(described by the routing entry) is overlapped by the query ball are accessed (this requires a distance

computation). As each node in the tree (except for the root) contains the distances from the routing/ground

entries to the center of its parent node (the to-parent distances), some of the non-relevant branches can be

further filtered out, without the need of a distance computation, thus avoiding the “more expensive” basic

overlap check.

In the MTree structure, the objects in a single node may belong to different classes. During the search if the

leaf node is selected, then the distances between the query object and all objects in it are calculated. And

therefore we can have additional calculations between the query object and the objects that are not similar to

this one. So to reduce the number of calculations we propose a new index structure called LUBMTree

5.2. LUBMTree

The LUBMTree is a metric access method, and it is an extension of MTree. Its goal is to accelerate the search

of objects. By using our index structure LUBMTree, the original EMD can be calculated efficiently. The

characteristic of the search in our structure is that it does not necessarily calculate all distances with different

objects of the same node of the LUBMTree index structure. To limit these calculations, we use the EMD

lower and upper bounds.

5.2.1 The structure of LUBMTree

The LUBMTree structure has the same attributes as MTree, in addition two other attributes. The first attribute

represent the lower bound of the EMD distance between the routing object and its parent. The second

attribute represent the lower bound of the EMD distance of the covering radius of routing object.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

27

The construction of the structure LUBMTree is built in the same way as MTree, while adding two attributes

lower bounds, and two other attributes upper bounds for each object.

5.2.2 Searching in LUBMTree

Lemma 3

Let P be the parent object of a data region (R, r). Let

d
lb

(·) and dub(.) are a lower and upper-bounding distance to EMD(·) respectively.

 If (,) (,)ub ub lb lb

p w p wd P Q d r d d P Q rε ε− > + ∨ − > +

Then the data region is not relevant to the query and can be filtered.

Proof: This is a direct consequence of the triangle inequality, which guarantees that both d
ub

(R,Q) ≥ r + εw

and d
lb

(R,Q) ≥ r + εw hold (see Figure 4).

Figure 4. Outer parent filtering in LUBMTree.

5.2.3 Similarity queries

We present the modified range query algorithm (see Listing 2). The k-NN algorithm can be modified the

same way (for both original query algorithms on M-tree we refer to [10]).

Listing 2. (range query algorithm)

QueryResult rangeQueryLUB(Node N, RQuery (Q,ε))

{

 // if N is root then d(R,O)=d(P,Q)=0

 Let P be the parent rooting object of N

 Let’s dlb(R,P)= be the lower bound of the EMD(R,P) distance

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

28

 If N is not a leaf then {

 For each root (R) in N do {

 If d
ub

(P,Q) - d
ub

(R,P) ≤ r+ε and // lemme 3

 d
lb

(R,P) – d
lb
(P,Q) ≤ r+ ε then { // lemme 3

 If d(P,Q) - d(R,P) ≤ r +ε and // lemme 2

 d(R,P) – d(P,Q) ≤ r + ε then {

 Compute d(R,Q)

 If d(R,Q)≤ rub + ε then // lemme 1

 rangeQueryLUB(ptr(T(R)),(Q, ε))

 }

 }

 } /* for each….*/

 }

 Else{

 For each grnd (R) in N do {

 If d
ub

(P,Q) - d
ub

(R,P) ≤ r+ε and // lemme 3

 dlb(R,P) – dlb(P,Q) ≤ r+ ε then { // lemme 3

 If d(P,Q) - d(R,P) ≤ r +ε and // lemme 2

 d(R,P) – d(P,Q) ≤ r + ε then {

 Compute d(R,Q)

 If d(R,Q)≤ ε then

 Add R to the query result

 }

 }

 } /* for each….*/

 }

} /* rangeQuery…*/

6. Experimental evaluation

We performed a number of range queries using 50 classes of the Coil-100 database, which each class contains

72 images. We use also the Wang database, composed by 10 classes, which each class contains 100 images.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

29

We implemented our proposed range query search algorithm and compared it against an MTree with bulk

loading (best efficiency). The platform on which the experiments were run is a PC with a 5.6 Ghz processor

and 4 Gb of main memory.

As efficiency measures, we used the CPU time

needed to compute the results of queries.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

500

1000

1500

2000

2500

Threshold

N
u

m
b

er
 o

f
d

is
ta

n
ce

 c
o
m

p
u

ta
ti

o
n

s

Coil-100 database result

MTree

LUBMTree

Figure 5 .Number of distance computations calculate in the range query when searching in the LUBMTree

compared by the search in in the MTree

Figure 6. The time computation calculate in the range query when searching in the LUBMTree and in the

MTree

Using optimal query processing, we varied the threshold of nearest neighbours from 0.05 to 0.35, we use the

signature sizes 16 of images obtained by the classification theirs pixels by KD-Tree [24], and we use our

structure describe in the first of this section. In the tow our experiments, we evaluate the performance of

our structure by measuring the selectivity. The bounds used in our experiments are the LBEuclid et UBEuclid as

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

900

1000

Threshold

N
u

m
b

er
 o

f
d

is
ta

n
ce

 c
o
m

p
u

ta
ti

o
n

s

Wang database result

MTree

LUBMTree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

Threshold

C
P

U
 t

im
e

(s
)

Wang database result

MTree

LUBMTree

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

Threshold

C
P

U
 t

im
e(

s)

Coil-100 database result

MTree

LUBMTree

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

30

the lower and upper bounds respectively. In the figure 5, the search in the MTree produce more number of

distance computations than the search in the LUBMTree, and so produce more image candidates. The figure

6, show the response time obtained when search in the MTree and in our index structure. We see that the

search in our structure is faster than the search in the MTree, because the number of the calculated distances

in the search algorithm in our structure is less than the one of the MTree. This improvement is explain by the

search algorithm in the proposed index uses the lower and the upper bounding to skipping the supplementary

calculs.

7. Related Work

Werman et al. [6] define the match distance for multidimensional histograms and suggest its application to

texture features, shape matching, and image comparison. For the latter, the intensity of pixels is used as the

mass. Peleg et al. [7] formulate the match distance as an LP problem. Rubner et al. [5] introduce the name

earth mover’s distance, and study image retrieval using color distributions and texture features.

Rubner et al. [5] derive a lower bound —the distance between the centers of mass (in feature space) of the

two images—for the EMD. Their bound disregards position information, as the center of mass of each

image lies at the physical center of the image and contributes zero to the bound. I.Assent, A.Wenning,

T.Seidl [19] also derive a lower bounds based of the Lpnorm. M.Shishibori, D. Koizumi, and K. Kita [23]

use the lower bounding distance of EMD and combines it with a calculation-skipping algorithm.

We implemented their lower bound, and we introduce the upper bound based of Lp-norm. We use the upper

and the lower bound for improve the MTree[10] index structure.The characteristic of our algorithms is that

unnecessary calculations can be skipped by using the EMD lower and upper bounds. As a consequence, the

search in our index structures is significantly faster.

8. Conclusion

Search in large image or other multimedia databases highly dependents on the underlying similarity model.

The Earth Mover’s Distance, proposed in Computer Vision literature, is an interesting new approach towards

achieving high-quality content-based retrieval. Despite its advantages, this distance measure is computed via

a linear programming algorithm which is too slow for today’s huge and interactive multimedia.

The disadvantage of the EMD metric is the significant response time. To solve this problem, we have

proposed a new index structure called LUBMTree. According to the results, we notice that the search in the

our proposed index structure show it effectiveness in terms of time compared to the search in the MTree.

The search algorithm in the proposed index uses the lower and the upper bounding to skipping the

supplementary calculs.

9. Future work

We plan to adapt the PM-tree [21], a MAM that combines the lower and upper bounds for the EMD with the

pivot-based approach, to improve the response time. For this purpose, we will merge the techniques

presented in this paper and the ones described in [22] (pivot-based index for multi-metrics). We expect that,

by combining all these technique in one index structure, we will be able to further improve the efficiency of

the LUBMTree.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

31

Bibliography

1. Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and quantitative analysis in biological

imaging. Science 300 (2003) 100–102

2. Manjunath, B.S., Salembier, P., Sikora, T., eds.: Introduction to MPEG 7: Multimedia Content Description

Language. Wiley (2002)

3. Mahalanobis, P.: On the generalised distance in statistics. Proc. Nat. Inst. Sci. India 12 (1936) 49–55

4. Lewis, G.P., Guerin, C.J., Anderson, D.H., to, B.M., Fisher, S.K.: Rapid changes in the expression of glial

cell proteins caused by experimental retinal detachment. Am. J. of Ophtalmol. 118 (1994) 368–376

5. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval.

International Journal of Computer Vision 40 (2000) 99–121

6. Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multi-dimensional histograms. Computer,

Vision, Graphics, and Image Proc. 32 (1985) 328–336

7. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution: Space and gray-level.

IEEE Trans. PAMI 11 (1989) 739–742

8. Y. Rubner and C. Tomasi, Perceptual Metrics for Image Databases Navigation, Kluwer Academic

Publishers, Dordrecht, The Ntherlands, 2001

9. Stricker, M.A., Orengo, M.: Similarity of color images. In Niblack, C.W., Jain, R.C., eds.: Storage and

Retrieval for Image and Video Databases III. Volume 2420 of Proceedings of SPIE. (1995) 381–392

10. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric

spaces. In Proc. 23rd Conference on Very Large Databases (VLDB’97), pages 426–435. Morgan Kaufmann,

1997.

11. Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affineinvariant neighborhoods.

In: Proc. CVPR. (2003)

12. Typke, R., Veltkamp, R., Wiering, F.: Searching notated polyphonic music using transportation

distances. In: Proc. Int. Conf. Multimedia. (2004) 128–135

13. Demirci, M.F., Shokoufandeh, A., Dickinson, S., Keselman, Y., Bretzner, L.: Manyto-many feature

matching using spherical coding of directed graphs. In: Proc. European Conf. Computer Vision (ECCV).

(2004)

14. Lavin, Y., Batra, R., Hesselink, L.: Feature comparisons of vector fields using earth mover’s distance. In:

Proc. of the Conference on Visualization. (1998) 103–109

15. H. Ling and K. Okada. EMD-L1 : An Efficient and Robust Al-gorithm for Comparing Histogram-Based

Descriptors. ECCV, p. 330-343, 2006.

16. O. Pele and M. Werman. Fast and robust earth mover’s distances. In ICCV, 2009.

17. Y. Liu, D. Zhang, G. Lu, W.-Y. Ma, “Region-based image retrieval with high-level semantic color

names,” IEEE Int. Multimedia Modelling Conference, pp. 180–187, 2005.

18. G. Dvir, H. Greenspan, Y. Rubner, “Context-Based image modelling,” ICPR, pp. 162–165, 2002.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.2, 2013

32

19. I.Assent, A.Wenning, T.Seidl . “Approximation Techniques for Indexing the Earth Mover’s Distance in

Multimedia Databases”, 22nd IEEE international Conference on Data Engineering (ICDE) 2006, Atlanta,

USA

20. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqu´ın. Searching in metric spaces. ACM Computing

Surveys, 33(3):273–321, 2001.

 21. T. Skopal, J. Pokorny, and V. Snasel. Nearest neighbours search using the PM-tree. In Proc. 10th

International Conference on Database Systems for Advanced Applications (DASFAA’05), LNCS 3453,

pages 803–815. Springer, 2005.

22. B. Bustos, D. Keim, and T. Schreck. A pivot-based index structure for combination of feature vectors. In

Proc. 20th Annual ACM Symposium on Applied Computing, Multimedia and Visualization Track

(SAC-MV’05), pages 1180–1184. ACM Press, 2005.

23. M.Shishibori, D. Koizumi, and K. Kita , “Fast Retrieval Algorithm for EarthMover’s Distance

UsingEMD Lower Bounds and a Skipping Algorithm”, Advances in Multimedia Volume 2011.

24. J. L. Bentley and J. H. Friedman, \Data structures for range searching," ACM Computing Surveys, vol.

11, pp. 397{409, 1979.

25. Tomáš Skopal Ph.D. Thesis, “ Metric Indexing in Information Retrieval”, 2004

