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Index Based Pattern Searching Algorithm Using DNA Sequence  Tania Islam Computer Science and Engineering Department, University of Barisal, Karnokathi, Barisal, Bangladesh 
 
Abstract Bioinformatics is the most studied field of computer science. It deals with computer science, biology and information technology. String matching is one of the application fields in Bioinformatics. There are different types of algorithm already developed and several types of research works are running. Index Based Jumping algorithm (IBJ) is the proposed algorithm to find a given pattern into a given string. This algorithm works better than that of IBSPC, IFBMPM, IBKMPM and ISMPMC algorithm in terms of minimizing character comparisons and CPC ratio. 
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1. Introduction String matching at-times called string searching is a conventional problem in the field of computer science. A part of strings called “Pattern” is to be searched within a well-built string or in a given “Text”. String matching strategies or algorithms provide key role in various real world problems or applications. A few of its imperative applications are Spell Checkers, Spam Filters, Intrusion Detection System, Search Engines, Plagiarism Detection, Bioinformatics, Digital Forensics and Information Retrieval Systems etc (Krishna and et al, 2012). Figure 1 shows the application of sting matching in different fields. In general, basic biological information is kept in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Aligning sequences assist in exposing their common characteristics, whereas matching sequences could conclude valuable information from them. 

  Fig 1: Applications of String Matching Because of the large amount of DNA data available on websites, matching of nucleotide sequences is becoming an essential application and also there is a growing interest in extremely fast computer technique for data analysis and retrieval (Soni and et al, 2014).  
2. Related Work There are different types of string matching algorithms already developed but still its required efficient algorithm which has less character comparison for pattern matching. Here we work with DNA sequence.  DNA or deoxyribonucleic acid is the genetic component in human’s species and almost all other creature. It is the combination of four characters,  (Adenine),  (Guanine),  (Cytosine) and  (Thiamine). A character set ∑=  is the set of alphabet for DNA sequence which are used in this algorithm. Both given string and pattern are combination of those four characters (R. Bhukya and et al, 2011)( G. Cai and et al, 2009). The following symbols are used in our proposed algorithm: 

� We consider a given string which is declared as S[n], where n is the length of the string. 
� It’s possible that sometimes the string does contain any character so it’s a null string and define by φ  
� In our algorithm we search for a pattern in our given string and the pattern is defined by P[m], where m is the length of the pattern (R. Bhukya and et al, 2011),( R. Bhukya and et al, 2011). The most oldest and initial algorithm for string searching is the Brute-force algorithm(C. Charras,2004). But it is the least efficient to check a specific pattern in a given string.  This algorithm works by matching with given 
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text that is   with given pattern that is  in character by character. That means when  is not equal to then it starts it matching with  and . And this process is continued until any mismatch is found. After finding the complete match of the pattern it gives back the position of the pattern and continued its process of next character. The searching phase time complexity of the algorithm is , where m is the length of the pattern and n is the length of the given string. Raju Bhukya and DVLN Somayajulu proposed an algorithm name EPMSPP ( R. Bhukya and et al, 2011). They processed the input as pair of character and also the pattern as pair of index. They consider each character only once that means when one character is already in a pair; it is not used in another pair. For given text the pair that is occurred least times compare first. Though DNA sequence contains only four characters A,G,C and T. So it will make 16 pairs among them. IFBMPM (R.Bhukya and et al, 2010). algorithm works with index value of both pattern character and string character. It works with forward backward techniques and started matching from left to right. At first it stores all index value of all character and check for the first character of the pattern. Which character appears first in the pattern is considered for starting matching position. ISMPMC( R. Bhukya and et al, 2011) algorithm works for matching pattern using DNA sequences. At first it stores the position of all characters in the string and which character is found minimum number in the string, matching will start from that pattern with the same character. If it makes a match, continue for the rest of the character from left to right order but if it not, go for the next occurrences of that character. IBMPMP( R. Bhukya and et al, 2011) algorithm works with indexes of DNA sequences characters. Instead of considering each single character it used pair of characters. From the four alphabet of DNA sequence, they make 16 pair of character and this algorithm also maintains the frequency of each pair. The pair which is present least time in the pattern is considered for matching first. Raju Bhukya and DVLN Somayajulu are proposed another algorithm name IBSPC( R. Bhukya and et al, 2011) algorithm, works for multiple patterns matching on DNA sequence and they emphasized on the reduced the number of character comparisons ratio which is less than 1.  They used index table for both string and pattern and used count variable for counting the no of occurrence of each character. The character which appears in minimum numbers in patterns consider as first priority for comparison and the characters which appears in given string in maximum numbers is considered as first priority for comparison’s. 
 
3. Proposed Methodology There are two general parameters which are used to estimate the performance for the string matching algorithm that are used in different types of applications. These two parameters are given below (K. H. Adil, and N. A. Rashid, 2014): A. Number of character comparisons: Number of character comparison which occurred when we match a given pattern with a given pattern. The algorithms with less character comparisons are considered as better. B. Number of Attempt: When any given text is shifted due to any match or mismatch of pattern with the given string is considered as number of attempt. The performance of algorithm is better when the number of attempt is less. So the motive of this work is to increase the efficiency of the algorithm by reducing the number of character comparisons and also the CPC ratio. Proposed Index based jumping (IBJ) string matching algorithm combines two phases; preprocessing phase and searching phase. This approach will be affecting the number of character comparison of searching processes between the text and the pattern. The preprocessing phase and searching phase of the proposed Index Based Jumping Algorithm (IBJ) are summarized into the following stage: 
 
3.1 Preprocessing Phase Preprocessing phase is used to preprocess the pattern or given string. It preprocesses the given text, in order to minimize the number of attempts and number of character comparisons. Proposed algorithm uses the index value of given string/DNA sequence for pre-processing. Pre-processing phase completes in two stages. 3.1.1 Pre-process the given input string At first it tries to know the all index of given string. We work with DNA sequence and it only contains four alphabets {A, G, C, T}. For this purpose we have to maintain four array index table. It used ASCII indexing technique to reduce the pre-processing time and comparisons. For each character in Σ it computes array subscript value by using the following technique [(S[i]-64)%5]( Raju Bhukya 2011).   
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SL/No DNA ASCII Value ASCII Value-64 (ASCII Value-64)%5 Array Subscript 
1 A 65 1 1 1 
2 C 67 3 3 3 
3 G 71 7 2 2 
4 T 84 20 0 0 So, by using each character ASCII value with this formula we get subscript value for T, A, G and C in the range 0, 1, 2, 3 which is needed for subscripting 2D vector of size [4][n]. So, for each character of string in the function [(S[i]-64)%5] directly refers to its corresponding vector in the 2D vector table stab[4][n]. Let string is S with length of n and Pattern is P with length of m. Suppose, it has a string like AGCCTTTCGACC as our input string. Then it has to construct the following index table. 

DNA Sequence Indices 
T[0] 4 5 6   
A[1] 0 9    
G[2] 1 8    
C[3] 2 3 7 10 11 3.1.2 Compute Substring  In second stage of pre-processing phase it has to divide the given input string into different substrings. The length of substring is equal to the length of pattern.  It should follow the following criteria: The substring length is exactly equal to pattern length. This process starts to compute substring from the text that matches with the pattern 1st character as we already know the index value of text. Computing of substring ends at substring length= [S[n]-1]-(P[m]-1)].  Suppose for the above given string, the pattern = TTT. The substring for this pattern will be as follows: 

DNA substring Indices of substring 
TTT 4 
TTC 5 
TCG 6  

3.2 Searching phase In this proposed method, searching phase start with matching the last character of pattern with the last character of substring. If any mismatch is found, it is shifted to next substring. If any match found with the last character, it returns to the 2nd character of substring with the 2nd character of pattern. If it matches, continue for the third one and so on.  Unimportant or less significant cases for string matching algorithms in searching phase that may be occurred when search the pattern into the given string:  Case 1: When both string and pattern are not contained any character, the possibility of finding the pattern into the given string is 0. Case 2: When the given pattern is null but given string is not null then the possibility of pattern into the given text is 0. Case 3: When given string is null but given pattern is not, then the possibility of occurring of pattern into the given string is 0. Case 4: If there is any case where pattern length is greater than the given string length, it will not make any exact matching. Case 5: When given string length is equal to given pattern length then there is possibility of occurring the pattern into the given string is exactly one time.  
4. Working Example In this section, we give a working example to explain our proposed IBS algorithm. Given string,  Given Pattern,                       At first stage, it pre-processes the given string by storing it indices into a two-dimensional array. After storing the indices of all character of given text, the value of indices is given in Table 1.    
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Table 1. Indices of given string 
DNA Indices 

T 1 3 8 11 17 28      
A 0 4 5 7 10 12 13 20 22 24 27 
C 2 6 9 14 15 16 19     
G 18 21 23 25 26       Now it divides the string into different substrings. Before dividing the text into substrings, it checks the 1st character of pattern. In this given pattern, it starts with character . So all the substring should start with  and also the length of substring is equal to the length of pattern. By following this procedure, our computed substring is given in table 2. Table 2. Indices of computing substring 

Substring Indexes 
GCAGAGAG 18 
GAGAGGAT 21 In this process it is not considered 23, 25, and 26 number of position of character , because, if we consider them the length of substring will exceed the length of pattern. Now our pre-processing stage is completed. So we start our matching stage. 1st attempt At first, we compare from right to left of the pattern and 1st substring last character is matched with  last character of 1st substring.  It’s a match. G C A G A G A G G C A G A G A G So continue our matching from left to right direction at the end of the pattern and substring. G C A G A G A G G C A G A G A G  G C A G A G A G G C A G A G A G  G C A G A G A G G C A G A G A G  G C A G A G A G G C A G A G A G  G C A G A G A G G C A G A G A G  G C A G A G A G G C A G A G A G Now it’s a complete match, so the number of matching indices is 18. 2nd attempt  Compare from right to left of the pattern and substring. In this algorithm, it do not compare the first character because we already know that the both characters are equal. G A G A G G A T G C A G A G A G Now, compare with the last character of substring with the last character of pattern that is  and skips this substring. So our pattern window shifts to the next the substring. Finally, there is no more substring left. If there is more substring left, continue our process to find the repetitions of the pattern occur in given string. So, the number of character comparison is 8 and number of attempt is 2.  

5. Experimental Result Analysis The proposed algorithm is tested using 1024characters as input string and different number of pattern (1 to 20 characters) and compare IBJ algorithm with IFBMP, IBKMPM, ISMPMC and IBSPC algorithm. From table 3, it can be said that IBJ algorithm requires minimum number of character comparison. 
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Table 3: Comparisons with different algorithms 
 Pattern 

No.of char No.of Occu 
IFBMPM IBKMPM  ISMPMC IBSPC  IBJ 

A  1 259 518 259 259 259 259 
AG  2 53 624 518 300 300 259 
CAT  3 11 567 542 542 320 246 
AACG  4 5 614 614 318 311 259 
AAGAA  5 2 616 607 357 340 259 
AAAAAA  6 3 627 620 647 344 259 
AGAACGC  7 2 600 613 342 368 259 
AAAAAAGG  8 1 634 623 368 346 259 
GCTCATTAG  9 1 582 590 399 335 246 
CCTTTTCCGG  10 1 562 578 584 347 242 
TTTTGCCGTGT  11 1 650 650 350 361 269 
TTCTTAATAAAA  12 1 651 634 382 332 268 
GGGACCAAAAAAT  13 1 579 582 336 350 245 
TTTTGCCGTGTTGA  14 1 638 654 353 351 268 
CCTCCAAAAAAGGCT  15 1 578 558 589 354 241 
GGCTGTTCAACGCTCC  16 1 598 580 356 597 244 
TTTTCGATTGCTCATTA  17 1 643 633 359 359 267 
GGGATTTGGCTATACTCC  18 1 598 580 347 355 244 
GGCCTTGTCTAAAGGTATG  19 1 579 585 361 344 244 
CCTGAGCGCGTCCTCCGTAC  20 1 570 582 592 590 240  

 Fig 2: Number of character comparisons with different algorithms  
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Table 4 Number of CPC with other algorithms Pattern(P’s) 
 

No.of char No.of Occu 
IFBMPM IBKMPM ISMPMC IBSPC IBJ 

A  1 259 .505 0.25 .253 0.25 .253 
AG  2 53 .609 0.50 .293 0.29 .253 
CAT  3 11 .553 0.52 .529 0.31 .240 
AACG  4 5 .599 0.59 .311 0.30 .253 
AAGAA  5 2 .601 0.59 .349 0.33 .253 
AAAAAA  6 3 .612 0.60 .632 0.33 .253 
AGAACGC  7 2 .585 0.59 .334 0.35 .253 
AAAAAAGG  8 1 .619 0.60 .359 0.33 .253 
GCTCATTAG  9 1 .568 0.57 .390 0.32 .240 
CCTTTTCCGG  10 1 .548 0.56 .570 0.33 .236 
TTTTGCCGTGT  11 1 .634 0.63 .342 0.35 .263 
TTCTTAATAAAA  12 1 .635 0.61 .373 0.32 .262 
GGGACCAAAAAAT  13 1 .565 0.56 .328 0.34 .239 
TTTTGCCGTGTTGA  14 1 .623 0.63 .345 0.34 .262 
CCTCCAAAAAAGGCT  15 1 .564 0.54 .575 0.34 .235 
GGCTGTTCAACGCTCC  16 1 .583 0.56 .348 0.58 .238 
TTTTCGATTGCTCATTA  17 1 .627 0.61 .351 0.35 .261 
GGGATTTGGCTATACTCC  18 1 .583 0.56 .339 0.34 .238 
GGCCTTGTCTAAAGGTATG  19 1 .565 0.57 .353 0.33 .238 
CCTGAGCGCGTCCTCCGTAC  20 1 .556 0.56 .578 0.57 .234 Again from figure 2, it can be clearly said that number of character comparison in proposed IBJ algorithm is minimum than others algorithm. Comparisons per character of any algorithm is calculated by total number of character comparison is divided by total number of characters in input string. From table 4, which is represented the number of CPC of IBJ with four different algorithms.  

 Fig 3: CPC of IBJ algorithm with others algorithm  
6. Conclusion String matching is one of the most studied fields in computer science. The proposed IBJ algorithm will play a vital role in the field of medical science. This algorithm is being capable to reduce number of character comparisons and number of comparison per character (CPC) ratio. In this paper, IBJ algorithm compared with four different algorithms and every time it shows better result than that of others. 
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