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2 INTRODUCTION & PRELIMINARIES

In the year 1999, Molodtsov [8] initiated a novel concept of soft sets theory as a new
mathematical tool for dealing with uncertainties. A soft set is a collection of approximate
descriptions of an object. Soft systems provide a very general framework with the
involvement of parameters. Since soft set theory has a rich potential, applications of soft set
theory in other disciplines and real life problems are progressing rapidly. Maji et al. [5,6]
worked on soft set theory and presented an application of soft sets in decision making
problems.

Guler et. Al. [4] introduced the concept of soft G-metric space according to a soft element
and obtained some of its properties. Then, they defined soft G-convergence and soft G-
continuity, they proved existence and uniqueness of fixed pints in soft G-metric spaces.
Our aim of this article is to present fixed point theorems in soft G-metric space satisfying a
new rational contractive condition.
Definition 2.1: Let X be an initial universe set and E be a set of parameters. A pair (F, E7} is
called a soft set over X if and only if X is a mapping from E into the set of all subsets of the
set X, i.e.Fi: E = P(X), where P(X is the power set of X.
Definition 2.2: The intersection of two soft sets (F, A} and [G.B) over X is the soft set
(H,C), where € =4NB and W¥se C H(z)=F(=)nG(e). This is denoted by
(F,4)n (G B) = (H,C).
Definition 2.3: The union of two soft sets [F,A) and (G, B] over X is the soft set, where
C=AUFand¥s = C,
F(zs), ifec A—R
Hiz) =< Gle), ifeeB— A
Fle)lU Gleg), eEANE
This relationship is denoted by (F, A} I (G, B) = (H,C].
Definition 2.4: The soft set (F, 4} over X is said to be a null soft set denoted by & if for all
g€ A4, Flz] = ¢ (null set)
Definition 2.5: A soft set [F.A4) over X is said to be an absolute soft set, if for all
sE A Fiz) =X
Definition 2.6: The difference (H, E) of two soft sets (H, E) and (H, E) over X denoted by
(H,E)\(H, E), is defined as H( ) = F{e)\G(e) foralle € E.
Definition 2.7: The complement of a soft set ([ F, 4} is denoted by [F, 4] and is defined by
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(F,4)° = (F*%4) where F°:4 = P{X) is mapping given by F(a) = X — F(a), va = 4.
Definition 2.8: Let ¥ be the set of real numbers and B{¥) be the collection of all nonempty
bounded subsets of . and E taken as a set of parameters. Then a mapping F: E = B(H] is
called a soft real set. It is denoted by [F, E . If specifically [ F, E] is a singleton soft set, then
identifying (F, E) with the corresponding soft element, it will be called a soft real number and
denoted ¥, 5, £ etc.
0,1 are the soft real numbers where 0(¢) = 0, 1(e) = 1 for all € € E, respectively.
Definition 2.9: For two soft real numbers

(1) F = §,if (e) = 5(e), foralle € E.

(i) F=5,if ¥(e) =5(e) foralle EE.

(i) F < 5,if F(e] < 5(e), foralle € E.

(iv) *=5,if r¥(e) =5(e) foralle € E.
Definition 2.10: A soft set over X is said to be a soft point if there is exactly one ¢ £ E, such
that P{e] = {x]} for some x € X and P{e') = ¢, ¥e' £ E'{e}. It will be denoted by %,.
Definition 2.11: Two soft points X,, ¥, are said to be equal if e = ' and P(e) = P(e'] i..
x=y.ThusX, #V, = x#* Vvore e
Definition 2.12: A mapping d: SP[ X % SP(X) = R(E}", is said to be a soft metric on the
soft set X if dl satisfies the following conditions:

M1) d(%,.%, =0 forall %, 5, EX

(M2) d(x,,%,)=0ifandonlyif %, =7,

M3) d(x, .7, )=(7,.%, ) forallX,,¥, €X

M4) d(x, .z, ) =d(x, ¥, )+d(¥, 2, )forall X, ¥, 7, €X

The soft set X with a soft metric d on X is called a soft metric space and denoted by [XH a4, E :l
Definition 2.13 (Cauchy Sequence): A sequence {Eﬂﬂ}ﬂ of soft points in I:X" . d, E:l 1s
considered as a Cauchy sequence in X if corresponding to every # = 0,3m € N such that
d(%;,%,) YL 2m ie d(X,%,) 20 asi,j = co.
Definition 2.14 (Soft Complete Metric Space): A soft metric space [f . d, E:I is called
complete, if every Cauchy Sequence in X converges to some point of X.
Definition 2.15[4]: Let X be a nonempty set and E be the nonempty set of parameters. Let
G: SE(X) % SE[X) » SE(X) - R(E)" be a function satisfying the following axioms:

(6,) GxyZ)=0if i=3=2

(6;) G(X%¥) >0 forall X, 7€SE(X)with& =+ F

(6;) GIZZ¥)I<G(X7,%) forall X3, €SE[X) with 7 =z

(6,) GEF =GRz =6FZx)="- (Symmetry in all three
variables)

(6;) Gx¥ 7 =G(Faa)+Glaiz) for all ZFiaelX (Rectangle
inequality)

Then the function & is called a soft generalized metric or soft G-metric on X and ICXN G, E :l is
called a soft G-metric space.

Definition 2.16: Let sz G E :l be a soft G-metric space, let {%, }be a sequence of soft points of
X a soft point % € X is said to the limit of the sequence {%,,}, iflim, .. G(X, %, %,,) = .
Then {%,,} is G-convergent to X.
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Proposition 2.17[4]: Let (£, &, E) be a soft G-metric space, then for a sequence {%,} = X and
a soft point £ € X, The following are equivalent

(i) 1%, is soft G-convergent to X
(i) G(x ,%,%) »0asn = w
()G (x, % %) » fasn =

(iv)G(x,, %, %) - Oasm,n — 0o,

Definition 2.18: Let (£, G, E) be a soft G-metric space, then the sequence {%,,} is said to be

soft G-Cauchy if for every £ = @ there exists a positive integer ¥ such that G(%,,%,, X,) < &
forallmm, i = N ie. Glx,, x,,x;] = 0asmm,1 — co,

Definition 2.19: A soft G-metric space IzXH G E :I is said to be soft G-complete space if every
soft G-Cauchy sequence in (£, 6, E) is G-convergent in [ £, &, E).

Proposition 2.20[4]: Let (%, E),[ X', G, E) be two soft G-metric spaces, then a function
£ X = X" is soft G-continuous at a soft point X € SE ICXH :I if and only if it is soft G-
sequentially continuous at X € SE ICXH :I: i.e. whenever {%,}is soft G-convergent to %, {f{ %, )}
is soft G-convergent to f{x.

3 MAIN RESULTS
Our main results of this article are as follows.
Theorem 3.1: Let (£, G,E) be a soft G-metric space and E: (X,G,E) = (X,G E) be a
mapping that satisfies the following condition for all %, ¥, 2 € SE [f jl

G(% RY,R¥)

a G{RE, RV, RZ) < b < +G(7 B, RE) r+ c G(X, ¥ Z)

+G(ZR%, RE)
...(3.1.1)
Where a,& ¢ == 0 and 22 + ¢ < a. Then R has a unique fixed point i and R is G-continuous
at it.
Proof: Let x5 € SE[X] be an arbitrary soft element and define the sequence {%,} by

PXy =%y, THy = Egy TEe = Egiiiamin TR, = Fgiy
Here we may assume that X, # X,.,4
Substituting x = X, , ¥ =X, ;and £ = X, 4in (3.1.1) then we get
glsz EE1".',+1J EE1".',+1:I
o GIRE, FE, 0 RX, ) b < +8(%  B%_ RE )+ cGlEu % 0 %)
+6G(%, . FX,, RX,) J
EEEHJ in+2J E1";,+:2 :I
8 G(Z i Kie Tpie) S B (H6(E s B B ) [+ € 6E0 g0 By
i ﬁ[fn+1i f*."a-+1J f*n+1:|

[bted w-.. . s
L% E s X))

[a—2k)
G %y K pigs Fna) SEGIE, %00, %00) Where

= == ks = L =
(15 MRS SR Y
(Bl

[g—2h] =4

On continuing this process (1 + 17 times
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(‘-;wf.f':':!.+lJ E':":!-+2-' E‘?‘.!-+E:| g K:ﬂ -'-:Li:‘-;wr':‘-i';-l]l‘%lJ fl-:I
Similarly we can show that
G Ty Xy By ) S KMG(Hp %, %)
Next we show that {x } is Soft G-Cauchy sequence.
Then for all 7,712 & N, 1 << m we have
G, B %) 28 G Zq R ) 8 (Zua B B -0 +60R % 53)
< (K" KL o b BB By
&
e
Therefore {%,} is soft G-Cauchy sequence. Since (£, G, E) is soft G-complete, there exists
#t € SE(X) such that {%,} soft G-converges to it.
Next we will show that i is fixed point of .
For this we take X = X, and ¥ = Z =1t in (3.1.1) then
G(%,, Bit, Bii)
e G(RE, Rt Bi) =b { +6(w Ri, Ri) + ¢ G(X
+G{i R%, B%,)
G (1, Bit, Rit)
a Gl R, RE) < b {4604 R, i) L+ ¢ 606, )
+G (4, 1, 1t
G(4, R, Rit) <= G (4, Rit, Ril)
This is the contraction, so Bt = it i.e. it is fixed point of E.

To prove uniqueness, suppose that it and # are two fixed points of £. Then by inequality
(3.1.1) we have

< T Gl%y &y, &)

G(it, BE Be)
aG(R,BERE) < b < +G(#,R6, R¥) ¢+ ¢ 61, &, §)
+G(#, Rit, Rit)
Git, &, )
a G198, 8) < b < +G(#,# ) ¢+ ¢ G(1L, 8, )
+G(#, 1, i)
So we deduct that (a—b—c) G{##,6) = bG(H1wu). This implies that

GliL &, %) = e

G(# %,%) and by repeated use of the same argument we will find

G(#,1, 1) =

G 1, # ). Therefore we get G(it,#, %) = {[E_b_cj} G, #, %), Since

La—b—cl
3b+ ¢ = a, this contradiction implies that &t = #.
To show that E is soft G-continuous at i. Let {¥,,} be a sequence of soft elements in X such
that {¥,,} —* it then we can deduce that
Using (3.3.1), we have
G (i RY,, BT,
aG(Rit, RV, R¥,) = b {+G(7, Ry, Ry ) ¢+ ¢ Gl 7, 3,)
+G (%, Rit, Bit)
G (i, R, BV,)
aa(ﬁJR}?ﬂJ Rj}nj = b +§[§nJR.ﬁnJ R.ﬁn] T g[ﬁ’ j}n’ﬁﬂ-j
+G( 7, i, i)
Taking the limit as % = €& from which we see that (& — 2b)6 (#,B¥,, BV, ] = 0and so, by
proposition ((2.17) we have that the sequence R¥, is G — convergent to Eit = it therefore
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proposition [(2.20) implies that R is G-continuous at 1.
Theorem 3.2: Let (X, 6.E) be a soft G-metric space and R: (X, G, E)] =+ (X, G, E) be a
mapping that satisfies the following condition for all X, ¥, = £ SE [f jl
s s [neER 02D
G v, RV, B¥V),G(Z Rz, RE)
Where @, b, ¢ == O with ¢ — b < @ Then R has a unique fixed point it and E is G-continuous
at it.
Proof: Let X € SE(X] be an arbitrary soft element and define the sequence {%,} by
Ty =%y, THy = Kgy TEg = Egpaciamins T, = B
Here we may assume that %,, # %,.,4 foreachn € N U {0},
Substituting * = X, ,¥ =X, and £ = X, 4in (3.2.1) then we get
G(R%,, BX, . BX, 1),
G(X,R%,, B%,),
Gy BE g, BE ),
E[EH-F:L-' RE*.'vz,+1J RE*.'vz,+1:I

aG(RE B BE1+ b min{

aG (R, B% ., R% .. )+ b min ool H S ST

l’:;["En+1' Efn+21 xuﬂ+2:|'

G {Eﬂ--' Eﬂ+1-’ "E?:I.-l'lj-' = =

aG[£n+1J Xpyas Xpya) + b min =r G[inixn+1-' fn.+1:'

G{En+1l E*n,+21'%*:~z,+2:1'
G(Zpr1 X ga x§+z:'
S = = NG (E ) Xy Xp2) S oz =
ﬂG[an: xn+21x-n+2:| + b min g Ti Jﬂ. " JN ? -] J =€ G{xnixn+11 x-n+1:|
. . (% Zairs T, .
Case I: If we take min{G(%, 41, Fpsas Fprz)s Gl Zis s )] = 6(F it By T
Then — aGlX4p By Xpp o) 0GR 0 X0 Xpp0) £ 0 GIE X 40, gy )
ELE TP ICIE S [ 2 O X Xy X )
Case II: If we take min{G(X, 14, Xpio Fppal GLE Kyt Kga )| = 6{ 0 F s Krpga)
Then G (%, % xn+2-’ fn.+zﬁ-J + .E}Gfx Ry R S GLR X, 5, B )

GUE s F s o) = _C G (% K ) gy

From Case- I, 11, we have

§[£n+1i E*."a-+2J fﬂ+2] = kﬁ[fﬂi E1":'+1' f'."z'+1:|

Similarly we can show that

GUEL By R ) SRy R a%)

And Gl Xy B ) SROGE % %)

Next we show that {x } is Soft G-Cauchy sequence.

Then for all 7, m £ N, n << m we have

g[fﬂJEmi X -] = E(Eniiﬂ+1 E1*2'+1-:I = g[_"_i-ﬂ+1' E1*2'+2J3"-'-.1"1-+.2j-|_' v +§[£m—1’ EmJ Em:l

= [k”‘ + T e ETTOG (R R R
= _G':xu:xv xy)

Therefore (%, } is soft G-Cauchy sequence. Since [f G E :I i1s soft G-complete, there exists
# € SE(X] such that {%,} soft G-converges to .

Next we will show that i is fixed point of K.
For this we take X = X, and ¥ = Z =1t in (3.2.1) then
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e A G(R%  B%, Ri), G % RE_R% ), S
a G(R%,, Rit, Rit) + b min ( Hx"'i Ti Ti‘] ,,[xf Hx” Hx”"] € GE,, &, i)
G, B, Bu), G, Ba, Big)

As 1 —+ to, we have
N 5 G Ru, Fat), G (1,7, 1),
aGli,Fu,Rit)+ b min{ N Eu Nn Nujﬂ, Eu Ii RIIH
Gt R, B, Gl B, Bit)

a Gl Ba, Bit) = 0O Since & == 0

so Rit =1 i. e itis a fixed point of R.

To prove uniqueness, suppose that it and # are two fixed points of . Then by inequality

(3.2.1) we have
aG(Ri ,Bé, RE) + b min{

}icﬁﬁ”ﬁj

G(Eit B9, Bv), 6 (%, Bit , Bt ), ;
G[u Ry
G(# Be Re), G(#,B5, BE)

65,5,%) <% 6, 5,9)
This contradiction implies that it = #.
To show that R is soft G-continuous at i. Let {¥, .} be a sequence of soft elements in X such
that {7} — & then we can deduce that
Using (3.2.1), we have
% G(Bu, Ry, R¥,),G(w R, Ru), o
aG[Rﬁ,Rﬁﬂ,Rﬁﬂ]+bm1n{ GLRw, Ry, H}ﬂ..z.}” 'I ; ~3' }g e (4, %, #,)
G (3, R¥, B 5,),6(5,, RY,, BV,
5 G Ry, R¥,) G (%%, 1), e
aG(iL,RF,R¥ )+ b min{ - }F"”h }F”;J, H[ L jﬁ li (i, ¥, ¥, )
G RS BF,), 6 (% Ry 5, }
Taking the limit as 7 = @ from which we see that G(it E¥,E¥,) -0 and so, by
proposition (2.177) we have that the sequence E¥, is G — convergent to Fit = it therefore
proposition (2.20) implies that R is G-continuous at .

Theorem 3.3: Let (£,G,E) be a soft G-metric space and B: (X, G, E) = (X,G E) be a
mapping that satisfies the following condition for all X, ¥, =2 £ SE [f :l

aG(RZ, Ry, RE)+ b [
.(3.3.1)

min{ C(RERFEEETERERE), ﬁ'(ﬁﬁﬁ)lﬁ'(}rﬂyﬂ}f)}] E?[
min {6 RERFRELCERERELEEFE)LC (TR RF

2]

‘!::z

Where @, b, ¢ = O with ¢ —b < @ Then E has a unique fixed point & and F is G-continuous
at .

Proof: Let x; £ SE(X] be an arbitrary soft element and define the sequence {%,} by
Til}:fiijlziijiz:EE-'""""""TE?‘}:E%'F:.
Here we may assume that x,, = fnﬂ

Substituting ¥ = X, , ¥ = n+1and Z = X,44in (3.3.1) then we get

min[ I:ER‘x‘i‘l"R‘f‘i‘l+1-‘R‘fﬂ+1J'Igc‘fﬂ-‘g‘fﬂ-‘g‘fﬂl' }
iy ofnay MG Ly By o B gy )

m]n[ EER.xﬂ_.R.xﬂH,R.xﬂH i ﬁ'(.xﬂ,Rxﬂ,Rxﬂ L
Loy by g WO Ll By o Bl i)
'f’.('xﬂ+14'7‘ﬂ+z-'7‘ﬂ+z e A }

I?(';E:\-‘i"l."';E:\-‘i"|.+1.";2:\-‘3"|.+1.j'lzti‘i"l.+1.";E:\-‘i"l.+2""-'E:\-‘i"l.+2j i - ==
} S eG{E Ry T

aG(R%  BX . R% )+ b

} = Cgl:im ":fn+1' E'n.+1j

all%, .. % §j+b
S e Ig(‘xﬂ+1-‘xﬂ+2"xﬂ+2J-'Igc‘xﬂ-“xﬂ+1"xﬂ+1l'

If’.(‘xﬂ-"fﬂ+i-‘fﬂ+i PR AP e
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Gl iy oy g W (g g i gm e ]

= el x n+11xn+1]

Gl S il -
min[ L T ﬂ+z-'7‘ﬂ+z:' L& i 'i‘1+1-‘x‘i‘1+1j
@G (X Xy Xpga) + T

min Al (oo gy Fo g ol (o o finge

(3.3.2)
Now following four cases are arise:

{ (= (PR SR SID K ol (- 0F- SO S j#}

min PR i e 2 % 2 2 i g i PE

Case-I: If ElE i sy L (F g Fngr g | == ElEngy T prfnge Mol Endig g g
im0 i o g dolr Loy S a o g 0 [ EPE R

then condition (3.3.2) reduces to

G ey g g gmaiingn WG i g g gy 1] o R S o
a6 (X ppq Xppp g + b [ o ] =R E T S
R

iz, = o B
G(X ) X Xpip) < e ELETE IEPE T

[ (SR SR P F e b P AR ) }
min ,_ ﬁ = i " ” . - ey .
Case-II: If Gl gy g p o ge 10 Eny o Fin g p iy g ) e El gy p e 1o (R g gy )

min (G (8 g sy MG (E g g i 11 ElE gy Fpnafnged

then condition (3.3.2) reduces to

o 5 % S ARIRE PR, RN ] - ol R N
ﬂ-G [xﬂ_l_l. In_'_z_. xﬂ+2j + b [ ilti ﬂ+f ﬂ+:°- ,\_ﬂ o Mt A ol |
[ R AR e

glffﬂ-’ E'rz.+11 Eﬂ.+1:"I =

P8

S E{E A SRS
£—b

o EEEMJ E'rz,+11 'E'n.+1:"I

m:n{ (S P S IR N el P A o L}
. E (i i g i DO (g g i gmiings 1) Gl 4 e JE L0y Fian Fingp )
Case-11I: If — St e = e
min {5 L&y g g WO L B pafng e 1 (] PP
then condition (3.3.2) reduces to
B = z ClEiingy g VO gy Ty e g )] - e =
Al i Toai Xaysd + B [ N T = eG(X 0% T )
TS i+ L
G(Epin) X Fpgn) & G[xwxn+1' K1)
{ '?Exﬂ+1"7‘ﬂ+2 Fg g ML 4 gy j*}
min i . i i i B . 4 " =
. Bl T oo¥iinn D6 gy Fnridfigs 1) CLEwE oo Wi i B &y 1¥ies Fhie )
Case-IV: If — e = = T
min {60 F g g g W gy F e zeFaan 1 EPTRE IR e

then condition (3.3.2) reduces to

al e i 5 g g g W (g i g o i 4o )
G (X1 Xpags Xyggo) T B [

el O (2 TR,
[ R R I ] { Lol

§E§n+11 En+2J E'.'q,+2:| = ? E;UI::E?:.J §n+11 E'.*z,+1:I
From Case- I, I, II1, IV, we have
§[§n+1i f1'2'+2J E‘?‘}+E:I = kg[fni '%n-+1 ' f?e'+1:|
On continuing this process 1 + 1] times
G(Hpn Fpa Kppa) S RTTHG(5E, £, %,)
Similarly we can show that
GUZ %y Rony) S RPE(Rg 5%
Next we show that {x } is Soft G-Cauchy sequence.
Then for all 2,1 = N, m << m we have
g[fw 'Emi fm-] .2 E(Eni :Eﬂ+1' N'.*z'+1-:I + gl:?_:_i-ﬂﬁ'l' E1*2'+2J x”n+2j oot glifm—l’ EmJ Em:l
< (kr+ KPP e+ O G (R R R
5 G ETRESEETD
Therefore {%,} is soft G-Cauchy sequence. Since (£, &, E) is soft G-complete, there exists
it € SE(X) such that {%,} soft G-converges to it.
Next we will show that i is fixed point of K.
For this we take X = X, and ¥ = Z = in (3.3.1) then
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Form (3.3.1) we have

mint CLET RERE)EE R R, L6 (£, 080 (ERER a1}
min {E0RE, ,gﬁ,ﬂﬁJ,ﬁtﬁﬁﬂﬁhﬂﬁhjﬁtiﬂ,ﬁ,ﬁ Jér: (aRra.Rall

i, o min{ 08, 80.88).608,8 4 )68 44) (8RR o
at (% Rit ,RiE) + b [m:niﬂ'iiﬁ ,Rﬁjﬁl:f;ﬁ 8.4 ilﬁ'gﬁ,ﬁ,ﬁiﬂ'(;jﬁﬂﬁ;ﬂ = eG(i & @)

aG (i, Bit \Bit) = 0 Since & = 0

This is the contraction, so Bt = it [.e. it is fixed point of E.
To prove uniqueness, suppose that it and # are two fixed points of . Then by inequality
(3.5.1) we have

ali(Ri, B, BE) + b [

aG(F%,, Bl RE) + b [EE %

minl GRS ES)C (O E.C(aG8 S8 R688))
mind &R E R LG L R LR )G (i 6 0 Re R}
min{ G885 )0 (AL C (a8 G (F 8610 < off (i, B, %)
mind{Gla8.6),C (008 (aastlassn] — L

Gl B, 7) = Eﬁ[ﬂj 7, ) Since% =1,

= G0, B, 5)

ali(i o, ﬁj+b[

This contradiction implies that it = #.

To show that B is soft G-continuous at it. Let {3, } be a sequence of soft elements in X such

that {3} — & then we can deduce that

Using (3.3.1), we have o

R a min{ 5(RERF, 85, JEIERERTLE L5, ) G RERE]] D

@G (R, RFRFy,) + b [mm{ﬁERE;,R;:,R;:LEEﬁﬂﬁ,ﬂﬁL@Eﬂ;:;:lﬁiﬁ,mﬂﬁﬁ}] < 608 s )

min {&(ERFE B LE (S EE)0 (S, 2 Ve aa)]) SR B e

SNy e, Lr:(ﬁ,{:,ﬁj}] = 66U S Fp)

Taking the limit as m —+ & from which we see that G(it E¥%,E¥%,) — 0 and so, by

proposition ((2.17) we have that the sequence R¥, is G — convergent to Rit = tt therefore

proposition [2.20) implies that B is G-continuous at .

Theorem 3.4: Let (£,G,E) be a soft G-metric space and E: (X, G, E) = (X,G E) be a

mapping that satisfies the following condition for all %, ¥, £ € SE( X
G(R% R¥ RZ), |G(x,RX,Rx) + G(% Ry R¥)| N
win{ CRBRYBE) [CEREED + CERTRNN & ppznmy a4
[6(5 R¥,R¥) + G(§, R, RX) ]

aG (i, B3, By, + b[

Proof: Let x5 € SE[X] be an arbitrary soft element and define the sequence {%,} by
REy = %y R%, = %y REy = %oy RE, = %4
Here we may assume that X, # X,
Substituting x = X, , ¥ =X, and £ = X, 4in (3.4.1) then we get
-‘G [wa an+1, Rfﬂ#lzIJ
min [ﬁ[fn,ﬂfn,ﬂfn;] * g(fniﬂfn+1iﬂfn+1]]i 5 f'7"":?':%1:';9E*.r-z.+1J §n+1j

[‘:ﬂ;f{:’ﬂf:rz+1J EEﬂ,+1J EEﬂ,+1;I 23 §[§n+1J Ri'w an]]

[ CS. SO Y B

min [g[fnii-n+1'fﬂ+1j + gl::fni xun+21£n+2j]i = aﬁ[fnifn+p£n+1]
[G I:"f'n.+1J E'rz,+21 E-n.+2j 1 ‘:;I::';'f'rz,+1J '%n+11 f'n-+1jj|
E(£ﬂ+1’ :En+2 ! Eﬂ+2]-' it
145 1100, A L S LaG(X % .5 .4)...34.2)
{[Glzxwxﬂ+11xn+1j+ G{xnixﬂ+21xn+2j] T

Now following two cases are arise:
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B i s Bl P
Case-I: IfIIHI‘l{ (n+1 nt+e 1";,+:2.;I ]}: Glzﬁ e

[§{£ﬂ1£ﬂ+1’ E'.*z,+1:I + E{Efm Eﬂ.+2J ‘En+2:| e Fat xn+2]
then condition (3.4.2) reduces to
GU% s Ty Bopn) = agf_fwfnﬂ-fnﬂj
E[§n+1’ E*.'vz,+21§*:~z,+2:|' } s [ E(EWE ¢+1J§1'z,+1:"I
[Eﬂﬁnifn+1l E1-':,+1:| + ﬁ[£m:£n+zif?¢+2j]1 G (%
then condition (3.4.2) reduces to
GEp Fpgs Ba ) + ClE K Fgn) S a6 (R, Ky, T
gf_fni §n+1’ fﬂ-+1] A [gf.fn+1' f*n+2’ EH+E:I N E[En'fﬂﬁr f1":,+1:I] = ﬂ'g[fﬂ,* En+1i :En+1j
EEFREPE SIS D B 1cl € SNE SIRRE S
From Case- I, II, we have
G(Z it Xz Fppn) 2 a6 By )
On continuing this process {7 + 17 times
G &y Xz Fpga) 2 a6 (5 X, 54
Similarly we can show that
Gk By v ) S B X0
Next we show that {x; } is Soft G-Cauchy sequence.
Then for all 7,712 € N 1 << m we have
gl:fﬂ-' Emi Em-] = E{Eni £ﬂ+1' E';—z‘+1:I + if;T.:EJ.'vz.+1' Eﬂ+21xun+2:|+' v +g[£m—1’ Emi Emj
£ [+ @ A NG B E)
A CAERED
Therefore {%,,} is soft G-Cauchy sequence. Since (£, G, E] is soft G-complete, there exists
#t € SE(X) such that {%,} soft G-converges to i.
Next we will show that it is fixed point of A.
For this we take X = X, and ¥ = Z =t in (3.4.1) then
. { G(RX,,Rut, Ru), [6(X, Rx, R, + G(X, Ru, Ri)],
i { [G(#, Roi, Ri) + G(# R%, RE)]
{ G(it, Rw, Ru), [Gliw,w) + G(% B, Ru)],
T { [G(&, Rit, Rit) + G, 0, 1)
G (it R, Bit) = 0
This is the contraction, so Bt = it i.e. i is fixed point of .
To prove uniqueness, suppose that it and # are two fixed points of . Then by inequality
(3.1.1) we have
min{ G(#,# ), [6(& & @)+ G0 & 7)) [6(# 85 8) + 6

Casell: If min'{

=

} < al(%,, i)

} < af(it, @, %)

—_

i)]] = a6l 6, 9)

4]
2y

4

P < aG (i, v, )

=)

G
Since & == 1, this contradiction implies that & = #.
To show that E is soft G-continuous at it. Let {¥,,.} be a sequence of soft elements in X such
that {37, } —* it then we can deduce that
Using (3.4.1), we have
 { G(R#t, R, R¥,), [G(# Bit, Ru) + G(# R, Rj.’rnj],} e e
min i e T R L ISR = aGlt, v, ¥ )
[6(3,, B¥,, B¥,) + G (¥, Rit, Rit)] )
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| { GBS, B9, [6(4,%8) + C(H,RFLEF)LY _ .. . .
miin i L i < aGlu, v, ¥ ]
(G5 RFy BF,) + G (3, 1,1 ] } e
Taking the limit as m =+ o from which we see that G(it E¥%,,E%,) —+0 and so, by
proposition {2.17) we have that the sequence R¥, is G — convergent to Rit = it therefore
proposition [2.20) implies that B is G-continuous at %t.
Theorem 3.5: Let (£, G,E) be a soft G-metric space and E: (X, G, E) = (X,G E) be a
mapping that satisfies the following condition for all X, ¥, 2 € SE I:f jl
G(% ¥ 2),[G(X R%, RX) + (% R¥, R?}]J}
[6(% R¥ R¥) + G(¥ RE RE)]
Where 0 = @ << 1. Then R has a unique fixed point it and R is G-continuous at .

G(B%, B¥,RZ) iamax{ ..(3.5.1)

Proof: Let x; £ SE(X] be an arbitrary soft element and define the sequence {%,} by

RED T Einfi = EEJREE e EE"”' P ...Rfﬂ_ = Eﬂ+1
Here we may assume that X, = fﬂ.,.l
Substituting ¥ = X, , ¥ = W,.,.1and Z = X,44in (3.5.1) then we get
G[ 1-:>+1J n+1:|

ﬁ[REn, an+1JR£ﬂ+1j £ o Imax [ﬁ[in; REHJ R-’-’ﬂ:l + G(xﬂ_; Rxﬂ+11 Rfﬂ+1j]1
[f;ul:in+1J E'J’H"'f*.rz,+1J E'J’H"'f*.rz,+1j * ﬁlif.n+1* Rf.w Rin]]

A S [G[ Fppry) Xppad + G(xwxn+2J n+2j]

P ” - ﬁ[f nt+l
Gy B Kpa) = amax{ e (% b
[G x a1 '?‘3-+2" -;u;,+2_j i+ G x-n.+1-' x'n+1-' '?'i!-+1 ]

}
G(x - S LT A [G': i R Gl:xnixﬂ+2 xn+2]]}

G(E 1 Rr Xppe) < amaz {
Gl %0 g Xnge)

..(3.5.2)
Now following three cases are arise:
G (% X i) £n+1:|
Case-I: If max< |G, %, 4 Fpps) + G, T Kaia) | = G(E 0 F ) Faid)

6 (X sy Tt xn+zj
then condition (3.5.2) reduces to

GUE i B R ) oG Xy e %)
G & ) Fpizs Fpgn) = aGfan£n+1'xﬂ+1j
G F K s Ky o
Case-IL:If max § [G(%,, %, 40 Koge) + 6(Fo Foiss Kpga) |
6 (Xisas Znaa) Bnas)
then condition (3.5.2) reduces to
G(Eppr T Kppa) = a[Gfx EAe e L A S e e

GLENE P ey

+G':5'-' Fprrs Kz )

G(Eprs) s Xppa) e G [ESNE STV ey
G{ *.'2'+1J n+1j
Case-1II: If maz { [6(%, %4y, % n+1j + G (% By K | 1= C(F sy Ko B

§[§n+11 fﬂ.+21 "E'J'z.+2:"I
then condition (3.5.2) reduces to

G[fn+11 Xiiqa Ef.-q.+,3:' = ab [Eﬂ+11 Xtz Efn.+2:'
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Which is contradication.
From Case- 1, I, II1, we have
ﬁ[fn+11 E'.*z,+2J E‘?‘l+2:| = ﬂ’ﬁ[fni E1*1.+1 } f*.*z'+1:|
On continuing this process (1t + 1] times
ifi[irvz.+11 §n+21 Eﬂ+2j = a'n+1§[£w Eliflj
Similarly we can show that
GUE, Xyt By ) = a6 (R %y %)
Next we show that {x; } is Soft G-Cauchy sequence.
Then for all 72,712 € N 1 << m we have
gl:fﬂ-' Emi Em-] = E{Eni £ﬂ+1' E';—z‘+1:I + if;T.:EJ.'vz.+1' Eﬂ+21xun+2:|+' v +g[£m—1’ Emi Emj
£ [+ @ A NG B E)
XXy %y)
Therefore {x,} is soft G-Cauchy sequence. Since [f G E :I is soft G-complete, there exists
@ € SE[X) such that (%, soft G-converges to .
Next we will show that it is fixed point of R.
For this we take X = X, and ¥ = Z =1t in (3.5.1) then
G(%, @,u) [6(%, RX, R%, )+ G(%, .Rﬁ,Rﬁj],}
[G(#% B, REi) + G(#t, B%,,  R%, )|

G (1, 1, 1), [G(u T,0 )+ G, R, Ruj] 1

[fif ,Ru,Ru_]+G[u,u,u]] }

G(RX, Rit, Fit) < amax {

G(i, Bi, Bit) = a ma.x{

G, R, Rit) < a6, B, Bit)
(1—a) G, Bi, Bw) =0

This is the contraction, so Bt = it i.e. i is fixed point of .
To prove uniqueness, suppose that it and # are two fixed points of £. Then by inequality
(3.5.1) we have

,8), [G(4, R, Bw) + G(% B¥, Rﬁj],1
[fi[ﬁ B#, Ro) + G( o, R, Ruj] J

L, [G[u, u,ull + G[uj i, v}],}

e G,
(B, B¢, Bv) < amax
G(f, 8, 7) < amaz

G(it 9, 8) < amaz{6(% § ), 67 1, u}} ...(3.5.3)
Case I: If ma:-:{(?[u, ), G[v,u.uj} = G(@, # ¥) then (3.5.3) we get
Glit 5, 8) < a G4 & 7)
This is a contradiction implies that & = #.
Case II: If ma*—*{G(u ¥, 1), Gl 1, u]} G (#,1 1) then (3.5.3) we get
Gl 8, 9) < aG (¥, 1)
So we deduct that G{i, &, &) = a G(# 4 ). By repeated use of the same argument we will
find G{#, 1% %) < aG(i & #). Therefore we get G(it &, #) < a® G[# 1 i), Since a < 1/2,
this contradiction implies that it = #.
To show that E is soft G-continuous at . Let {¥,} be a sequence of soft elements in X such
that {37, } —* i then we can deduce that
Using (3.5.1)
G[ﬂu RjFﬂ,RjFﬂj 57 G{RﬁJ Rﬁniﬂﬁn-\]
G 5 ), [6(6 RE, R + G, RS, Rﬁn:']-}
[G(3, B3, BY,)+ G(3,, Ril, Ril)]
39
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6 (5 BV BF,) < aG(5,, BT, B,)
(1 —a)G(% Ry, B¥,) <0
We see that G (it B¥,, E¥,) — 0 and so, by proposition (2.17) we have that the sequence
E¥, is G — convergent to B1t = it therefore proposition {2.20] implies that R is G-continuous
at it.
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