
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

19

3D Stereo Rendering Using FPGA

Marwa Riyadh Ahmed Dr. Basma MohammedKamal Younis

Department of Computer Technology Engineering, Technical Engineering College,

Northern Technical University, Mosul, Iraq

Abstract

Stereo rendering presents a virtual 3D scene from two slightly different vantage points. It is of great importance

in the field of machine vision, robotics and image analysis. This paper proposes a stereo vision system that is

realized in a single field programmable gate array (FPGA). Calculations of the stereo pairs are made by using two-

center projection (off-axis) method. The first red resultant image is for left eye while the second blue one is for

right eye; the 3D illusion is produced when looking to them using anaglyph. This computer graphic hardware

system is implemented using Spartan3E XC3S500E FPGA kit. The execution time for the proposal is 1266 faster

than OpenGL time with maximum operating frequency of 35.417 MHz, while the max occupation area reaches

84%.

Keywords: Computer Graphic; Stereoscopic; anaglyph; FPGA; two-center projection ;Off-axis Method; stereo

pairs.

DOI: 10.7176/CEIS/10-3-04

Publication date: April 30th 2019

I. Introduction

Stereoscopic 3D is a popular form of entertainment, robotic vision system, and it is fast becoming a large industry

that attempts to recreate the human vision system by using two or more 2D views of the same scene to derive 3D

depth information about the scene[1][2][3].

The visual system is a part of the central nervous system, which gives organisms the ability to process visual

detail, as well as enabling the formation of several non-image response functions. It detects and interprets

information from visible light to build a representation of the surrounding environment. The visual system carries

out a number of complex tasks, including the reception of binocular perception from a pair of two-dimensional

projections; the identification and categorization of visual objects; assessing distances to and between objects; and

guiding body movements in relation to the objects seen [1]

When formation a 3D graphic scene, two projected images are used to capture separate graphic of the same

object from slightly different angles at one fixed viewpoint. The left one is shown only to your left eye while the

right projected image is shown only to your right eye, and then fuses these two graphics to give stereoscopic vision.

To see 3D scene correctly anaglyph can be used Anaglyph 3D is the name given to the stereoscopic 3D result

achieved by means of encoding each eye's image using filters of different colors, typically red and blue. Anaglyph

3D images contain two differently filtered colored images, one for each eye. When viewed through the "anaglyph

glasses", each of the two images reaches the eye in which it is intend for revealing an integrated stereoscopic image.

The visual cortex of the brain fuses this into the perception of a three-dimensional scene or composition [4].

 Oskar Th., in 2006, investigates how disparity estimation may be used to visualize an object on a 3D-screen.

This work has been implemented in MATLAB and C then comparisons between the different implementations

have been presented [5].

In 2010, S. Jin et al. have built an FPGA-based stereo vision system using census transform, which can

provide dense disparity information with additional sub-pixel accuracy in real time. The proposed system was

implement within a single Virtex-4 XC4VLX200-10 FPGA from Xilinx including all the pre and post-processing

functions. The hardware implementation is more than 230 times faster when compared to a software program

operating on a conventional computer [6].

Akhil Valsaraj et al., in 2015, proposed a stereo vision system that provides dense depth maps in real-time

from monochrome cameras. The entire process is realized in a field programmable gate array (FPGA). FPGAs,

being inherently parallel in nature, were quite suitable for their problem and were founded to be much faster for

such computer vision applications from previous studies [7].

Authors in 2016 design and implement a stereo vision system that gave a real-time depth map of the scene

with minimum cost. The system was implement successfully on an FPGA and the output was observe to be in

correspondence with the idea of stereo vision. The system can reach frame rates greater than 200fps. [8]

In 2017, Te-Chi Hsiao and Chin-Jung Yang applied a graphics processing method for three-dimensional

images on the buffers; first buffer was for storing right-view contents and second buffer was for storing left-view

contents, and they used steps: when a current VSync status indicates that a display engine is not operating within

a right VSync period of a right-view frame, the drawing engine draws the right-view contents stored in first buffer;

when current Vsync status indicates that the display engine is not operating within a left Vsync period of a left-

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

20

view frame, the drawing engine draws the left-view contents stored in second buffer; during the right Vsync period

of the right view frame, the display engine displays right-view contents stored in first buffer; and during the left

Vsync period of the left-view frame, the display engine displaying left view contents stored in second buffer[9].

This paper is organized into five sections. In section 1, it has been tackled an introduction and the previous

related researches. Section 2 includes basic rendering operations used for management operations that are used to

create stereoscopic 3D scene. While section 3 describes a system hardware design and implement then section 4

gives analysis of results observed after implantation. Finally section 5 ends this paper with conclusions.

II. Theory

There are many methods to calculate stereo pairs used to create a perception of depth, that sets up a virtual camera

and rendering two stereo pairs, and the most used methods are Toe-in and off axis methods[8]. The later one is

used in this work, it introduces no vertical parallax and it therefore creates the less stressful stereo pairs. It requires

a non-symmetric camera frustum, this is supported by some rendering packages, in particular, OpenGL.[1,10]. See

figure 1.

This method calculates stereo pairs as follows: First choose the camera aperture, typically between 45 and

60 degrees. Next, choose a focal length, the distance at which objects in the scene will appear to be at zero parallax.

Objects closer than this will appear in front of the screen, objects further than the focal length will appear behind

the screen. How close objects can come to the camera depends somewhat on how good the projection system is

but closer than half the focal length should be avoided. Finally, choose the eye separation to be 1/30 of the focal

length [1,10].Figure 2 shows these calculations.

Suppose AB = dleft and BD = dright. Also, the same level of projection used for each eye of the left eye and

right eye ,making use of similar triangles to find the parameters for glFrustum() ,an OpenGL function ,for each of

the two eyes. [1]

The left eye calculations:

� = ���� = −	
���� = −�
���

� = ���ℎ� =
� = ������

 = ������

� = ���

 = !�"���#�"!$�

% = �"���#�"!$�

� = ��$"� ��!��ℎ �� $"���"

� = �&� #��"�"���!

' = ����� �� (��)

* = "#��$� �"��� =
)���ℎ (,)

ℎ���ℎ� (.)

Where W and H are the width and height of the near-plane, and L;R;B; T denote the left, right, bottom and top

boundary coordinates of the near-plane respectively. Assuming that the near-plane lies in the x-y plane with y-

axis pointing upward, therefore:

� = �"!
/

0

 = −�

. = � −
 = 2�
Applying similar triangle properties to calculate the half-width α of the projection plane
2"

�
=

,

Therefore,
"

�
=

,

2
=

* ∗ 2�

2
 * ∗

�

= * ∗ �"!

'

2

from (4):

" = � ∗ * ∗ �"!
/

0

Once " is known, we can determine the distances � and $

� = " −
�

0

$ = " +
�

2

From similar triangles:

…(1)

…(4)

…(5)

…(6)

…(2)

…(3)

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

21

45678

9
=

:

�
=

4;<=>8

?

Also, � = −�
��� = −� ∗
:

�

� = ������ = $ ∗

�

Combining (4), (5), and (6):

� = −� ∗
:

�
= −" ∗

:

�
+

�

0
 ∗

:

�
= −* ∗

@

0
+

�

0
 ∗

:

�

� = $ ∗

�
= " ∗

�
+

�

2
 ∗

�
= * ∗

.

2
+

�

2
 ∗

�

Variables L;R; T, and B are used as the input parameters for the glFrustum() function of the left eye.

 Similarly equations for the right eye can be obtained:

�� = �
 = �"!
'

2

� = −��

�� = − �
 = −$ ∗
:

�
= −* ∗

@

0
−

�

0
 ∗

:

�

�� = �
 = � ∗

�
= * ∗

.

2
−

�

2
 ∗

�

Variables L;R; T, and B are used as the input parameters for the glFrustum() function of the right eye.

III. Proposed System

The flowchart of figure 3 illustrates the overall system procedures. Firstly, all buffers must be initialized. Two

types of buffers were used as shown in figure 4, frame buffer and accumulator buffer. Then GPU starts to calculate

stereo pair using off axis method explained in the previous section. The first red projected image for left eye is

calculated then stored in accumulated buffers, then after calculating second blue projected image for right eye it

will be added to the earlier one in accumulated buffer resulting the output 3d image that must be seen with a special

anaglyph classes. After that, this image is copied to the frame buffer in order to display it via VGA on the external

monitor. A block diagram of the designed hardware unit of the overall system is shown in Figure 4, containing a

GPU, the refresh controller unit, and video RAM (frame and accumulator buffers) between them.

The system has been implemented using Spartan-3E XC3S500E FPGA kit. The graphics-processing unit

(GPU) is responsible for all arithmetic operations of the system explained in the next section, i.e. calculating the

stereo pairs, writing resultant pixels in the frame-buffer, controlling handshaking operations between the frame-

buffer and accumulator-buffer. These buffers has been designed using dual-port block RAM with a size of 64KB.

2

�
 − �

0 �
 + �

�
 − �

0

0 2

� −

� +

� −

0

0 0
−

% +

% −
 −

2% ∗

% −

0 0 −1 0

2

�� − ��

0 �� + ��

�� − ��

0

0 2

� −

� +

� −

0

0 0
−

% +

% −
 −

2% ∗

% −

0 0 −1 0

…(7)

….(8)

…(9)

…(10)

…(11)

…(12)

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

22

Finally, the refresh controller reads the content of the frame-buffer and sends it to the monitor according to a

specific time.

Before implementing designed system on FPGA, a pre operation were needed for equations of stereo pairs,

which are calculated using MATLAB, because of difficulty of implementation and inclusion within VHDL

language, as well as the low memory problem (Limit Block RAM) in Spartan-3E (XC3S500E). So, equations are

calculated using MATLAB then resultant values feed to GPU to complete model manipulation using VHDL.The

FSM method used to design the proposed GPU, which contains several states as shown in Figure 5, each one

handles a specific work.

The first state clear buffer of this FSM is used to clear frame buffer then constants for equations explained in

section 2 would be calculated in the second state initial. While the third state Model points forms our object vertices,

these vertices will be drawn using next state, which called drawing object by using Bresenham’s algorithm. The

test state ensures that the target object drawing is complete if not the continue state will give necessary handshaking

between buffers to do this work. Finally, the finish state will send the object final pixels to the next parts in order

to display it on the monitor.

The dual-port block RAM, internally divided into frame buffer and accumulation buffer. The first red image

for the left eye is stored on frame buffer as a step to calculate the stereoscopic scene. These points are then send

to the accumulation buffer. After calculating, the second blue image for the right eye results will be accumulated

the result and send to the refresh controller to display our scene on the monitor.

IV. Implementation Summary and Results

A 3D Stereo Rendering architecture, presented in this work, is successfully tested and results are prove. These

results include the performance of the 3D rendering operations based on off axis technique to create stereo pairs

and Bresenham's line drawing algorithm[11][12] to draw objects, which have been implemented on FPGA

hardware platforms and with OpenGL, results will be shown in this section side by side with their timing analysis,

speedup, and performance metrics ...etc.

All algorithms used in this work have been recently tested first using OpenGL on a personal computer with

the following specifications: CPU frequency 2.20 GHz, Intel Core i5. Table 1 below shows the components that

were occupied by the designed system on FPGA such as the number of block RAM, Flop Flops and other internal

components.

Samples from models used in this work using both OpenGL and FPGA are shown in figures 6 and 7, while

the overall system is shown in figure 8.

V. Conclusions

The main objective of this work has been achieved with the following points: a processing unit was created to

construct an arithmetic system of equations for the stereoscopic vision system and by focusing on the off-axis

method in the projection process for each eye; a frame buffer and accumulator buffer are set up to store the

projections image on it and then displayed on the screen; The model is plotted using 2D Bresenham's line

generation algorithm is that uses integer calculations to avoid the floating point that occupies a large area of an

FPGA and slows down the speed. processing accuracy is directly relative to the number of bits used to represent

each vertex, but this will negatively affect on FPGA area and occupation resources.

The hardware platform (Spartan-3E XC3S500E FPGA kit) have been successfully used in this work to build

the present design for 3D rendering system, Only two colors, have been needed one per projection image for the

frame store (256 x 256) and limited number of models were used due to the limited number of BRAMs in the

FPGA used. The execution time is 1266 faster than OpenGL time with maximum operating frequency of 35.417

MHz, while the max occupation area reaches 85%.

References

[1] Fore June, "An Introduction to 3D Computer Graphics, Stereoscopic Image, and Animation in

OpenGL and C/C++", 1st Edition, Create Space, a DBA of On-Demand Publishing, LLC

(November 2011).

[2] Kasim Terzić , MilesHansard, " Methods for reducing visual discomfort in stereoscopic 3D: A review

", by Elsevier; Signal Processing: Image Communication 47(2016)402–416.

[3] Chelsea Sabo, Robert Chisholm, Adam Petterson, and Alex Cope, "A lightweight, inexpensive robotic

system for insect vision", by Elsevier; Arthropod Structure & Development 46 (2017) 689-702.

[4] M. Lancelet, T. Martin, B. Solenthaler and M. Gross , "Anaglyph Caustics with Motion Parallax" ,

Pacific Graphics, Volume 35 (2016), Number 7.

[5] Oskar Thulin, "Intermediate View Interpolation of Stereoscopic Images for 3D-Display", MSc. thesis,

Department of Electrical Engineering, Linköpings university, Sweden,2006.

[6] S. Jin, J. Cho, X. D. Pham, K. M. Lee, "FPGA Design and Implementation of a Real-Time Stereo

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

23

Vision System", IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 1,

january 2010.

[7] Akhil Valsaraj, Abdul Barik, Vishak P. V., and Midhun K. M.,"Stereo Vision System implemented on

FPGA", by Elsevier; ICETEST2015, Procedia Technology 24 (2016) 1105 – 1112.

[8] Akhil Valsaraj, Abdul Barik, Vishak P. V., " Stereo Vision System implemented on FPGA",

International Conference on Emerging Trends in Engineering, Science and Technology (Elsevier,

ICETEST- 2015)

[9] Te-Chi Hsiao, Chin-Jung Yang," Graphics Processing Method For Three-Dimensional Images

Applied to First Buffer for Storing Right-View Contents and Second Buffer for Storing Left-

View Contents and Related Graphics Processing apparatus Thereof" , United States Patent, US

9,558,531 B2,Jan. 31, 2017

[10] Paul Bourke, "Calculating Stereo Pairs", Technical Notes,

http://paulbourke.net/stereographics/stereorender/# Jan 2018

[11] Ne'am Salim ," Modified Z-Buffer Design and Its FPGA Implementation ", Mtech. Thesis, Technical

College / Mosul,2013

[12] Dr. Basma Mohammed Kamal Younis, Ne'am Salim Mohammed Sheet ," Hardware Implementation

of 3D-Bresenham's Algorithm Using FPGA", Tikrit Journal of Engineering

Sciences/Vol.20/No.2/March 2013, (37-47)

Table 1: Device Utilization Summary

Logic Utilization Used Available Utilization

Number of occupied Slices 3,941 4,656 84%

Number of Slice Flip Flops 1,937 9,312 20%

Number of 4 input LUTs 6,112

9,312 65%

Number of bonded IOBs 21 232 9%

Number of RAMB16s 15

20 75%

Number of BUFGMUXs 2 24 8%

Maximum Operating Frequency 35.417MHz

Figure 1: Off-axis Method

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

24

Figure 2 Off-axis Projection Calculations

Figure 3: Overall System flowchart

Start

Write the left eye image for input
model using 3DBresenham's line

algorithm with RED color to
frame buffer

Initialization Accumulator buffer
and frame buffer to background

color

Left eye perspective projection

Left eye stereo pair
Calculations

Left eye camera position

Read model

Write frame buffer pixels
to Accumulation Buffer

Clear the frame buffer

Right eye perspective projection

Right eye stereo pair
Calculations

Right eye camera position

Write frame buffer pixels
to Accumulation Buffer

Write the right eye image for input
model using 3DBresenham's line
algorithm with BLUE color to

frame buffer

Copy results from Accumulation
Buffer to frame buffer

Display the model on the screen

End

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

25

video RAM

Accumulator

buffer

 Frame

buffer

Figure 4: The Designed Hardware Graphics System

Figure 5: Graphics Processor Unit States

OpenGL result FPGA result

Figure 6: OpenGL vs. FPGA result.

Pixel color

Pixel address

P
ix

el
 a

d
d
re

ss
 HS

VS
Refresh Controller

Unit

GPU

FPGA

RGB

Clear

Buffer

Finish

Conti

nue

Test

Draw

Object

Model

Points

Initial

The First State

Other Object

End Object

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) DOI: 10.7176/CEIS

Vol.10, No.3, 2019

26

Figure 7: Sample Scene from OpenGL Result.

Figure 8: The Overall Desinged Hardware System.

