

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

10

Getting Relational Database from Legacy Data-MDRE

Approach

Omar EL BEGGAR

*
, Brahim BOUSETTA, and Taoufiq GADI

University Hassan 1
st
, Faculty of Sciences and Techniques, Settat, Morocco

E-mail of the corresponding author: elbeggar_omar@yahoo.fr

Abstract

The previous management information systems turning on traditional mainframe environment are often

written in COBOL and store their data in files; they are usually large and complex and known as legacy

systems. These legacy systems need to be maintained and evolved due to several causes, including

correction of anomalies, requirements change, management rules change, new reorganization, etc. But, the

maintenance of legacy systems becomes over years extremely complex and highly expensive, in this case, a

new or an improved system must replace the previous one. However, replacing those systems completely

from scratch is also very expensive and it represents a huge risk. Nevertheless, they should be evolved by

profiting from the valuable knowledge embedded in them. This paper proposes a reverse engineering

process based on Model Driven engineering that presents a solution to provide a normalized relational

database which includes the integrity constraints extracted from legacy data. A CASE tool CETL: (COBOL

Extract Transform Load) is developed to support the proposal.

Keywords: legacy data, reverse engineering, model driven engineering, COBOL metamodel, domain class

diagram, relational database

1. Introduction

The evolution of technology and the diversity of tools and platform were a nightmare for companies and

left them trolling and running all the time behind. While in the current context of globalization, any

company that wishes to be competitive should procure those new technologies in real time. However, the

higher maintenance cost, the lack of documentation and the risk of data loss. Migrating legacy system to

those modern platforms remains a pain for these companies which are still unable to keep pace.

The older information systems ran on mainframe environment and they are often written in COBOL and

store their data in files [6, 15]; they are usually large and complex and known as legacy systems. These

legacy systems need to be maintained and evolved due to many factors, including error correction,

requirements change, business rules change, structural reorganization, etc [7]. But, there are many problems

to maintain and evolve legacy systems like the difficulty to retrieve and understand the original system

specifications and especially when it’s a lack of modeling and documentation supports related to those

systems. The higher cost of maintaining and evolving legacy systems represent also a challenge to

surmount. This paper propose a reverse engineering process based on Model Driven Engineering (MDE)

that represents a solution to provide systems ready to any improvements and to minimize the higher cost of

migration. COBOL applications present the most important target of reverse engineering projects. Most of

them use simple files to store persistent data [9]. The choice of COBOL is not arbitrary due to the wide

diffusion of this programming language and its existence all these years in spite of the presence of other

languages that are more sophisticated. Indeed, it was the most used language between 1960 and 1980 and it

is still widely used in financial institutions, accounting, banks, insurance companies, government

departments...

Recently, a study published in the weekly computing business magazine “eWeek” in January 24th, 2011

affirms that the fourth quarter of 2010, 5 billion of new code lines COBOL are added each year.

Furthermore, there is at least 1.5 to 2 million developers worldwide who currently work with COBOL. And

there are over 200 times more transactions processed by COBOL applications than Google search engine

every day [1]. In addition, the Micro Focus officials estimate that about 220 billion lines of COBOL code

mailto:elbeggar_omar@yahoo.fr

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

11

are used in business and financial applications today. And COBOL systems are powering more than 70% of

the world’s businesses [2, 8]. After all, only the languages or softwares which are successful have been

those that have attained maturity and old age. Many others are on the contrary not useful enough that we

decided to retain and evolve them [3].

In fact, since its standardization by ANSI, COBOL has seen some improvements like (ANS 2002: XML

parsers, Object Oriented ...) and integration of tools such as CICS in mainframes and many other

improvements. Meanwhile, this article does not oppose the search for better ways to change the language to

perform new operations, on the contrary, our work is far from being a rejection of COBOL but there is

another alternative to provide a production system modeled, documented, independent of any platform and

being away from any technological rupture.

The advantages of moving existing COBOL legacy data to relational database are both financial and

technical:

 Data documented: The data provided by RDBMS are better documented due to the data dictionary.

 Data consistency: The data in RDBMS are consistent due to locks and concurrency access

management.

 Database services: An RDBMS offers a variety of services that are not likely to be available in a

standalone program, including: security, data integrity, transaction management (commit/rollback)

and crash recovery [6].

 Report generator: the reports can be established easily by report generator tools using a relational

database than be implemented by code [6].

 Improving scalability: Using Model Driven Reverse Engineering (MDRE) allows generating the

database, documentation or other artifacts after each change by changing the source model and

applying simply a model transformation to obtain a target model.

 Minimizing maintenance cost: the fourth generation language and modern platform are much less

expensive to maintain than legacy system [6].

 Reducing time development: using MDE in reverse engineering or re-engineering much reduces

the time development since it’s a generative approach.

The proposal aims firstly to parse and analyze a legacy data from file descriptors present in code sources in

order to extract the data structure model which conforms to a COBOL meta-model. The data structures are

then merged in a general model that we have called Merged Model File Descriptors (MMFD). Next, The

MMFD will be refined by adding the integrity constraints and normal forms retrieved from physical files by

applying a set of rules explained in detail in section 5. This phase is provided by using a CASE tool

CETL®: (Cobol Extract Transform Load) that we have developed for this purpose. In the following MDRE

phase, the normalized and integrate MMFD will be represented at a higher level of abstraction by applying

a reverse model transformation to obtain a domain class diagram that will finally transformed to a relational

database.

Thus, the first scientific contribution of our work is proposing a reverse engineering approach including the

paradigms and concepts of MDE which propose a COBOL meta-model and its model transformation to

obtain the target relational database. Another scientific contribution of our work involves the development

of the CASE tool CETL®: (Cobol Extract Transform Load) used for extraction of the whole description of

legacy data, their integrity constraints and its normalization by observing data exiting in physical files.

The rest of this paper is organized as follows: In the section 2, we present a statement of prior works in the

topic of reverse engineering and the principal scientific contributions of our approach. The third section is

dedicated to give an overview of our Model Driven Reverse Engineering MDRE. The next sections are

devoted to describe the different phases of the MDRE. Thus, section 4 present the extraction phase and the

COBOL meta-model used to extract the data structure from legacy data, section 5 treat the merge phase and

present the toolset CETL used in our approach accompanied by a benchmark study to compare it with the

other tools of the same family that are employed in the market or in research laboratories. Section 6 is

dedicated to describe the model transformation as well as the mapping rules to obtain a Domain Class

Diagram (DCD) and its refinement by adding integrity constraints and normal forms. Then, Section 7 is

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

12

conserved to present and discuss the MDRE resulting. Finally, we conclude this article by presenting the

actual state of our research and the next future works.

2. Related works

In this section, we will present many works in this area of research reverse engineering process, and the

mainly differences with our approach. Firstly, a reverse engineering process aims to analyze a subject

system for two goals:

1- To identify the system’s components and their interrelationships.

2- To create representations of the system in another from or at higher level of abstraction [10]

Previous research on reverse engineering made great achievements concerning the first reverse engineering

goal but there is very little researches in creating representation of the system in another form especially at

higher level of abstraction [11] since the majority of researchers don’t integrate generally the meta-

modeling and meta-models in their reverse engineering process as higher abstract representation of a system

aspect and don’t benefit of the MDE advantages. Even though the metamodel as it is defined by OMG is a

special kind of model that specifies the abstract syntax of a modeling language. It can be understood as the

representation of the class of all models expressed in that language [12]. According to the MDE principles

[14] using a metamodel means working at higher level of abstraction. Therefore, as it was defined by

Chikofsky, to attain the second goal of reverse engineering, it’s judicious to use metamodels. Otherwise,

evolving legacy system without benefit of a higher level of representation of functionality and structure

presents risks of quality [6]. Atkinson and Kühne state that the main goal of MDE is to reduce the

sensitivity of primary software artifacts to the inevitable changes that affect a software system [13]. Our

MDRE approach belongs to this area of research that includes techniques and concepts of MDE and which

places the metamodels in the core of the different phases of the reverse engineering.

In [11], the related work presents a meta-model that unifies the conceptual view on programs with the

classical structure-based reverse engineering meta-models and thereby enables the establishment of an

explicit mapping between program elements and the real-world concepts that they implement. Concerning

reverse engineering strategies, we can distinguish two general strategies [5,6,7,20,30,31,35]; those that get

out system features from the source code only. In this strategy, the retrieved information is completely

included in code. The other strategy is knowledge-domain method, were the source code is analyzed based

on knowledge-domain and further completed by data issued from other resources such as documents,

interview with personnel, forms, reports etc. In our case, our approach belongs to the first category of

strategies: extract entirely the description of legacy data from only source code and physical files. A lot of

research performed in this first category of strategies [16,17,21,22,34] has been done about schema

extraction from code source , but there has been limited work on reverse engineering of legacy data files

which is interested in normalization and the extraction of the data integrity constraints from physical files,

although those files contain important description and rules that can be retrieved. In [5] an approach was

proposed for automated Database Reverse Engineering and data normalization for integrating systems

based on observing data patterns to determine some constraint rules. But it didn’t present the whole

integrity constraints and didn’t propose an equivalent to some particular types in legacy data to assume a

completely translation to a relational database. Whereas, In our approach we present the necessary rules to

extract from physical files the entire integrity constraints, equivalence types to replace some particular

variables declaration in Cobol, different association multiplicities and normal forms to perform

transformation from legacy data to a relational database normalized and integrate.

Let’s assume that Database Reverse Engineering (DBRE) is a complex process that cannot be efficient

without supporting CASE tools. A many number of commercial and laboratory tools try to support the

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

13

DBRE functionalities. Though, many of those tools do not introduce the MDE principles to support their

reverse engineering process, but they enable their users to extract almost embedded information in legacy

applications [32]. We have chosen the selected reverse engineering tools to study their principal

characteristics and finding the differences with our tool CETL.

 RM/plusDB [6]: provides a transparent mechanism to authorize existing COBOL programs access

to RDBMS without having to be altered. It provides a runtime environment that converts IO statement

to an access to RDBMS when a COBOL statement attempts to execute an IO operation to a file.

 SEELA [24]: supports the maintenance and the documentation of structured programs. It features a

top-down program display that increases the readability of structured programs and includes a structure

editor, browser, printer, and source code documentation generator. SEELA works with Ada, COBOL,

C, Pascal, PL/M and FORTRAN code. SEELA was designed to bridge the gap between the project's

design description and the source code, instead of requiring a separate program-design-language (PDL)

description.

 Cobol Access Plus [37]: it operates on file descriptors in COBOL source language (the 'FDs' or

File Descriptors) and will automatically generate a common file the Interface Dictionary database

(DID), allowing therefore creating the database structures with the appropriate data files. This tool does

not require a knowledge of the language associated with the chosen relational DBMS, the transition is

automatic.

 Eclipse MoDisco [25]: it provides an extensible framework to elaborate on model-driven solutions

supporting software reverse engineering and modernization use cases such as technical migration,

software improvement, documentation generation, quality insurance, etc.

In the conclusion, our approach that will be more explained in the next sections differs from other works in

this area of research that are interested in the process of reverse engineering by the fact that it integrates:

 Meta-modeling and higher levels of abstractions

 Inclusion of integrity constraints

 Normalization of data structure

 An automate MDRE process

 Independent of technical platforms

3. Overview of our MDRE approach

In this section, we will introduce our MDRE approach and the activities performed in each phase. Our

MDRE approach consists of generating a normalized relational database from legacy data and it can be

divided into four phases: Extraction, Merge and refinement, Transformation and finally Generation (see

figure1).

 Extraction : the first phase, we analyze the source code and we extract the data description which

is in the Section “File Description” present in Cobol source code in order to instantiate a XMI model

conforms to the meta-model Cobol that will be presented in section 4. This phase is performed by

using the CASE tool CETL. Before extraction, the parser used in CETL transforms source code into

an intermediate program which is cleaned from unnecessary code parts such as comments, line breaks,

etc.

 Merge: the second phase of our MDRE approach consists in the merge of the entire XMI model

extracted in the first phase and generating means the toolset CETL a new XMI model that we called

the Merge Model of File Descriptors (MMFD). The resulting MMFD contains all data structure used

in the different source codes.

 Transformation and refinement: this phase is dedicated to perform a reverse transformation from

the Platform Specific Model (PSM): MMFD to the domain class diagram using ATL language. The

whole mapping rules used in the transformation will be explained in both natural language and ATL

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

14

language in section 6. Afterwards, we refine the DCD by applying a set of rules to extract the normal

forms, different association multiplicities and the integrity constraints from the legacy data existing in

physical files. The DCD will be available to be transformed then into a relational database that will be

normalized and integrate.

 Generation: the final phase concerns a forward transformation from a refine domain class diagram

to Relational Database Diagram (RDD) and generating finally the SQL script to create database. In

order to perform the proposal, it is more significant to make a choice of stable data files such as

customer’s management files, bank accounts, catalog of banking services, credit, instead of using

temporary files that can be regenerated each time such as sorting files, intermediate calculations,

reporting, etc.

Figure 1. The different phases of the MDRE approach

4. Extraction phase

4.1. Extracting PSM model

Due to constraints imposed by the old punch cards, COBOL requires a very rigorous and strict page layout

based on columns and levels. For this reason the first step on extraction phase consists of eliminating any

File1 File2 File3

COB

Program 1

COB

Program 2

COB

Program 3

COB PSM1

XMI

COB PSM2

XMI

COB PSM3

XMI

File Description File Description File Description

N
o

rm
alizatio

n
 an

d
 in

teg
rity

 co
n

strain
ts

MMFD

Merge Model File Descriptors XMI

MMFD

metamodel
Conforms to

Reverse transformation

PSMPIM

Generating database code
RDBMS

Forward transformation

PIMPIM

Conforms to

COBOL

metamodel

Conforms to

Refine DCD

XMI

File4

extract extract extract

merge

DCD

Domain Class Diagram

RDM

Relational Database Model

refine

RDM metamodel

Conforms to

DCD metamodel

4. Generation

3. Transformation

& Refinement

2. Merge

1. Extraction

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

15

Model.XMI

PSM Without useless code:

1- Comments (*)

2- Columns (1-6)
3- Columns (>72)

4- Break lines and white spaces

Clean up

Extract FD

uses

COBOL

source code

Library

portion of useless code and create an intermediate program which excludes comment lines starting with

asterisk, the columns 1 until 6, any text located after the column 72, break lines and white space (figure 2).

The second step consists of extracting model components by division. The COBOL division "DATA

DIVISION" is the most important part in legacy programs that will be parsed because it contain the

description of data files (records and fields) necessary to determine the next domain classes and the

corresponding relational tables in the new target platform. Some COBOL programs store the description

part of their files in a library called by the command "COPY" during compilation. In this case, it will be

necessary to load also this library using CETL before starting data extraction.

4.2. The PSM: COBOL metamodel

The metamodel shown in figure 3, represents the different components and relationships of any COBOL

programs that it conforms to the norm ANSI 85, there are a little differences with the others COBOL norms

(1968,1974,1989…) that add or retrieve some elements from our meta-model. This change will not affect

significantly our transformation or generally our MDRE approach. The root meta-class

COBOLPROGRAM is composed of four meta-classes divisions:

 IDENTIFICATION: it identifies the program name (required), information about the programmer

and many other various comments

 ENVIRONMENT: it describes the program environment: devices and the IO files used.

 DATA: Contains the description of data: calculating variables or data structure.

 PROCEDURE: describe the body of the program generally.

Some COBOL compilers require the presence of the four divisions presented above, others recommend

having only two divisions (identification and procedure divisions). For this reason, the

“COBOLPROGRAM” meta-class may be formed of at least two to four divisions at most. The meta-classes

divisions are made up of sections meta-classes. The sections are composed of paragraphs meta-classes. And

finally Paragraphs are composed of meta-class sentences. In figure 3-b which is a part of the COBOL meta-

model presented above, we focused on the description of the meta-class DATA division, which contains the

structure of legacy data to extract and to transform in our MDRE approach. This last one describes file

records.

The record contains fields of three kinds: Simple data item, Group data item and Array item. The group data

item can include other data items or fillers (filling item without name). In order to facilitate its

transformation an equivalent type which will be explained next is proposed. Each data item has a level,

name, type that belongs to the enumeration “PICTUREKIND” and finally a size. Some of those fields can

represent the record keys (Simple Key / Composed Key). Concerning the array item, we have to specify its

length.

Figure 2. The Extraction phase of the MDRE approach

COBOL

intermediat

e

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

16

Figure 3-a. The COBOL meta-model (part1)

Figure 3-b. The COBOL File Description meta-model (part2)

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

17

5. Merge phase

5.1. Merge PSM models

The second phase in our MDRE approach consists of merging the PSM models concerning each COBOL

program extracted in the first phase and then creating a new XMI merge model using CETL toolset that we

have call the Merge Model of File Descriptors (MMFD) which regroups the whole files descriptors

programs. The MMFD is also conforms to the COBOL metamodel. The resulting MMFD will comprise the

different records presents in PSM models as well as their corresponding fields extracted in the first phase.

The MMFD allows also avoiding duplication if any PSM model contains a record that is already extracted.

Once, The PSM models were merged in MMFD. The resulting MMFD will be next used as source model in

our model transformation to obtain the target PIM: Domain Class Diagram (DCD) the intermediate model

before performing the relational database. However, in the next subsection, we will present briefly the

CETL tool used to support generally our proposal and specially the merge phase.

5.2 Getting MMFD using CETL

 Firstly, CETL is developed using Java programming language; it aims to extract the different components

of loaded COBOL programs from legacy applications and especially the description of file data, in order to

generate a XMI model conforming to the COBOL metamodel presented above (see figures 3-a and 3-b).

CETL allows also merging the extracted models in a single model that includes all the data structure to

analyze domain. CETL can parse the data stored in physical files of different organizations: (sequential,

indexed line sequential) in order to deduce the integrity constraints and verify the normalization forms.

In figure 4, an example of data structure retrieved by means CETL toolset which conforms to the COBOL

metamodel presented in section 4 of this paper. CETL extract also knowledge embedded in existent

systems, i.e. it gives the possibility to retrieve the different integrity constraints, the Association

multiplicities and the normal forms by parsing the legacy data that exists in physical file based on data

structure already extracted in primary phase. The retrieved information will be used then to refine the DCD

and allowing its transformation into a normalized and integrate relational database.

 Figure 4-a. CETL-Generating MMFD model Figure 4-b. CETL-Refinement of DCD

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

18

6. Transformation phase

Models are the core of our MDRE process. Since, each process phase involves the generation of a new

model at a higher level of abstraction based on the previous one; Thus, once we have defined the meta-

models to be considered, the remaining step to complete automating of our reverse engineering process

according to MDE principles is to define the mappings between models in order to specify how each

different considered model is going to be generated during the process. We can refer to this mapping as

model transformation [26].

While, the main objective of this work can be extended to present a complete approach to automate the

reverse engineering process of legacy systems, the proposal presents merely the transformation allowing the

generation of the relational database from the MMFD. Therefore, our transformation has been defined as a

set of model-to-model (M2M) exogenous transformation that takes principally a specific Model as input the

MMFD and outputs the DCD. Secondly, it transforms the DCD to Relational Database Model (RDM).

Finally, the database will be created by generating the DDL script through a model-to-text transformation

applied to the RDM.

To perform the first M2M transformation, we used the ATLAS Transformation Language (ATL) [27, 28,

29] that is a domain-specific language for specifying model-to-model transformations. It is a part of the

AMMA (ATLAS Model Management Architecture) platform. ATL is inspired by the OMG QVT

requirements [23] and builds upon the OCL formalism [36]. The choice of using OCL is motivated by its

wide adoption in MDE and the fact that it is a standard language supported by OMG and the major tool

vendors. It is also considered as a hybrid language, i.e. it provides a mix of declarative and imperative

constructs. Regarding the definition of mappings, we have proposed the following method to develop our

model transformation:

1. First, the mappings between models are defined using natural language.

2. Next, those mappings are structured by collecting them in a set of rules, expressed then in natural

language.

3. Then the mapping rules are implemented using one of the existing model transformation

languages. In this case we have chosen the ATL language.

4. Finally, a DDL script to create the relational database will be generated.

In the next sections we will present the DCD meta-model necessary to perform the M2M transformations

(from MMFD to DCD and DCD to RDM) and the refinement of the DCD model by applying a set of rules

concerning integrity constraints and normal forms. Lastly, table 2 illustrates the different rules of the

transformation will be spelled in the natural language.

6.1 Analysis PIM: Domain classes diagram

The class diagram is one of the leading diagrams in UML modeling. It allows dissecting the system by

showing its different classes, their attributes and methods; it provides a static view of the object-oriented

system. Domain class diagram (DCD) belongs to the Analysis phase in life cycle of software

manufacturing. We note that The DCD meta-model shown in figure 5 is a reduced and simplified UML

class diagram [14, 18, 19] that respects the MOF specifications [23]. The meta-class “CLASS” which may

inherit from other classes is composed of properties and operations. A property can be simply an attribute or

an association end that belongs to an association. The operation can contain parameters and it can return a

value. The property, operation’s return and its parameters have a type that can be object class or a

DATATYPE. A property can represent the identifier class; in this case its feature isID must be true.

Concerning the property features lower and upper, they represent the different kind of association

multiplicities.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

19

Figure 5. The domain class diagram meta-model

6.2 MMFD Refinement

6.2.1. Detection of integrity constraints and association multiplicities

In this section, we describe how to recover the complete data structure extraction, including the implicit and

explicit integrity constraints, association multiplicities, equivalent types concerning the group item and

normalization forms. Generally, the Cobol File Descriptors (FD) in source code supply a description of

their record and fields that represented in first step the core of our extracting approach, but they are still

insufficient to give a clear and a complete description of integrity constraints like not nullables data,

identifier keys, associations between data structures, ect. Another complexity related to the lack of

declaration type in COBOL FD, given that this language offers a restricted list of data types: numeric,

alphanumeric, alphabetic and decimal data. Whereas, to specify for example a date as type of field. COBOL

proposes another alternative declaration: the group data item to compensate this insufficient. The following

example describes a birth date field written in COBOL.

02 Birth-date.

 03 Birth_Day PIC 9(2).

 03 Birth_Month PIC 9(2).

 03 Birth_Year PIC 9(4).

Such declaration must be transformed to an equivalent type that will be well-known and accepted by

DBMS. So, due to those distinctiveness languages, we have to propose equivalent types concerning the data

group item in order to ensure the automating of our reverse engineering approach and the migration into

DBMS or another modern platform. However, analysis of many source programs provides a partial view of

data structure only. For most real-world applications, this analysis must go well beyond the mere detection

of the record structures declared in the programs [4]. Therefore, it’s a necessary to include also the analysis

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

20

of the legacy data that exist in files in addition to the source code to obtain the entire description of data. In

the second step, based on the structure or the format of the record described in FD and already extracted, we

access to the physical files to parse data and retrieve the necessary constraint, association multiplicities

normal forms and new types to complete our description. To the best of our knowledge all previous work in

literature has done very little research on extracting the constraints and equivalent types from the exiting

data in files. Meanwhile, such physical data contains vital information that can be retrieved implicitly [5].

Our proposal is to use the physical data present in files in order to normalize the resulting database and

complete data description like primary key, not-null constraint, foreign key, association multiplicities

between data structures, equivalent types etc. The following paragraph will further illustrate the principals

rules used to obtain a complete data description:

1) Primary key Rule

Sometimes, the record key is not declared, such as sequential files. In fact, analyzing only source code is

useless to determine the record key and the alternative will be analyzing data existing in files. Assume we

have different occurrences of Record R1 in physical data file. We determine the record key RK or the

primary key by choosing the minimal field(s) where their values are unique and unrepeated. If they are

more than one candidate key we exceed to other criteria: the type and the length of the field(s). It is

judicious to choose from key candidates, an integer primary key and it is shorter (less length) than the other

ones. The following equation (1) shows the above explained:

 (1)

2) Unique Rule

Let Fi a record field, to ensure that Fi is unique its values must be unique and they are not repeated in the

different record occurrences.

 (2)

3) Not-null Rule

This rule allows determining the fields which are annullable by examining their values in physical files and

ensuring that they are all not null or not empty. So the corresponding equation (3):

 (3)

4) Foreign key Rule

Suppose that we have two records R1 et R2 and RK1 is the record key of the Record R1.To find foreign key

in R2, we must consider only fields existing in R2 with the same type as the record key RK1 in R1. If they

are many ones, from those we chose the field(s) that their values exist as values of RK1 in R1. The

following illustrate the equation (4) used to retrieve foreign key from R2.

 (4)

5) Bidirectional Association one-to-one/one-to-many Rule

After determining the foreign key of Record R2, we can deduce automatically that the multiplicity of

association in the side of the record R2 is one-to-one. But the multiplicity in the other side next to the





































)jlength(F)ilength(Fi,j

integer)itype(F

kVj)/ViValues(FkVjVk,j

R1ii/F

RKR1


















kVj)/ViValues(FkVjVk,j

R1ii/F

RKR1














i/V)iF(ValuesiVi,

R1F
null-notF



































)1RK(ValuesVj)F(ValuesV,j

)1RK(type)F(type

2RF/i

1R1RK Soit

2R

ij

i

i

RK

FK

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

21

record R2 will be resolute by verifying if the values of the foreign key in R2 are unique and not null, in this

case we can deduce that it’s same one-to-one association in the two directions. Else, it will be one-to-many

or zero-to-many in side of R1 and one-to-one in side of R2. The following equations (5) to (6) determine all

cases treated in this rule:

 (5)

(6)

6) Bidirectional Association many-to-many Rule

Assume that the record R has whole of physical data parsed in file corresponding to it issued from others

records without further adding others ones. Otherwise, if R a record that contains only FK1 a foreign key

issued from a record R1 and FK2 is another one issued from R2. Consequently, the record R is transient and

it’s only used for establish relationship between records. The result multiplicity will be many-to-many for

each side of the association between R1 and R2. Concerning the lower multiplicity is depends on verifying

if the values of foreign keys are sometimes null.

(7)

7) Equivalent type date Rule

Suppose in Record file, we have a field Group G(DD,MM,YY) that contains three simple subfields. To

verify that the field G is a date type, we have to make sure that DD, MM and YY represent respectively

Day, Month and Year. That’s why we parse the physical data to examine that the different values of

subfields DD and MM are both greater than one and they are not exceed respectively thirty one days and

twelve months. Concerning the subfield YY, we have chosen that their values belong to the interval from

1900 until 2999. The following equation (8) interprets the rule:

 (8)

8) Equivalent types for the rest of group item Rule

Concerning the group data item we analyze the subfields types by verifying if they are similar in this case

the equivalent type of group item will be same as its subfields but its size will be the sum of the whole

subfields sizes. Otherwise, if the subfields types are different, in this case the equivalent type of the group

item will be always alphanumeric (PIC X) and idem its size will be the sum of subfields sizes.

1..1)2R1R(tymultiplici

kV)FK(ValkV/kjViV),FK(ValjV,iVji/j,i

1..0)2R1R(tymultiplici

kV),kF(ValkV/kjViV),FK(ValjV,iVji/j,i

1)1R2R(tymultipliciFK2RFK

one-to-one

















































































*..0)2R1R(tymultiplici

V)FK(ValV/kVV),FK(ValV,Vji/j,i

*..1)2R1R(tymultiplici

kV)FK(ValkV/kVV),FK(ValV,Vji/j,i

1)1R2R(tymultiplici2RFK

many-to-one

kkjiji

jiji

FK

*..1)1R2Ry(ultiplicitm

*..1)2R1R(yultiplicitm2FKF1FKF,RF,i

2R2FK1R1FK Soit

many-to-many jiii

FKFK



























































ii

iii

iii

iii

Date)F(type

1958YY2999YY/)YY(ValuesYY,i

1DD12MM/)MM(ValuesMM,i

1DD31DD/)DD(ValuesDD,i

Gdate

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

22

 (9)

6.2.2. Normalization Rules

The essential goal of normalization is to avoid transactional anomalies that can result from poor data

modeling and avoid a number of probable problems such as reading anomalies, writing anomalies, data

redundancy and non performance. normalization of data models allows verifying the robustness of their

design to improve the modeling and to optimize data storage by applying the normal forms. Normal forms

are nested, so the respect of the normal form of higher level implies respect for the normal forms of lower

levels.

1) 1
st
 normal form (1NF)

In Cobol programs, multivalued fields are generally declared as arrays like a customer record that can have

tree adresses at same time:

01 Customer

 02 REF PIC 9(4).

 02 Name PIC X(25).

 02 Adress PIC X(50) OCCURS 3.

In this case normalization in 1NF consists of avoiding the multivalued fields by transforming the array data

item to a new record associated with the first record. Note that relationship multiplicity should be one-to-

many in side of the record that contains the array and one-to-one in the other side. Otherwise, the array data

item in customer record will be remplaced by an adress reference field (foreign key).

2) 2
nd

 normal form (2NF)

The second normal form preconizes that the first one is respected and for each field which does not belong

to the record key depends not only on a part of the key but it must depend completely on the key. So, If the

record key is elementary the problem is not raised and the record data structure respect automatically the

second normal form. On other hand, if the record key is composed from many fields, we must verify in the

legacy data existing in physical files, if the values of the different key components are same and identicals

when the values of any other field does not belongs to it are identicals also. Otherwise, the field depends

only from a part of key that don’t change its values. The following equation (10) resume the 2NF rule :

 (10)

After applying the equation (10), the existence of any field F that don’t depends completely on record key,

can be normalize through creating a new record that contains the part of key and the field that depends on it

and associate finally this new one with the old record. To decompose the data in order to respect the 2NF

the following algorithm describes the decomposition process:

is if there is a part of key fields F1, ..., Fn determinant of non-key field F : (by applying the equation 2NF)

1. We create a new record R' that contains F as non-key field and F1,…Fn as the primary key

2. F are removed from the initial record

3. Repeat the step 1 and 2 on R∖ and R’. {F}

















































n

1i

iji

n

1i

iiji

n

)S(size)G(size PICX)G(type)S(type)S(typeji/j,i

)S(size)G(size)S(type)G(type)S(type)S(type ji/j,i

R)S,...,2S,1S(G Soit

)G(type

 

n,1k)F(V)F(VVV

)F(ValuesV,V;ji;j,i/RFRF,F

)R(Values))F(V),...,F(V),F(V(V)F,..,F,F(R Soit

FN2

kjkiji

jiRK

RKn21RKn21RK



























Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

23

3) 3
rd

 normal form (3NF)

The third normal form assume that the second one is respected and for each field which does not belong to

the record key depends directly on it. In order to respect the 3NF, we must verify in the legacy data existing

in physical files, if there are any fields F1 and F2 that didn’t belong to the record key and when the values

of the F1 are same and identicals, the values of F2 are identicals also. therfore, the field F1 don’t depends

directly from record key but it depond from F2. The following equation resume the 3NF rule :

 (11)

The equation (11) allows applying the 3NF on record data structure, by creating a new record which

contains the fields that do not depends directly on record key and associated them with the first record. The

principe of decomposition is for each non-key field F determinant of non-key fields F1, ..., Fn :

1. We create a new record R' with further F as the primary key and F1, ..., Fn as non-key fields

2. F1…Fn are removed from the initial record

3. R’ is not necessarily in 3NF. If this happens, repeat the process on R’

6.3 Transformation Mapping Rules

In this section, and so as to bring our proposal closer to readers and make them familiar with the principles

on which the transformation is based. We will introduce the main transformation rules written in a natural

language in table 1 and an example is given of a simple merge model of file descriptors extracted from

many COBOL programs means CETL. The case study is about the management of customer’s commands.

The different file descriptors extracted from COBOL programs that constitute the MMFD are following:

We will represent then in table1 the main mapping rules spelled in natural language and necessary to

transform the MMFD to the refine DCD and in figure 6 we highlight the target DCD model obtained by

applying a set of the mapping rules described above in table 1.

'V'VVV

)F(Values'V,'V)F(ValuesV,V;sr;s,r/RF,FRF,F;ji

)R(Values))F(V),...,F(V),F(V(V)F,..,F,F(R Soit

FN3

srsr

jsrisrRKjiji

RKn21RKn21RK

























FD CUSTOMER.

01 CUSTOMER.

 02 ID_CUS PIC 9(4).

 02 NAME PIC X(30).

 02 ADRESS PIC X(50) OCCURS 3.

FD COMMAND.

01 COMMAND.

 02 ID_CMD PIC 9(5).

 02 COMMAND_DATE.

 03 DAY PIC 9(2).

 03 MONTH PIC 9(2).

 03 YEAR PIC 9(4).

 02 ID_CUS PIC 9(4).

FD ITEM.

01 ITEM.

 02 CODE PIC 9(5).

 02 LIBEL PIC X(25).

 02 QTS PIC 9(6).

 02 PRICE PIC 9(5)V99.

FD ORDERS.

01 ORDERS.

 02 ID_CMD PIC 9(5).

 02 CODE PIC 9(5).

 02 QTC PIC 9(3).

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

24

Table 1. The main mapping rules from MMFD to DCD

Rule From To Mapping Description

1 Record Class Each record in the FD merge model give place to one class

2
Simple

field
Attribute

The record’s field is mapped to an attribute keeping the same

name but its type is transformed into a DataType as follows :

Picture 9 or S9  int

Picture X or Astring

Picture 9V9 or S9V9float

3
Group

field

Attribute with an

equivalent type

The Group field will be transformed into an attribute but its

type will be deducted from types corresponding to the sub

fields existing in the Group and its size will be the sum of all

subfields attributes (Refinement rules).

4
Record

key

Attribute

isId=true,

isUnique=true,

lower=1,upper=1

The record’s key becomes an attribute which features isId and

isUnique equal to true. The lower and upper values must be

equal to 1 to avoid values null.

5 Array

Class with

multiplicities :

lower=1,upper=1

An Array Field becomes in DCD a new class associated with

the Class corresponding to the record that contains the array

further the multiplicity one-to-one is placed in side of the new

class and one-to-many in other side (1NF).

6
Foreign

Key
Association End

the foreign key detected by parsing physical files give place to

the creation of two association ends in DCD with the

multiplicity one-to-one in side of the Association end that

corresponds to the foreign key

7

2NF

and

3FN

New Classes

In case to obtain a normalized database, the 2NF and 3FN

consist in split classes into others new ones means the

algorithms described above

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

25

Figure 6. The intermediate DCD model

7. Getting Relational Database

The described MDRE assets enable obtaining a normalized and integrated relational database represented

by the target model transformation of our proposal the RDM and automated generation of script code to

generate database from it. Indeed, in this section we present the target RDM meta-model and the main rules

used to obtain it through the DCD as well as the DDL SQL script to create database.

In figure 7, the meta-model describe the normalized relational schema of database which shows the

principals meta-classes: The meta-class “Table” that contains columns. On the other hand, the abstract

meta-class Constraint defines the different integrity constraints that we can apply to many table columns

such as PrimaryKey, ForeignKey, NotNull and Unique. Each ForeignKey constraint must references a table

in the schema. Concerning the check integrity, the values in the data files are not enough sufficient to

deduce a check constraint on the corresponding column. Nevertheless, we can also add it in the RDM

model before generating the script through investigating the domain knowledge of the project owner. The

resulting RDM diagram is an intermediate model representation of the relational database, which can be

transformed into code according to the query ATL presented below. The resulting code is a DDL SQL

script that allows finally creating the database through the RDM. Regarding the main mapping rules used to

transform the DCD to RDM model are following:

 Each class becomes a table,

 Attributes class becomes table columns. Regarding those that their features isId are equal to true will

give place to the integrity constraint Primary key. About property features lower and upper in DCD, if

are both equal to 1 subsequently the RDM column is not nullable (the column has the integrity

constraint Not Null). Sometimes to create database we have to specify the column size, precision and

scale for decimal data, in this case we can use further the MMFD as source model to retrieve those

information. Finally, column can be unique if the attribute class is also unique in DCD (the table

column will have the constraint Unique).

Rule 5

Rule 4

Rule 1

Rule 2

Rule 3

Refine Domain Class Diagram Merge Model File Descriptors

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

26

 Concerning the association ends, each one that has the values of their lower and upper

multiplicities are 1 will be mapped to the integrity constraint ForeignKey added to the

corresponding column table.

To generate the script, we must pay attention to the order of tables creation, since a table that contains a

foreign key which references another table can be created only when this last i.e. the reference table is first

created or if the tables are initially created and the foreign keys constraints are added by means “ALTER

TABLE”. Generally, the RDM model contains resulting tables in any order. Thus, in the query ATL used to

generate the DLL SQL script; we have chosen to add the foreign keys constraints at the end of the resulting

script after creating all domain tables.

Figure 7. The relational database meta-model

Figure 8. The resulting relational database model

Resulting RDM Source DCD

Integrity
constraints

Examples

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

27

The generated SQL script to create the resulting relational database

Resulting Data Definition Language to create Database

CREATE TABLE ITEM(CODE integer ,LIBEL varchar(25) not null,QTS integer ,PRICE real ,

Constraint PK_ITEM Primary key(CODE));

CREATE TABLE CUSTOMER(ID_CUS integer ,NAME varchar(30) unique,Constraint

PK_CUSTOMER Primary key(ID_CUS));

CREATE TABLE ORDERS(ID_CMD integer not null,CODE integer not null,QTC integer not

null,Constraint PK_ORDERS Primary key(ID_CMD,CODE));

CREATE TABLE COMMAND(ID_CMD integer ,COMMAND_DATE timestamp not null,ID_CUS

integer not null,Constraint PK_COMMAND Primary key(ID_CMD));

CREATE TABLE ADRESS(adress varchar(50) ,ID_CUS integer not null,Constraint PK_ADRESS

Primary key(adress));

ALTER TABLE ORDERS

ADD Constraint FK_ORDERS_ID_CMD Foreign Key(ID_CMD) references COMMAND;

ALTER TABLE ORDERS

ADD Constraint FK_ORDERS_CODE Foreign Key(CODE) references ITEM;

ALTER TABLE COMMAND

ADD Constraint FK_COMMAND_ID_CUS Foreign Key(ID_CUS) references CUSTOMER;

ALTER TABLE ADRESS

ADD Constraint FK_ADRESS_ID_CUS Foreign Key(ID_CUS) references CUSTOMER;

8. Discussion and Evaluation

As mentioned above, the maintenance and the evolution of the enterprise’s legacy systems are becoming

crucial to improve the concurrency and the productivity of those enterprises in spite of the higher cost and

the complexity to maintain and evolve them. In this paper, we have shown how we can address this problem

by benefit from the most of the advantages of the MDE approach, and have defined the meta-models

according to the different MDA abstraction levels (the COBOL meta-model related to the PSM level, the

domain class diagram and relational database corresponding to the PIM level) and shown how the

transformation between PSM and PIM models can be made. In further of this model transformation, the

proposal presents how the target relational database has been normalized and integrated by means the

CASE toolset CETL. After testing the proposal with our case study, we are in a position to discuss two

major points: one concerning the characteristics of the CETL tool, and which differs from previous tools

presented above, and one concerning the entire MDRE approach. Related to the first point about tools, the

RM/plusDB [6] does not include the meta-modeling concepts, but it provides an alternative solution

allowing COBOL programs access directly to RDBMS instead of access data files without making any

programs change.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

28

Table 3. Differences between reverse engineering tools

Tool Parsing

source code
Extract integrity

constraints
Extract FD Support

Normalization

Support meta-

modeling

RM/plusDB √ X X X X

SEELA √ X √ X X

Cobol Acess

Plus

√ √ √ √ X

Eclipse

Indiego

√ X X X √

CETL √ √ √ √ √

In other side, SEELA [24] is a reverse engineering tool that works with many legacy languages such as

Ada, Cobol, C, Pascal, PL/M and FORTRAN and it supports the maintenance and the documentation of

structured programs. Meanwhile, it doesn’t incorporate the PSM meta-models appropriates to those

languages and it doesn’t focus on extracting data description or integrity and normalization rules. It is more

oriented treatement and documentation than description of data. Cobol Access Plus (CAP) [37] has many

common points with our CETL tool since CAP operates on file descriptors in COBOL source language and

it generate a common file the Interface Dictionary database (DID) to generate database. But for each new

changes according the resulting database obtained by means CAP, we should provide a modification

directly on database or reproduce again the whole process since CAP doesn’t integrate a database model.

Finally, Eclipse MoDisco [25] provides an extensible framework to elaborate a model-driven tool

supporting software reverse engineering and language modernization. And especialy for COBOL, it

proposes a COBOL meta-model which unfortunately does not include the description of data related to the

File descriptors presents in programs. Indeed, the most previous toolsets do not include the MDE concepts

and they do not extract generally the integrity constraints or normalize database by parsing legacy data.

Regarding our CETL toolset, it extracts the different components of COBOL programs and especially the

description of file data, to generate a XMI model conforming to the Cobol meta-model. it can parse also the

data stored in physical files of different organizations: (sequential, indexed line sequential) in order to

deduce the integrity constraints and verify the normalization forms. The CETL tool can be improved to

produce the model transformation between models without need to include the ATL language and ensure

totally the automatic process of our proposal. Table 2 sumurize the main caracteristics and differences

between CETL and the selected tools.

The second point of our discussion concerns the evaluation of our MDRE approach, that presents an

automatic process to generate relational database from legacy data extracted from Cobol programs by

transforming the related PSM into the DCD PIM which can open others perspectives to generate further the

relational database, the business objects and the data access objects in order to extend our proposal to obtain

a partial or a total migration into modern platforms such as JEE7 or .NET. While, the proposal works on

COBOL programs that are conform to the norm ANSI 85, the others norms do not affect significantly our

transformation or generally our MDRE approach. Finally, with regard to extract the integrity constraints

and the normalization forms from legacy data, the following considerations must be taken into account to

succeed the proposal:

 It is appropriate in our approach to make a choice of programs that work on persistent data files

and it’s not recommend to include programs maneuvering files, sorting, intermediate calculations,

reporting etc.

 When the files contain consistent recordsets and more the data volume is greather, there will be

more pertinent results according to extracting of data integrity constraints and normalization

forms.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

29

9. Conclusion and perspectives

Nowadays, many companies still use legacy systems to manage their business, but unfortunately some of

those systems represent a serious problem since they employ non-integrated, inconsistent, and non

normalized data without documentation and modeling supports. Hence, their maintenance and scalability

become too expensive and practically very complex. Our approach proposes a solution that helps them to be

able to control and reduce the cost of legacy system’s maintenance and evolving. The proposal allows also

these companies to be ready for a possible migration of their legacy data to integrated and normalized

relational databases. In this paper, we presented a reverse engineering process based on model-driven

approach to perform this migration.

Before introducing the model-driven reverse engineering an overview of the related works is given

especially those that were interested in reverse engineering. Next, we have presented the main goal of this

proposal that consists firstly on the parsing COBOL source code in order to extract the data structure in a

design PSM that is conform to the COBOL meta-model. Secondly, the different extracted PSM models are

merged in a common model entitled the MMFD necessary to produce a reverse model transformation to

obtain the analysis PIM DCD, which is refined in next phase by adding the integrity constraints and normal

forms, getting out from the physical files corresponding to the programs already parsed. Finally, the refine

DCD will be mapped to the RDM and a DLL SQL script is generated to create a normalized and integrate

relational database.

Our approach falls into the topic which is specialized in applying MDA to automate reverse engineering

process and presents many advantages to practitioners and researchers from industry and academia with a

vested interest in this area to discern the strengths and weaknesses of each approach. Thus, the different

contributions of our work are migrating legacy systems to new scalable ones that are independents of

platforms and protected from any technology rupture, improvement of system maintenance is an additional

proposal’s contribution since the modern platform and languages are much less expensive to maintain than

legacy system. And finally the proposal reduces time re-engineering given that MDE is a generative

approach. In regards to perform our MDRE process the CASE toolset CETL is developed to extract the

both information: structure and rules necessary to obtain the expected result.

This work is a part of other ones that falls into our area of research about reengineering legacy systems that

aims recovering knowledge hidden in those old systems by means of automated reverse engineering

processes and modernize them through automated forward engineering processes [38, 39, 40, 41, 42, 43].

To conclude, modernization of the entire legacy systems by applying reverse engineering process based on

MDE is a vast area of research and it’s still the principal goal that we intend to attain. Meanwhile, we are

convinced that our work is a step in the right direction which can be enriched in future work by

modernizing other parts of legacy systems such as proposing a solution to evolve legacy reporting or

migrating completely legacy systems to modern platforms such as JEE7 or .NET.

References

[1] Darryl, K. Taft: “Application Development: Modernizing COBOL Apps: 10 Reasons Why It`s

Important”; eweek 2011-01-24.

[2] http://www.microfocus.com/aboutmicrofocus/pressroom/releases/pr20100120709820.asp

[3] Jean-Marie Favre, Jonathan Musset ; « Rétro-ingénierie dirigée par les métamodèles » ; Actes des

2èmes journées IDM06, à Lille

[4] J-L. Hainaut, J-M.Hick, J.Henrard, D.Roland, V.Englebert, Knowledge Transfer in Database Reverse

Engineering A Supporting Case Study, Institut d’Informatique, University of Namur, rue Grandgagnage,

21- B-5000 Namur, IEEE 1997.

[5]M. R.Abbasifard, M. Rahgozar, A. Bayati and Pournemati, “Using Automated Database Reverse

Engineering for Database Integration”, International Journal of Engineering and Applied Sciences 1:4 2005

http://www.eweek.com/cp/bio/Darryl-K.-Taft/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

30

[6] Spencer Rugaber, Srinivas Doddapaneni, “The Transition of Application Programs From COBOL to a

Fourth Generation Language”, ICSM '93 Proceedings of the Conference on Software Maintenance, IEEE

Computer Society Washington, 1993

[7] Chih-Wei Lu, William C.Chu,Chih-Hung Chang,Yeh-Ching Chung, Xiaodong.Liu and Hongji.Yang

“Reverse Engineering”, Handbook of Software Engineering and Knowledge Engineering, Vol.2, p. 5

[8] Edward Yourdon, Structured Walkthroughs, Yourdon Press, 1989

[9] Jean-Luc Hinaut, Introduction to Database Reverse Engineering. LIBD-Laboratory of Database

Application Engineering Institut d’Informatique- University of Namur; May 2002

[10] Chikofsky, E.J., Cross, J.H.: “Reverse engineering and design recovery: A taxonomy”. IEEE Softw.7

(1) (1990).

[11] Florian Deissenboeck, Daniel Ratiu, “A Unified Meta-Model for Concept-Based Reverse

Engineering”, Proc 3rd International Workshop on Metamodels Schemas Grammars and Ontologies for

Reverse Engineering ATEM’06 Johannes Gutenberg Universitat Mainz (2006)

[12] A Proposal for an MDA Foundation Model (2005-04-01), p. 2

[13] C. Atkinson and T. Kühne: "Model-Driven Development: A Metamodeling Foundation", in: IEEE

Software, September/October 2003 (Vol. 20, No. 5), IEEE, pp. 36-41

[14] Object Management Group, Inc. Unified Modeling Language (UML) 2.1.2 Infrastructure,November

2007. Final Adopted Specification, ptc/03-09-15, p.28

[15] Rahgozar M, Oroumchian F., “An effective strategy for legacy systems evolution”, Journal of software

Maintenance & Evolution. Issue 5, Volume 15, September 2003

[16] Casanova M., Amarel De Sa., “Mapping uninterpreted Schemes into Entity-Relationship diagrams,

two applications to conceptual schema design”. IBM J. Res. & Dev., Vol.28, No1, 1984.

[17] Casanova M., Amarel De Sa., “Designing Entity Relationship Schemas for Conventional Information

Systems. In Proc. Of Entity-Relationship Approach, pp. 265-278, 1983.

[18] Object Management Group, Inc. Unified Modeling Language (UML) 2.1.2 Superstructure,November

2007. Final Adopted Specification.

[19] Rumbaugh, Jacobson, et al. - The Unified Modelling Language Reference Manual - 1999

[20] Howden, W.E.; Pak,S., “Problem Domain, Structural and Logical Abstractions in Reverse

Engineering”, Proceedings of the International Conference on Software Maintenance, IEEE Computer

Society Press, pp.214-224,1992

[21] Nilsson E., G., “The translation of COBOL Data Structure to an Entity-Rel-type Conceptual Schema”.

Proceeding of ERA Conference, IEEE/North-Holland 1985

[22] Edwards H. M., Munro M., “Deriving a Logical Model for a System Using Recast Method”.

Proceedings of the 2nd IEEE WC on Reverse Engineering, Toronto, IEEE Computer Society Press 1995.

[23] Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core Specification, January2006.

Final Adopted Specification.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

31

[24] Harband, J., “SEELA: Maintenance and Documenting by Reverse Engineering”, Proceedings of the

International Conference on Software Maintenance, IEEE Computer Society Press, p.146.1990

[25] JavaTech Journal #10 focusing on Eclipse Indigo,”Eclipse Modisco”, 06-2011

[26] S. Sendall, W. Kozaczynski, Model transformation–the heart and soul of model-driven software

development, IEEE Software Archive 20 (5) (2003) 42–45.

[27] Freddy Allilaire , Jean Bézivin , Frédéric Jouault , Ivan Kurtev, ATL – Eclipse Support for Model

Transformation (2006) : Proc. of the Eclipse Technology eXchange Workshop (eTX) at ECOOP

[28] ATL - a model transformation technology, http://www.eclipse.org/atl/

[29] F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, ATL: a model transformation tool, Science of Computer

Programming 72 (1–2) (2008) 31–39.

[30] Hausler, PA.; Pleszkoch, M.G.; Linger, R.C.; Hevner, A.R., “Using Function Abstraction to

Understand Program Behavior”, IEEE Software, 7(1), pp. 55-63, January 1990.

[31] Holtzblatt, L.J.; Pizza, R.L; Reubenstein, H.B; Roberts, S.N; Harris, D.R., “Design Recovery for

Distributed Systems”, IEEE Transactions on Software Engineering, 23(7), pp. 461-472, July 1997.

[32] Rock-Evans, R.1990. Reverse Engineering:Markets, Methods and tools, OVUM report

[33] Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, OMG Adopted Specification ptc/05-11-01, 2005,

[34] Davis K., Arora A., A Methodology for Translating a Conventional File System into an Entity-

Relationship Model. Proceedings of ERA, IEEE/North-Holland 1985.

[35] Sere, K.; Wald’en, M., “Reverse Engineering Distributed Algorithms”, Journal of Software

maintenance: Research and Practice, 8(2), pp. 117-144,1996.

[36] OMG, « Object Constraint Language (OCL) Specification, version 2.0 », 2006. http

://www.omg.org/spec/OCL/2.0/.

[37] http://www.rldt.fr/fr/caplus.htm

[38] EL BEGGAR, Brahim BOUSETTA, Taoufiq GADI, Generating methods signatures from transition

state diagram: A model transformation approach. Information Science and Technology (CIST), 2012 IEEE

Colloquium in Fez, 4-9

[39] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq. Automatic code generation by model

transformation from sequence diagram of system’s internal behavior. International Journal of Computer

and Information Technology (IJCIT). December 2012 Vol. 1, Issue: 2. p129-146.

[40] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq. Comparative Study between Clustering

and Model Driven Reverse Engineering Approaches. International Journal of Lecture Notes on Software

Engineering (LNSE). 2013. In press

[41] EL BEGGAR Omar, BOUSETTA Brahim, GADI Taoufiq. Comparative Study between Clustering

and Model Driven Reverse Engineering Approaches. The 5th International Conference on Computer

Engineering and Technology (ICCET 2013). Vancouver, Canada, 13 and 14 April 2013. In press

http://www.rldt.fr/fr/caplus.htm

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 4, No.4, 2013

32

[42] BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufiq. Generating operations specification from

domain class diagram using transition state diagram. International Journal of Computer and Information

Technology (IJCIT) January 2013 Volume 2, Issue: 1. p29-36.

[43] BOUSETTA Brahim, EL BEGGAR Omar, GADI Taoufiq. A methodology for CIM modelling and its

transformation to PIM. Journal of Information Engineering and Applications ISSN 2224-5782 (print) ISSN

2225-0506 (online) Vol 3, No. 2, 2013

Omar EL BEGGAR obtained his Bachelor in Mathematics Sciences at the Royal

College Preparative for Aeronautical Techniques (CRPTA) in 1997. He received

his Degree in Informatics Engineering from the National School of Computer

Science and Systems Analysis (ENSIAS) in 2002. He later prepares his PhD

degree in the university Hassan 1
st
 faculty of science and technologies (FST) since

2010. Currently, he is teaching Software Engineering at the same university. He is

a member of LAVETE Laboratory and co-author of the book "UML Modeling

Guide”. His research interest focuses on Model Driven Engineering, software

process, agility systems and modernization of legacy systems with relevant

publication in those disciplines. Email: elbeggar_omar@yahoo.fr

Brahim BOUSETTA received his Degree in Informatics Engineering from Hassan

II Institute for Agronomy and Veterinary, Statistics and informatics Department in

2007. He later prepared his PhD degree in the Hassan 1st University, faculty of

science and technologies of Settat (FSTS) since 2010. His main interests of

research are: Software Engineering, Model Driven Engineering and Development

on JEE platform. Currently, he is teaching Software Engineering at the same

university and a member of LAVETE Laboratory. He has published papers in

some prestigious scientific and professional journals and magazines,. He is the co-

author of the book "UML Modeling Guide”. You may contact him at

ibbousetta@gmail.com.

Taoufiq GADI received his PhD degree from the university Sidi Mohamed Ben

Abdellah fez in 1997. Currently, he is Professor at the university Hassan 1
st
 faculty

of Sciences and Technologies (FST), member of the Mediterranean network and

Telecommunication journal (RTM), reviewer in many relevant journals and chair in

many national and international conferences. He is a director of the 2IDGL

Laboratory, author of many books in software engineering and informatics science

such as "UML Modeling Guide", " Object Oriented Programming” and leadership

of research’s teams on Software engineering and 3D Data base indexing. You may

contact him at gtaoufiq@gmail.com

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating

Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. There’s no deadline for

submission. Prospective authors of IISTE journals can find the submission

instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions

in a fast manner. All the journals articles are available online to the readers all over the

world without financial, legal, or technical barriers other than those inseparable from

gaining access to the internet itself. Printed version of the journals is also available upon

request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library ,

NewJour, Google Scholar

