
Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

23 

Identification & Analysis of Parameters for Program Quality 

Improvement: A Reengineering Perspective 

 

Harmeet Kaur
1
*, Shahanawaj Ahamad

2
, Gurvinder N. Verma

3 

1. Ph.D. (Computer Applications) Research Scholar, Punjab Technical University, Jalandhar, Punjab, India. 

2. Astt. Professor, Dept. of C. S. & Soft. Engg., College of Comp. Sc. & Engg., University of Ha’il, K.S.A. 

3. Professor & HoD-Applied Sciences, Shri Sukhmani Institute of Engg. & Tech. Derabassi, Punjab, India. 

* e-mail of corresponding author: hrmt01@yahoo.com 

 

Abstract 

The nature of software development is very dynamic and more complex by the perspective of reengineering or 

further program maintenances so the developed programs must be flexible, reusable and more scalable and 

which will be possible by the optimum quality parameters satisfaction. Having these issues in concern the 

software development houses trying to find out some established, usable methods to improve the quality of 

programs, the work presented in this paper is to identify, describe and analyze various parameters for quality 

which can affect the productivity and reusability of the software program and its future maintenance in form of 

reengineering. The work presented also analyzes the literature, previous research with different aspects and 

issues, and discussed its affects on present quality of the program because it is necessary to consider the potential 

impact on other requirements when designing a program to meet quality parameters requirements. Quality 

parameters are the overall factors that affect run-time behavior, system design, and user experience because 

many of these parameters are major concern to the program design and architecture, and also applied to establish  

program functionality, reusability, performance, reliability, and security which indicates the success of the design 

and the overall quality of the program and its application, integration.  

Keywords: AOSD, DoD, FURPS,LOC,Parameters. 

 

1.  Introduction 

The rise in demand for efficient systems has increased greatly in last few years, but there has been also criticism 

about the quality of the software systems being currently used. As the expectations for quality have raised, it is 

insufficient to deliver the software product which is technically sound but does not meet the end users 

expectations i.e. easy to use and it should fit best in the work practices and activities of the end- user. Assessing 

and controlling software quality is very difficult and one cannot hold it or touch it, yet its behavior has an impact 

on our day to day’s life. Today, everyone is stakeholders in the drive to improve the quality of the software that 

they work with, yet very few people are able to explicate precisely how they define measures to discriminate 

between “poor” quality and “high” quality software. The key mindset is to remember that a software product is 

developed to provide a range of services for a user group, in order to help them achieve certain needs or goals. 

Thus, it should be made clear that for any software project one should precisely know what those needs or goals 

are. These are the key drivers behind the identification of not just the functional requirements, but also the 

quality requirements.  

All are aware of the problems encountered during the development of software systems, sometimes the cost of 

developing a software overruns the estimated cost or the software systems delivery is delayed or the delivered 

system do not work adequately. Software as such is of greatest concern for the stake holders because of its cost 

and the critical functions it performs (Kosy,1974). For this reason considerable emphasis is given to the software 

quality by the research community. Producing high quality software is prerequisite for all the systems which 

require high reliability and error free operations. For example air force, DoD, Industries etc. 

A major problem while dealing with the software is that there are no quantitative measures of the quality of a 

software product. One problem while dealing with quality aspect of the software is the absence of widely 

accepted definition of software quality which leads to confusion while specifying the quality aims of software 

system. Another problem which hinders developing high quality software is the time of delivery of software 

systems, operation and maintenance phase of the software; one can determine how far the software system meets 

the expectations of the user and at that stage if modifications or enhancements required in the software system it 

becomes very expensive.  

Since the software testing indicates only expected error frequency, while verification corresponds to the 

functional requirements of the software system, so, a new process is needed to measure quality of the software 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

24 

system. This process should indicate which software characteristics relates to which quality attribute such as 

reliability, functionality, flexibility, usability, efficiency, reusability, integrity etc. 

The lifecycle for program development is complex and is of many stages, output of the previous stage acts as an 

input to the next stage and every intermediate deliverable has certain quality parameters that affect the quality of 

end program. If each stage of development cycle meets the requirements of the next stage the end program thus 

developed will meet the specified requirements of the end-user so for better reengineering and developer 

satisfaction the requirements for these quality parameters are also to be considered along with functionality of the 

programs in the planning, design, implementation and testing process. 

 

2.  Literature Review 

In the last five decades lots of quality models for software engineering are proposed as in late 70’s, two main 

models were proposed, in 1977, McCall et al.  proposed a model called McCall’s Software Quality Model, and 

it is also called Classical Quality Model this McCall’s Quality Model was adapted and revised as the MQ Model 

by Watts in 1987. In year in 1978, Boehm et al.  proposed a model using McCall’s quality model, called 

Boehm’s Software Quality Model, while in late 80’s, three quality Models (in 1987, Evans & Marciniak’s 

Quality Model and FURPS Quality Model and next year 1988, Deutsch & Will’s Quality Model) were proposed. 

Roger Pressman (2001), groups at HP have agreed on an acronym, FURPS, abbreviated from  their perspective: 

functionality, usability, reliability, performance and supportability, but in recent years, FURPS has became 

FLURPS+ by some teams at HP, adding localization and another catchall category (the +). McCall, Richards and 

Walters suggested 11 different elements, in 2003, Karl Wiegers suggested 12, RADC(1991) had 13 . 

Experimentally Wiegers has added 2 more to his list, and currently uses 14 as two additional elements are install 

ability and safety.  

Makoid et. al.,(1985), suggested that different definitions of usability may include different parameters such as 

user’s satisfaction or type of errors. Butler (1985), suggested that a system is considered usable if the users can 

complete a given task within a predetermined amount of time. Reed (1986), defines usability as the ease with 

which a system can be learned and used.  

In same year, Shackel (1986), presented an operational definition of usability that allows a system to be 

evaluated throughout the development life cycle. He presented one of the most widely used definitions of 

usability. He suggests that a system is usable to the extent that it is effective, learnable, flexible and subjectively 

pleasing.  

In 1991, ISO 9126 contains 21 attributes, arranged in six areas: functionality, reliability, usability, efficiency, 

maintainability, and portability, from which usability attracted the attention of most researchers.  

In year 1992, IEEE defined usability as it is an easiness for user to learn, to operate, prepares inputs, and 

interprets outputs of a system or components, Nielsen (1993), defines usability as it is having least aspects of 

learning, competence, able to memorize, error recovery. 

Because till 90’s lot of quality models were proposed which lead more confusion among software practitioners 

which model to follow actually? Therefore, Int. Org. of Standardization/Int. Electro-technical Commission 

(ISO/IEC) started promote new development to standardize new quality models considering the entire repository 

of various quality models proposed so far.  

In 1991, ISO/IEC proposed ISO/IEC Quality Model latterly renamed as ISO/IEC 9126 Quality Model since ISO 

9126 was part of the ISO 9000 standard. Later on in 1995, R.G. Dromey (1995) proposed a quality model adding 

one characteristic into ISO/IEC 9126 Quality model. The model is called Dromey’s Software Quality Model. All 

the above defined software quality models were derived based on either legacy software or object-oriented 

software.  

Kumar et.al.,(2009), and I. Castillo et al., (2010).  have proposed  software quality model for AOSD and called 

it as  Aspect-Oriented Software Quality Model (AOSQUAMO). It is a common system, based on UML 

conceptual model the Requirements, Aspects and Software Quality model. The model integrated some new 

characteristics/factors and sub-characteristics/sub-factors of AOSD in AOSQUAMO Model as a base ISO/IEC 

9126 Quality Model and proposed a new quality model for Aspect-Oriented Programming Paradigm, and is 

called Aspect-Oriented Software Quality (AOSQ) Model. 

 

3.   System & Model for Software Quality Measurement 

Before considering the problems of identifying and analysing software quality parameters, we have to discuss 

what quality is. For the development of particular software it is necessary first to understand, define, and then 

prioritize the quality requirements of the end-users. During the software development, a group of users 

represents the customer who commissions the software product. Keeping in view the user requirements the aim 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

25 

is to concentrate on timescale issues of quality parameters such as maintainability, reliability, and usability. 

Consistent with ISO 9126-1 (1998), quality is characterized as a set of characteristics and qualities of product or 

service that bear on its capacity to fulfill stated or inferred necessities. In the view of this definition, a product 

which does not meet functional requirements, or which is delivered late or which has a greater-than-agreed cost, 

has low quality. The fact that individuals disagree about “What Quality is” is an argument in itself for greater 

clarity in the definition of quality parameters and measures for a given software project (and user base), and in 

the longer term for the appearance of some quality standards.  

 

Figure 1: Software quality system 

The classic quality models propose that quality can be decomposed into a hierarchy of quality parameters at 

different levels of abstraction. In Boehm’s “Quality Characteristics Tree” (Shackle,1986), the key quality 

characteristics are maintainability and utility. Maintainability can further be divided into such characteristics as 

modifiability, understandability, and testability, whereas utility can be further divided into reliability, efficiency, 

and human engineering. Further decomposition yields even more primitive characteristics, e.g., structuredness, 

completeness, conciseness, integrity, accuracy-which may be considered more amenable to measurement and 

analysis. Overall quality of the end product can be computed as a weighted function of the primitive 

characteristics, where the weightings depend on user requirements. While quality models provide much insight 

with regard to the parameters of quality and how these may be related, they do not adequately define them. Too 

much reliance is placed on common understandings of everyday language terms. In practice, much variation in 

interpretation occurs between different users of such models. 

Different Software quality perspectives which can be measured are user view, as the quality of the final product; 

developer view as the quality of the intermediate products, end-user manager view, as the marketing 

requirements. The overall quality of the software system can be expressed by combining different views in our 

context, the user and developer views will be used.  The refinement between two levels of quality 

characteristics: factors and criteria were done by Mc Call in (1977). The former can't be measured 

straightforwardly, while the later could be subjectively measured. On this groundwork, the McCall's model was 

further streamlined by ISO 9126-1, into the ISO 9126-1 quality model, now generally acknowledged in the 

state-of-the specialty of software product quality specification and proposed set of six autonomous high level 

quality attributes, which are characterized as a set of parameters of a software product. The quality of software 

product is depicted and assessed by the aforementioned quality characteristics which are utilized as the focuses 

for validation (external quality) and verification (internal quality) at the different phases of development. They 

are refined (Fig.2) into sub-characteristics, until the parameters or measurable properties are obtained.  

 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

26 

 

Figure 2: Relations among the quality elements 

To control and monitor software quality during the development process, the external quality requirements are 

translated into intermediate products, obtained from development activities. Depending on the stakeholder 

personal experience, the conversion and selection of the parameters is a non trivial activity unless an 

organization provides an infrastructure to collect and to analyze previous experience on completed projects. The 

various quality parameters used for measuring are discussed in Table 1. The model should be adapted or 

customized to the specific application or product domain.  

 

4.   Quality Parameters 

Software properties, like time efficiency and memory consumption, are often called as quality parameters and 

cover important aspects of software quality. Quality parameters can be measured by software developers to 

ensure that its software adheres to certain standards or customer requirements. Quality as per the IEEE Glossary 

of Software Engineering Terminology (1990) is the degree to which software meets user’s needs. Schneidewind 

(1995), states that a quality factor is an attribute of software that gives to its quality. Consistent with the 

aforementioned two definitions it might be stated that quality factors are parameters that clients need to find in 

the software and subsequently software quality components might be stated to be client or client oriented. It is 

contended that distinctive stakeholders have distinctive discernments about quality parameters. According to 

Gillies(1992), there are diverse perspectives of quality, which might conflict with one another. 

Type of View Description 

The Transcendent view The classical definition of quality meaning "elegance". 

The Product-based view/ The 

Economist's view 

Higher quality equals higher cost. 

The User-based view It is meeting the users’ requirements and fitness for purpose. 

The Manufacturing view Measures quality in terms of conformance to requirements. 

The Value-based view Provide what the customer requires at a price they can afford. 

Table 1: Different Views of Quality 

Quality plays a vital role to achieving a competitive advantage, based on the notion of continuous improvement 

throughout the entire organization. Quality is intertwined with process management, human resources 

management, organizational characteristics, and strategic and technological approaches. 

4.1 Identify quality parameters 

Quality parameters can be assumptions, constraints or goals of organization. By analyzing the initial set of 

requirements, the potential quality parameters are identified. For example, if the owner of an ATM card holder 

presents his card for transaction of money automatically bank transfers are performed then security is an issue 

that the system needs to address. Another fundamental quality attribute is response time, that is an issue, when, 

an ATM card holder punches his/her ATM card at the ATM, the machine have to react in time so that the user of 

ATM can act according to the instructions and deliver required services. Other concerns are identified in a 

similar fashion: Multiuser System, Compatibility, Legal Issues, Correctness and availability. Quality parameters 

define global properties of a system usually these are only dealt with in the later stages of a software 

development process, such as design and implementation. 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

27 

 

Sr. 

No. 

Attribute Description Variables effect 

Parameters 

Category 

1 
Conceptual 

Integrity 

Conceptual integrity 

characterizes the consistency 

and rationality of the overall 

design 

 

Design of Modules, 

components, coding 

style, variable name. Design Qualities 

2 Maintainability 

Maintainability is the capability 

of the system to experience 

changes with a degree of ease. 

The aforementioned 

progressions could sway parts, 

utilities, characteristics, and 

interfaces. 

Services, Features and 

interfaces. when adding 

or changing the 

functionality, fixing 

errors, and meeting new 

business requirements 

Design Qualities 

3 Reusability 

Reusability outlines the ability 

for segments and subsystems to 

be suitable for utilization in 

different provisions and in 

different situations. Reusability 

minimizes the duplication of 

segments and additionally the 

execution time. 

Components, time 

Design Qualities 

4 Availability 

Availability outlines the extent 

of time that the system is useful 

and working. 

 

Percentage of the total 

system downtime. 

System errors, 

infrastructure problems, 

malicious attacks, 

system load. 

Run-time Qualities 

5 Interoperability 

Interoperability is the capability 

of a system or distinctive 

systems to work successfully 

by corresponding and trading 

informative content with other 

outside systems composed and 

run by external parties. An 

interoperable system makes it 

less demanding to trade and 

reuse informative content 

internally and externally. 

information, external 

system, communication 

Run-time Qualities 

6 Manageability 

Manageability demarcates how 

simple it is for system 

managers to supervise the 

provision, generally through 

sufficient and useful 

instrumentation uncovered for 

utilization in screening systems. 

Debugging and 

performance tuning 

Run-time Qualities 

7 Performance 

Performance is a sign of the 

responsiveness of a system to 

execute any activity within a 

given time interim. It might be 

measured regarding idleness or 

throughput. 

No. of events, time 

Run-time Qualities 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

28 

Sr. 

No. 

Attribute Description Variables effect 

Parameters 

Category 

8 Reliability 

Reliability is the capacity of a 

system to remain operational as 

time goes on. Reliability is 

measured as the likelihood that 

a system won't fail to perform 

its planned capacities over a 

specified time interval. 

Time, function 

Run-time Qualities 

9 Scalability 

Scalability is capability of a 

system to either handle increase 

in burden without effect on the 

performance of the system, or 

the capacity to be promptly 

developed. 

System load 

Run-time Qualities 

10 Security 

Security is the capacity of a 

system to counteract vindictive 

or incidental movements 

outside of the planned use, and 

to avoid exposure or misfortune 

of informative data. 

Malicious attacks, 

accidental actions, loss 

of information 

Run-time Qualities 

11 Supportability 

Supportability is the capacity of 

the system to furnish qualified 

information accommodating for 

distinguishing and determining 

issues when it cannot work 

accurately.  

Information 

System Qualities 

12 Testability 

Testability is a measure of how 

straightforward it is to make 

test criteria for the system and 

its parts, and to execute the 

aforementioned tests with a 

specific end goal to verify if the 

criteria are met. 

Faults ,components 

System Qualities 

13 Usability 

Usability outlines how well the 

provision meets the necessities 

of the client and customer 

Changing user 

requirements User Qualities 

 

Table 2: The different quality parameters and their classification 

4.2   Analysis of Quality Parameters 

Measuring quality in the beginning of software development is the key to develop high quality software. There 

must be a way to assess software quality as early as possible in the development cycle. The factors that affect 

software quality can be categorized in two broad groups:  

1. Factors that can be directly measured (e.g. defects recovered during testing) and  

2. Factors that can be indirectly measured (e.g. usability or maintainability)  

McCall proposed a suitable order of factors that influence software quality as indicated in figure 3.  

 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

29 

 

Figure 3: McCall's Quality factors 

It is evident from the figure that during various phases of software development various quality parameters and 

sub parameters affect the quality of the software. During the product operation phase correctness, reliability, 

usability, integrity and efficiency play important role in the quality of the software product where as in product 

transition phase quality is affected by interoperability, portability and usability. In product revision phase 

maintainability, flexibility and testability are important factors of the software product. In this phase the product 

is tested for errors and it is closely observed whether it is maintainable and flexible. As far as the quality of the 

software is concerned it is affected by its parameters and sub-parameters such as functionality, usability, 

reliability, portability, supportability. Usability of the software is related to number of error messages and the 

length of the user manual that is lesser the numbers of errors greater will be its usability whereas portability is 

size of the program measured in LOC (Line of code) and number of parameters. Reliability is affected by LOC, 

cyclomatic complexity and number of error messages portability, and usability are interrelated more is the 

portability more will be its usability which will enhance the reliability and increases the functionality of the 

software system and leads to the development of the quality software. 

For any software system correctness is one of the most important attribute which is required for proper working 

of the software. Another factor of concern is maintainability; which can be corrective and adaptive. Corrective 

maintainability deals with fixation of errors whereas, adaptive maintainability deals with changes in the 

requirement of the user and perfective changes deals with requirement of the software. Maintainability is directly 

proportional to the amount of re-work. 

 

5.   Conclusion 

During the study it is observed that quality parameters and sub- parameters play a very important role in the 

development of the quality software system. Quality of software is affected by number of parameters for 

example conceptual integrity is influenced by variable name, coding style whereas availability is affected by 

malicious attacks, system load etc. The various existing quality parameters are identified, discussed and analyzed 

and it is seen that reliability, portability and usability are closely related to each other. As far as the 

maintainability of the software system is concerned it is directly proportional to the amount of rework.    

 

References 

[1] B. W. Boehm, et.al.,(1978), “Quantitative Evaluation of Software Quality,” IEEE Computer Society Press, 

Page No.: 592 – 605.  

[2] Butler, K. (1985): Connecting Theory and Practice: A Case Study of Achieving Usability Goals, In 

Proceedings of CHI 85, ACM, New York, pp. 85-88. 

[3] Castillo,et.al.,(2010), “REquirements, Aspects and Software Quality: the REASQ model,” Journal of Object 

Technology, Volume 9, Number 4, Page No.: 69 – 91. 

[4] Fenton, et.al.,(1995),1995,” Software Quality Assurance and Measurement, A Worldwide Perspective” 

International Thomson Computer press, London. 

[5] Francisca Losavio et.al., 2003,“Quality Characteristics for Software Architecture” Online at www.jot.fm. 

Published by ETH Zurich, Chair of Software Engineering Vol. 2, No. 2. 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

30 

[6] Gillies Alan C.,(1992), “Software Quality, Theory and management” London, Chapman & Hall. 

[7] IEEE, (1990) “IEEE Glossary of Software Engineering Terminology”, 610.12. 

[8] ISO/IEC 9126-1, (2001), “Software Engineering - Product Quality- Part 1: Quality Model”, International 

Organization for Standardization, Switzerland. 

[9] ISO/IEC 9126-2, (2002), “Software Engineering - Product Quality- Part 2: External Metrics”, 

[10] International Organization for Standardization, Switzerland. 

[11] ISO/IEC 9126-3, (2003), “Software Engineering - Product Quality- Part 3: Internal Metrics”, 

[12] International Organization for Standardization, Switzerland. 

[13] J. A. McCall, et.al.,(1977),  “Factors In Software Quality - Concept and Definitions of Software Quality,” 

Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base, New York, Vol. 1, No. 3. 

[14] J. Tian,(2005), “Software Quality Engineering-Testing, Quality Assurance and Quantifiable. 

[15] Improvement,” IEEE Computer Society, 2005. 

[16] Karl Wiegers,(2003), Software Requirements (2nd Edition), Microsoft Press,ISBN 0735618798. 

[17] Makoid, L., Forte, C., and Perry, J., (1985), “ An Empirical Model for Usability Evaluation Based on the 

Dynamics of the Human-Computer Interface”, Technical Report TR-85-15, North Carolina State University. 

[18] Msdn library http://msdn.microsoft.com/en-us/library/ee658094.aspx 

[19] Nielsen, J., (1993), Usability Engineering, Academic Press. 

[20] R. G. Dromey,(1995), “A Model for Software Product Quality,” IEEE Transactions on Software 

[21] Engineering, Volume 21 Number 2, Page No.: 146 - 162. 

[22] Roger Pressman,(2001), Software Engineering: A Practitioner’s Approach (5th Edition), McGraw Hill,ISBN 

0073655783 

[24] The Rome Air Development Center is now the Rome Laboratory, as of 1991. 

[25] Reed, P., (1986),” Usability Testing in the Real World”, In Proceedings of CHI 86, ACM, Boston, 212. 

[26] Shackel, B. (1986), “Ergonomics in design for usability”, In Harrison, M. D. and Monk, A. F., editors, 

People and computers, Proc. Second conf. of the BCS HCI specialist group, pp. 45–64, Cambridge, Cambridge 

University Press. 

[27] Schneidewind Norman. F.,(1995), “ Controlling predicting the quality of space shuttle software using 

metrics”, Software Quality Journal 4, 49-68. 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.5, 2013 

 

31 

Author’s biography 

Harmeet Kaur has seven years of experience in academic and research, she is currently pursuing Ph.D. in 

Computer Applications from Punjab Technical University, Jalandhar, India; after 

completing two years Master of Technology (I.T.) degree in year 2011; three years 

Master of Computer Applications (M.C.A.) degree in year 2008; she had the recipient of 

UNDP scholarship to conduct high quality research, is member of IEEE and has 

qualified National Eligibility Test (NET) conducted for lectureship. Presently she is 

working as Assistant Professor of Software Engineering in Green Hills Engineering 

College, Solan (HP). She has published three research articles; her area of research 

includes Program Analysis, Software Reengineering and Quality Assurance. 

 

 

Dr. Shahanawaj Ahamad is an active academician and researcher in the field of Computer Science, Software 

Reverse Engineering with twelve years of research and academic experience including 

five years in abroad, working with College of Computer Science & Engineering of 

University of Ha’il, K.S.A., before joining UoH he has worked with King Saud 

University, Al-Khraj University of K.S.A. and Shobhit University, Meerut (Delhi-NCR) 

and Uttar Pradesh Technical University of INDIA as HoD-I.T., Assistant Professor. He is 

professional member of British Computer Society, U.K., senior member of Computer 

Society of India, including membership of various national and international academic 

and research organizations, member of research journal editorial board and reviewer. He 

is currently working on Service-Oriented Migration, Multi Agent System Reverse 

Engineering, published more than twenty five research articles in his credit in national and international journals 

and conference proceedings. He holds M.Tech. followed by Ph.D. in Computer Science with specialization in 

Software Engineering from Jamia Millia Islamia Central University, New Delhi, India. He has supervised 

bachelor senior projects, master and Ph.D. dissertations. 

 

Prof. (Dr.) Govinder N. Verma has more than twenty years of wide experience in research, academics and 

administration, held various positions as Director, Professor, lecturer in universities and 

engineering colleges after completion of Ph.D. in Applied Mathematics from Himachal 

Pradesh University, Shimla, with excellent grade; he has completed M.Phil, M.Sc., B.Sc. 

in Applied Mathematics all in first division from Himachal Pradesh University, Shimla; 

he has published five research papers in reputed journals and supervising Ph.D. thesis; 

currently he is designated as Professor and Head of Department of Applied Science of 

Shri Sukhmani Institute of Engineering and Technology, Derabassi, affiliated to Punjab, 

Technical University, Jalandhar, India.  

 

 

 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

