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Abstract 

Jeffreys (1961) introduced Cardioid distribution and used it to modeling directional spectra of ocean waves. 
Here an attempt is made to derive pdf of cardioid model as a solution of a second order non homogeneous 
linear differential equation having constant coefficients with certain initial conditions. We also arrive at 
new unimodal and symmetric distribution on real line from Cardioid model induced by Mobius 
transformation called “Cauchy type models”. 

Keywords: Circular model, Mobius transformation, Cardioid and Uniform distributions, Cauchy type 
models. 

 

1. Introduction 

Jeffreys (1961) introduced Cardioid distribution and used it to modeling directional spectra of ocean waves. 

Following  Fejer’s theorem in Fernandez (2006) we may define a family of circular distributions by 
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The probability density and distribution functions of Cardioid distribution are respectively given by 

 

                   (1.2) 

 

where              and  
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In Section 2, we make certain assumptions on arbitrary constants in the general solution of a linear 

differential equation to get Cardioid distribution and Section 3 deals with the generation of Cauchy type 

distributions from Cardioid model induced by Mobius transformation/stereographic projection. 

 

2. Cardioid distribution through a Differential equation 

By making use of certain assumptions on arbitrary constants in the general solution of a differential 

equation we construct the pdf of Cardioid model. 

Theorem 2.1:  

The solution of the initial value problem ( ) ( )
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i) the particular integral which is pdf of Uniform distribution on Unit Circle and 
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which is probability density function of Cardioid 

distribution  

where              and  

Proof: Consider a non homogeneous second order linear differential equation with constant coefficients 

 

                   (2.1) 

 

The Particular Integral of (2.1) admits pdf of circular uniform distribution 

 

                   (2.2) 

 

General solution of the above differential equation  is   

 

                   (2.3) 

where C1 and C2 are arbitrary constants. 

Under the following initial conditions the above solution (2.3) also admits probability density function of 

Cardioid distribution for 
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                   (2.4) 

 

 

 

From (2.3),   

          and         (2.5) 

  

Hence 

 

 

(2.6) 

 

Conveniently we write this equation as  

 

3. Cauchy Type Distributions Using Mobius Transformation On Cardioid Distribution   

 

Ahlfors (1966) defined Mobius transformation as follows 

“ The transformation of the form ( ) ,  
az b

w T z
cz d

+= =
+

where a, b, c and d are complex constants such that 

0ad bc− ≠ is known as Bilinear transformation or Linear fractional transformation or Mobius 

transformation or stereographic projection”.  

Minh and Farnum (2003) imposed certain restrictions on parameters a, b, c and d in T(Z) and arrived at the 

following 

 

          with Im(C) 0.≠       (3.1)  

Where  C = u –i v and C = u + i v.  

The Mobius transformation defined by (3.1) is a real-valued for any z on the Unit Circle 

              which is real.   (3.2) 

 

Hence the Mobius transformation defined by ( ) ,
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 maps every point on the Unit circle onto 

the real line. 

Form (3.2), we have 
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                   (3.3) 

which maps every point on the real line onto the Unit Circle and the mapping is a bijection . 

 

           when v > 0       (3.4) 

 

Theorem 3.1 :    

If θ follows Cardiod Distribution in [-π, π), then ( ) tan
2

T x u v
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has a 2-parameter linear distribution on the real line given by 
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Proof :  If θ follows Cardioid Distribution with 0µ =  in [-π, π), then pdf ( )g θ is 

 

                    

By applying theorem of Minh and Farnum (2003), we have 
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is a family of distributions on the real line and are named by us as Cauchy type distributions obtained 

from the circular model called Cardioid distribution induced by Mobious Transformation. 

When 0ρ =  in (3.5), we get    

 

             (3.6) 

 

 

which is the density function of the 2 – parameter  Cauchy’s distribution with location parameteru and  

scale parameterv .When u = 0 and v = 1, we get ( )
2
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, which is standard Cauchy 

distribution. 

4 Graph   
We observe that the probability distribution on real line generated by using Mobius Transformation on 
Cardioid Model is also Unimodal and symmetric for0 0.5.ρ< <  
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  Figure – 1Graph of pdf of Cauchy Type Model 
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