
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

25 | P a g e
www.iiste.org

A File System Level Snapshot In Ext4

Uma Nagaraj

 Computer Engineering Department, Pune University, MAE, Alandi

Pune, Maharashtra 412105, India

E-mail: umanagaraj67@gmail.com

Ganesh Patil

 Computer Engineering Department, Pune University, MAE, Alandi

Pune, Maharashtra 412105, India

 E-mail: patil.ganesh170@gmail.com

Swapnil Gaikwad

 Computer Engineering Department, Pune University, MAE, Alandi

Pune, Maharashtra 412105, India

E-mail: swapnilgaik72@gmail.com

Akshay Nehe

 Computer Engineering Department, Pune University, MAE, Alandi

Pune, Maharashtra 412105, India

E-mail: akshaynehe785@gmail.com

Ashish Mayekar

 Computer Engineering Department, Pune University, MAE, Alandi

Pune, Maharashtra 412105, India

E-mail: ashishmayekar.32@gmail.com

Received: 2011-10-20

Accepted: 2011-10-29

Published:2011-11-04

Abstract

Snapshot makes a copy of current working system. Creating a snapshot with some processing and
overheads is important to provide the reliable data service during backup. There are two types of snapshot
techniques: volume-based approach and system-based approach. The volume-based Logical Volume
Manager provides compact space usability, but requires some space to save snapshot and makes system
with extra overheads. The system-based Snapshot works better than volume based. The file system based
Snapshot does not need reserve space for snapshot. Therefore, the system-based Snapshot is considered a
good solution in the computer environment where large-scale space management capability is not that
critical. However, such snapshot feature is available in Linux kernel 2.2, 2.6 in EXT3 file system. In this
paper, we proposed a system-based snapshot for the ext4 system in Linux kernel 2.6 or higher. The main

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

26 | P a g e
www.iiste.org

concept of the system-based snapshot mainly come from old-version system based Snapshot.

Keywords: Snapcreate, kernel, Inode, SnapFS.

1. Introduction

In recent days, as mass storage devices are being broadly used on desktop PCs, large-scale data backup
techniques become more and more important. However, in spite of its importance, off-the-shelf data backup
methods available on Linux such as cpio and rsync (A. Tridgell and P. MacKerras. 1996) are not sufficient
to satisfy some requirements of large-scale backup. Most of all, while these methods are running, all I/Os
must be blocked to guarantee data integrity. Thus, they are not applicable to large-scale data backup. The
snapshot is an advanced technique that can make an image of file system at a point of time. The image,
called a snapshot image, is useful as a large scale backup. It provides high backup performance and allows
concurrent data services to users during backup. There are two types of snapshot methods. One is a file
system level approach which depends on a specific file system, and the other is a volume level on the
device driver layer. Each of them has some pros and cons. Because the file system level Approach depends
on an underlying file system, it has much lower portability. However, it is more effective to construct a
snapshot image by using some information provided by the file system. In the volume level approach, there
is another serious problem with its processing. It needs exclusively reserved free space for snapshot images.
Moreover, the size of the reserved space is determined by monitoring the access pattern of its target volume
on run-time. In Linux systems, the SnapFS is the most well-known file system which was implemented
using the snapshot technique on the ext2 file system in Linux kernel 2.2. However, it is not available on the
current Linux kernel. The LVM (D. Teigland, H. Mauelshagen. 2001), one of the latter approaches, is an
implementation of device virtualization layer on a block device driver in Linux kernel. Although it provides
a large-scale backup mechanism and is available on the current kernel, it has the problems described above.
In this paper, a new version of Snapshot file system is developed for the ext4 file system (D. Hitz, J. Lau,
and M. Malcolm. 1994) on Linux kernel 2.6 or higher in order to realize an effective large-scale backup.
The rest of this paper is organized as follows. Section 2 related work. Section 3 describes the ext4 details
and interesting implementation aspects. In section 4, snapshot on ext4. Finally, we conclude in Section 6.

2. Related Work

As mentioned above, the off-the-shelf snapshot methods are difficult to apply in the current Linux
environment, because they heavily depend on a specific file system or require an exclusively reserved disk
volume for snapshot images. In this section, we describe two approaches for the snapshot: file system level
and volume-level approaches.

2.1 file system level snapshot

As a file system level snapshot approach, there are Some file systems such as WAFL (D. Hitz, J. Lau, and
M. Malcolm.1994), VxFS (Toby Creek. 2003), FFS (M. K. McKusick, et al. 1994) and ext3cow (Z.
Peterson and R. Burns. 2005). The Write Anywhere File Layout (WAFL) file system is based on Log-
structured File System (LFS) (M. Rosenblum and J. K. Ousterhout. 1991). It maintains all data with its
metadata on a specific tree structure and provides the snapshot through managing this structure. Veritas File
System (VxFS) is a file system that was developed by Veritas Software as the first commercial journaling
file system. VxFS also supports the snapshot based on block-level Copy-on-Write (COW). VxFS has a
problem that free space called the snapshot file system must be reserved and it is only available while
mounted. Ext3cow was developed in Linux kernel 2.4. It extends the ext3 file system to support the
snapshot through improving the in-memory and disk metadata structure, the ext3cow is an entirely different
file system. Thus, the snapshot in the ext3cow file system also has very low portability.

2.2 volume-level snapshot

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

27 | P a g e
www.iiste.org

In this section, some of volume-level snapshot approaches are described. The volume-level snapshot is
usually performed by a volume manager such as LVM (D. Teigland, H. Mauelshagen. 2001). These
methods have a common problem in that they must have reserved disk volume dedicated for snapshot
images. Logical Volume Manager LVM is a volume manager located between a file system and a device
driver. The snapshot in LVM is achieved by block-level COW and is performed on a unit of Logical
Volume (LV) in the Volume Group (VG). The main problem of LVM is that it needs a reserved disk volume
called Snapshot Volume. If the size of snapshot image is larger than SV, LVM will invalidate a snapshot
image. Therefore SV must be at least equivalent in size to its target LV.

3. Motivation

Snapshot feature enables the reliable backup for storage devices, many such implementations as mentioned
above observed in various file systems. SnapFS is feature given on Linux kernel 2.6 & ext3 file system.
Now in these days many distributions of Linux came with ext4 as default file system, and such snapshot
feature is not present in those distributions. Thus our proposed snapshot enables the snapshot on ext4 file
system.

4. EXT4 Details

4.1 Why EXT4?

Main motivation behind our proposal on ext4 is that ext3 file system is widely used but there are some
restrictions using it, that’s why ext4 is default for recent Linux distributions In order to maintain the stable
ext3 file system for its massive user base, it was decided to fork the ext4 file system from ext3 and address
performance and scalability issues in this file system. . The overview of ext3 is as given.

4.1.1 Linux EXT3

The ext3 file system is a journaling file system that evolved from ext2, and uses the same basic on-disk
structures. Ext3 ensures metadata consistency by write-ahead logging of metadata updates, thus avoiding
the need to perform an fsck-like scan after a crash. Ext3 employs a coarse-grained model of transactions; all
operations performed during a certain epoch are grouped into a single transaction. When ext3 decides to
commit the transaction, it takes an in-memory copy-on-write snapshot of dirty metadata blocks that
belonged to that transaction; subsequent updates to any of those metadata blocks result in a new in-memory
copy. Ext3 supports three modes of operation. In ordered data mode, ext3 ensures that before a transaction
commits, all data blocks dirtied in that transaction are written to disk. In data journaling mode, ext3
journals data blocks together with metadata. Both these modes ensure data integrity after a crash. The third
mode, data writeback, does not order data writes; data integrity is not guaranteed in this mode.

4.1.2 Linux EXT4

As mentioned above, because the SnapFS was developed in Linux kernel 2.6 for ext3 file system, there are
some issues that should be considered. We summarize these issues below:

• Improving timestamp resolution and range

• Extending file system limits

• Extents

• File-level preallocation

• Delaying block allocation

• Reliability

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

28 | P a g e
www.iiste.org

• Online defragmentation

4.1.2.1 Improving timestamp resolution and range

Amazingly, timestamps in the extended file system arena prior to ext4 were seconds based. This was
satisfactory in many settings, but as processors evolve with higher speeds and greater integration
(multi-core processors) and Linux finds itself in other application domains such as high-performance
computing, the seconds-based timestamp fails in its own simplicity. Ext4 has essentially future-proofed
timestamps by extending them into a nanosecond LSB. The time range has also be extended with two
additional bits to increase the lifetime by another 500 years.

4.1.2.2 Extending file system limits

One of the first visible differences in ext4 is the increased support for file system volumes, file sizes, and
subdirectory limits. Ext4 supports file systems of up to 1 exabyte in size (1000 petabytes). Although that
seems huge by today's standards, storage consumption continues to grow, so ext4 was definitely developed
with the future in mind. Files within ext4 may be up to 16TB in size(assuming 4KB blocks), which is eight
times the limit in ext3. Finally, the subdirectory limit was extended with ext4, from 32KB directories deep
to virtually unlimited. That may appear extreme, but one needs to consider the hierarchy of a file system
that consumes an Exabyte of storage. Directory indexing was also optimized to a hashed B-tree-like
structure, so although the limits are much greater, ext4 supports very fast lookup times.

4.1.2.3 Extents

An extent is simply a way to represent a contiguous sequence of blocks. In doing this, metadata shrinks,
because instead of maintaining information about where a block is stored, the extent maintains information
about where a long list of contiguous blocks is stored (thus reducing the overall metadata storage). Extents
in ext4 adopt a layered approach to efficiently represent small files as well as extent trees to efficiently
represent large files. For example, a single ext4 inode has sufficient space to reference four extents (where
each extent represents a set of contiguous blocks). For large files (including those that are fragmented), an
inode can reference an index node, each of which can reference a leaf node (referencing multiple extents).
This constant depth extent tree provides a rich representation scheme for large, potentially sparse files. The
nodes also include self-checking mechanisms to further protect against file system corruption.

4.1.2.4 File-level preallocation

Certain applications, such as databases or content streaming, rely on files to be stored in contiguous blocks
(to exploit sequential block read optimization of drives as well as to maximize Read command-to-block
ratios). Although extents can provide segments of contiguous blocks, another brute-force method is to
preallocate very large sections of contiguous blocks in the size desired (as was implemented in the past
with XFS). Ext4 implements this through a new system call that preallocates and initializes a file of a given
size. You can then write the necessary data and provide bounded Read performance over the data.

4.1.2.5 Delaying block allocation

Another file size-based optimization is delayed allocation. This performance optimization delays the
allocation of physical blocks on the disk until they are to be flushed to the disk. The key to this
optimization is that by delaying the allocation of physical blocks until they need to be written to the disk,
more blocks are present to allocate and write in contiguous blocks. This is similar to persistent
preallocation except that the file system performs the task automatically. But if the size of the file is known
beforehand, persistent preallocation is the best route.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

29 | P a g e
www.iiste.org

4.1.2.6 Reliability

As file systems scale to the massive sizes possible with ext4, greater reliability concerns will certainly
follow. Ext4 includes numerous self-protection and self-healing mechanisms to address this.

4.1.2.7 Online defragmentation

Although ext4 incorporates features to reduce fragmentation within the file system (extents for sequential
block allocation), some amount of fragmentation is impossible to avoid when a file system exists for a long
period of time. For this reason, an online defragmentation tool exists to defragment both the file system and
individual files for improved performance. The online defragmenter is a simple tool that copies files into a
new ext4 inode that refers to contiguous extents. The other aspect of online defragmentation is the reduced
time required for a file system check (fsck). Ext4 marks unused groups of blocks within the inode table to
allow the fsck process to skip them entirely to speed the check process.

5. Proposed solution

When the snapcreate command is issued, first check any process is on write operation then wait till that
process complete write operation.When process stop their write operation then, SnapFS allocates a new
inode, called the indirect inode and copies the address space information of the primary inode to the
indirect inode by copying the address space, the primary inode shares all its blocks with the indirect inode
without any actual block copies as shown in Figure 1. If any block modification occurs, SnapFS only has to
allocate new blocks to the primary inode and apply these blocks to its address space. SnapFS also uses the
extended attributes of the primary inode for managing the relationship between the primary and indirect
inodes. The relationship which is stored into extended attributes with a table form is used to access indirect
inodes, called snapshot images, in snap clone.

6. Conclusions

The Proposed System has a reliable & efficient backup for storage devices. The EXT4 file system along
with the snapshot further enhances the security of the system. The proposed technique will provide reliable
backup on storage devices.Also the proposed system can be applicable in various fields like data mining,
Data recovery, Databases, Debugging etc. Therefore, the proposed system provides an effective snapshot
feature for Ext4 file system.

Acknowledgment

We would like to express our gratitude towards a number of people whose support and consideration has
been an invaluable asset during the course of this work.

References

A. Tridgell and P. MacKerras. (1996), “The rsync algorithm”, Technical Report TR- CS-96-05.

SnapFS, http://sourcefrog.net/projects/snapfs/

D. Teigland, H. Mauelshagen. (2001), "Volume Managers in Linux", USENIX Technical Conference.

M. K. Johnson. (2001), “RedHat's New Journaling File System: ext3”, RedHat Inc.

D. Hitz, J. Lau, and M. Malcolm. (1994), “File System Design for an NFS File Server Applicance”,
USENIX Technical Conference.

Toby Creek. (2003), “VERITAS VxFS”, Technical Report TR-3281.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 2, No.8, 2011

30 | P a g e
www.iiste.org

M. K. McKusick, et al. (1994), “The Design and Implementation of the 4.4 BSD Operating System”,
Addison Wesley.

Z. Peterson and R. Burns. (2005), “Ext3cow: A Time-Shifting File System for Regulatory Compliance”,
ACM Transactions on Storage.

M. Rosenblum and J. K. Ousterhout. (1991), “The Design and Implementation of a Log-Structured File
System”, Symposium on Operating Systems Principles.

S. B. Siddha. (2001), “A Persistent Snapshot Device Driver for Linux”, Linux Showcase.

Figure 1. Block COW operation of snapshot

Table 1. Difference between Ext3 & Ext4

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

