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Abstract 

The generation of fractals and study of the dynamics of transcendental function is one of emerging and 

interesting field of research nowadays. We introduce in this paper the complex dynamics of tangent 

function of the type {tan( ) },nz c where 2n  and applied Ishikawa iteration to generate new Relative 

Superior Mandelbrot sets and Relative Superior Julia sets. Our results are entirely different from those 

existing in the literature of transcendental function. 

Keywords: Complex dynamics,
 
Relative Superior Julia set, Relative Superior Mandelbrot set. 

 

1. Introduction 

Extracting qualitative information from data is a central goal of experimental science. In dynamical 

systems, for example, the data typically approximate an attractor or other invariant set and knowledge of 

the structure of these sets increases our understanding of the dynamics. The most qualitative description of 

an object is in terms of its topology — whether or not it is connected? Based on this objective, this paper 

studies the dynamical behavior of tangent function. 

The study of transcendental function has emerged out as discrete dynamical systems in numerical and 

complex analysis. It forms a rich dynamics for well known Julia sets and Mandelbrot sets (Devaney 1989).  

On the other hand, the dynamics of iterated polynomials are one of the greatest pioneering work of Doaudy 

and Hubbard (1984, 1985). Given a polynomial of degree 2n , the most important set is the Julia set J 

consisting of the points z C which have no neighborhood in family of iterates, forms a normal family. 

Specially for the polynomials, one can start with the set of points I which converge to infinity under 

iteration (escaping points) and its complement /K C I is known as filled in Julia sets and it consists of 
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points with bounded orbits. In other words, the Julia set cJ of the function cQ where
2

cQ z c  is 

either totally disconnected or connected. Its counterpart, Mandelbrot set for a family cQ is defined as 

{ : 0 }c cM c C orbit of under iteration by Q is bounded  For | | 2c  , orbit of 0 escapes to  so 

only | | 2c   is considered. For any n, ( )| (0) | 2n

cQ  , then the orbit of 0 tends to infinity (Devaney 

1989) . 

The key feature of this paper is to show that the tangent function, which falls under category of 

transcendental function, is an example, where Julia set is all of C . There is a great difference between the 

dynamics of polynomials and transcendental functions. Picard’s Theorem (Schleicher 2007) tells us that for a 

transcendental function f , given any “neighborhood of infinity” [{ ;| | }, ]U z z r r R    ( )f U  covers C  

with exception of at most one point. This is certainly not true for polynomials because we find a 

neighborhood of U so that ( )f U U . 

The study of dynamical behavior of the transcendental functions were initiated by Fatou (1926). For 

transcendental function, points with unbounded orbits are not in Fatou sets but they must lie in Julia sets. 

Attractive points of a function have a basin of attraction, which may be disconnected. A point z  in Julia for 

cosine function has an orbit that satisfies | Im | 50z 
 

A Julia set thus, satisfies the following properties: 

(i) Closed 

(ii) Nonempty 

(iii) Forward invariant t(If ( )z J F , then ( ) ( )F z J F , where F  is the function). 

(iv) Backward invariant 

(v) Equal to the closure of the set of repelling cycles of F . 

On the other hand, Fatou Set is the complement set of Julia set, also stated as stable set.  Attracting 

cycles and their basins of attraction lie in the Fatou set, since iterates here tend to cycle and thus forms a 

normal family. 

Thus, the iteration of complex analytic function F  decompose the complex plane into two disjoint sets 

 

1. Stable Fatou sets in which iterates are well behaved. 

2. Julia sets on which the map is chaotic. 

In trigonometric function, ( ) sinS z z , 0 is defined as fixed point for S . If 0x R , then 

either
0( ) 0S x   or

0( ) 0nS x  . Also, we have the points lying on the imaginary axis have their orbits 

that tend to infinity since sin( ) sin( )iy i hy . On the other hand for cosine function, if 

[ ( )]nC z as n , then orbits which escapes do so, with the increase in the imaginary part. Here, 

Mandelbrot plane will contain infinitely many critical points given by
2 2n  , where n N .  Sine and 

cosine functions are thus declared as “Topologically complete” (McMullen 1987). 

The fixed point in topology, 0z z is declared as 

(i) Attracting if 00 | ( ) | 1F z  . 

(ii) Superattracting if 0( ) 0F z   

(iii) Repelling if 0| ( ) | 1F z   

(iv) Neutral if 0
0

2
( )

i
F z e

   

If 0  is rational, then 0z is rationally indifferent or parabolic, otherwise 0z is irrationally 

indifferent.  

 

 The dynamics of cosine and sine function as revealed in the past literature states that the points that 

converge to   under iteration are organized in the form of rays. It is well known that the set of escaping 
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points is an open neighborhood of , which can be parameterized by dynamic rays. As the tangent function 

is compromised of sine and cosine function, thus it will undertake most of the properties of both the functions. 

For the entire transcendental functions, the point  is an essential singularity (rather than super attracting 

point). Ereneko (1989) studied that for every entire transcendental functions, the set of escaping points is 

always non-empty. His query was answered in an affirmative way by R. L. Devaney (1984, 1986), for the 

special case of Exponential function, where every escaping point can be connected to , along with unique 

curve running entirely through the escaping points. 

  A dynamic ray is connected component of escaping set, removing the landing points. It turns out to 

be union of all uncountable many dynamic rays, having Hausdroff dimension equal to one. However by a 

result of McMullen (1987) the set of escaping points of a cosine family has an infinite planar Lesbegue 

measure. Therefore the entire measure of escaping points sits in the landing points of those rays which land at 

the escaping points.  

In this past literature the sine and cosine functions were considered in the following manner: 

 sin( ), 2nz c where n   

 ( ) ( ) / 2izizf z e e   

 cos( ), 2nz c where n   

 ( ) ( ) / 2izizf z e e   

We are introducing in this paper tangent function of the type {tan( ) },nz c where 2n  and applied 

Relative Superior Ishikawa iterates to develop an entirely new class of fractal images of this transcendental 

function. Escape criteria of polynomials are used to generate Relative Superior Mandelbrot Sets and Relative 

Superior Julia Sets. Our results are quite different from existing results in literature as we determined the 

connectivity of the Julia Sets using Ishikawa iterates. 

 

2. Preliminaries: 

The  process  of generating  fractal  images from tan( )nz z c   is similar  to  the  one 

employed  for the self-squared  function (Peitgen, Richter 1986). 

Briefly, this process consists of iterating this function up to N times. Starting from a value 0z  we 

obtain 1, 2, 3, 4,...z z z z by applying the transformation tan( )nz z c  . 

 

Definition2.1:  Ishikawa Iteration (Ishikawa1974): Let X be a subset of real or complex numbers 

and :f X X  for 0x X , we have the sequences{ }nx and { }ny  in X in the following manner: 

 
( ) (1 )n n n n ny s f x s x     

 
1 ( ) (1 )n n n n nx s f y s x     

where 0 1ns  , 0 1ns  and  ns &  ns are both convergent to non zero number. 

 

Definition 2.2 (Rana, Chauhan, Negi 2010): The sequences nx and  ny constructed above is called 

Ishikawa sequences of iterations or Relative Superior sequences of iterates. We denote it 

by 0( , , , )n nRSO x s s t . Notice that 0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nSO x s t  i.e. Mann’s orbit 

and if we place 1n ns s   then 
0( , , , )n nRSO x s s t  reduces to

0( , )O x t . 

           We remark that Ishikawa orbit 0( , , , )n nRSO x s s t with 1/ 2ns   is relative superior 

orbit. Now we define Mandelbrot sets for function with respect to Ishikawa iterates. We call them as 

Relative Superior Mandelbrot sets. 

 

Definition 2.3 (Rana, Chauhan, Negi 2010): Relative Superior Mandelbrot set RSM for the function of the 
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form ( ) n

cQ z z c  , where n = 1, 2, 3, 4… is defined as the collection of c C for which the orbit of 0 

is bounded i.e. { : (0) : 0,1,2...}k

cRSM c C Q k   is bounded. 

 In functional dynamics, we have existence of two different types of points. Points that leave the 

interval after a finite number are in stable set of infinity. Points that never leave the interval after any 

number of iterations have bounded orbits. So, an orbit is bounded if there exists a positive real number, 

such that the modulus of every point in the orbit is less than this number. 

             The collection of points that are bounded, i.e. there exists M, such that | ( ) |nQ z M , 

for all n, is called as a prisoner set while the collection of points that are in the stable set of infinity is 

called the  escape set. Hence, the boundary of the prisoner set is simultaneously the boundary of escape 

set and that is Julia set for Q. 

 

Definition 2.4 (Chauhan, Rana, Negi 2010):  The set of points RSK whose orbits are bounded under 

relative superior iteration of the function Q (z) is called Relative Superior Julia sets. Relative Superior Julia 

set of Q is boundary of Julia set RSK 

 

3. Generating the fractals: 
We have used in this paper escape time criteria of Relative Superior Ishikawa iterates for 

function tan( )nz z c  . 

 Escape Criterion for Quadratics: Suppose that | | max{| |,2 / ,2 / }z c s s , then | | (1 ) | |n

nz z   and 

| |nz  as n .So, | | | |z c & | | 2 /z s as well as | | 2 /z s  shows the escape criteria for 

quadratics. 

 

Escape Criterion for Cubics:  Suppose 1/2 1/2| | max{| |, (| | 2 / ) ,(| | 2 / ) }z b a s a s    then | |nz    

as n . This gives an escape criterion for cubic polynomials 

 

General Escape Criterion: Consider 
1/ 1/| | max{| |, (2 / ) ,(2 / ) }n nz c s s then | |nz    as n is the escape 

criterion. (Escape Criterion derived in (Rana, Chauhan, Negi 2010)). 

 Note that the initial value 0z  should be infinity, since infinity is the critical point 

of tan( )nz z c   . However instead of starting with 0z = infinity, it is simpler to start with 1z  = c , 

which yields the same result. (A critical point of z F(z) c   is a point where ( ) 0F z  ).  

 

4.  Geometry of Relative Superior Mandelbrot Sets and Relative Superior Julia Sets:  

The fractals generated from the equation tan( )nz z c   possesses symmetry along the real axis 

Relative Superior Mandelbrot Sets: 

 In case of quadratic polynomial, the central body is bifurcated from middle. The body is maintaining 

symmetry along the real axis. Secondary lobes are very small initially for s = 1, s =1. As the 

value of the set changes to s =0.1, s =0.5, the central body gets more unified along with existence 

of very small major secondary lobe. But as the value is changed to s =0.5 s =0.4, the central body 

is merged into one along with existence of only one major secondary lobe. The fractal generated for 

s =0.5 s =0.4appears to be in the form of an umbrella. 

 In case of Cubic polynomial, the central body is showing bifurcation into two equal parts, each part 

containing one major secondary lobe which appears to be similar in size of central body. The 

symmetry of this body is maintained along both axes. For s =0.5 s =0.4, the central body merges 

with the major secondary lobes and the figure thus generated contains two minor secondary lobes 
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attached on each side. As the value of relative Superior Mandelbrot set changes to s =0.1, s =0.5, 

the bifurcation of the central body becomes invisible while the minor secondary bulbs attached to 

the body on the either side shows increase in their size. 

 In case of Biquadratic polynomial, the central body is divided into three parts, each part having one 

major secondary bulb. The secondary bulbs present on either side of the real axis shows larger 

extensions. The body is maintaining symmetry along the real axis. . For s =0.5 s =0.4, the two of 

the major secondary lobes merges with the central body along the real axis, along with the presence 

of minor secondary lobe present on each side. As the value of the set changes to s =0.1, s =0.5, 

bifurcation of the central body becomes invisible while the minor secondary bulbs appears to be 

grow up in their size.  

Relative Superior Julia Sets: 

 Relative Superior Julia Sets for the transcendental function tan( )z appears to follow law of having 

2n wings. These sets maintained their symmetry along both the axes i.e. along real and imaginary 

axis. 

 The Relative Superior Julia Sets for quadratic function is divided into four wings with central 

black body. Its symmetry exists along both axes. 

 The Relative Superior Julia Sets for Cubic function is divided into six wings having reflectional 

and rotational symmetry, along with a middle black region, that represents its Mandelbrot Set The 

zoom in Fig.2 showing s =0.4 for s=0.5,illustrates this phenomenon. 

 The Relative Superior Julia Sets for Biquadractic function is divided into eight wings possessing 

the reflectional and rotational symmetry, along with a black central escape region, which 

resembles to its Mandelbrot sets. 

  

5.  Generation of Relative Superior Mandelbrot Sets: 

5.1 Relative Superior Mandelbrot Set of Quadratic function: 

       
             Fig 1: s= s'=1                 Fig2: s=0.1, s'=0.5              Fig 3: s=0.5, s'=0.4 

 

5.2 Relative Superior Mandelbrot Set of Cubic function:  

        
          Fig 1: s= s'=1                   Fig2: s=0.1, s'=0.5                Fig 3: s=0.5, s'=0.4         

 

5.3 Relative Superior Mandelbrot Set of Biquadratic function:   
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          Fig 1: s= s'=1                    Fig2: s=0.1, s'=0.5               Fig 3: s=0.5, s'=0.4 

 

5.4 Generalization of Relative Superior Mandelbrot Set: 

 
Fig1: Relative Superior Mandelbrot Set for s=0.1, s'=0.5 and n=11 
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6. Generation of Relative Superior Julia Sets: 

6.1 Relative Superior Julia Set of Quadratic function: 

  
Fig1: Relative Superior Julia Set for s=0.5, s'=0.4, c= -0.4141245468+i0.0186667203 

 

6.2 Relative Superior Julia Set of Cubic function:  

  
Fig1: Relative Superior Julia Set for s=0.5, s'=0.4, c= -0.09631341431+i0.0695165015 

 

 
Fig2: Zoom of central part of Relative Superior Julia Set for s=0.5, s'=0.4, c= -0.09631341431+i0.0695165015 

 

6.3 Relative Superior Julia Set of Biquadratic function:   

 
Fig1: Relative Superior Julia Set for s=0.5, s'=0.4, c= 0.08055725605+i0.038502707 

 

7. Fixed points: 

 

7.1 Fixed points of quadratic polynomial 

 

Table 1: Orbit of F(z) at s=0.5 and s'=0.4 for (z0= - 0.4141245468+i0.0186667203i) 
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Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1. 0.4145 8. 0.4151 

2. 0.3074 9. 0.4151 

3. 0.3526 10. 0.4151 

4. 0.3901 11. 0.415 

5. 0.4072 12. 0.415 

6. 0.4131 13. 0.415 

7. 0.4148 14. 0.415 

Here we observed that the value converges to a fixed point after 11 iterations 

 
Fig1.  Orbit of F(z) at at s=0.5 and s'=0.4 for (z0= - 0.4141245468+i0.0186667203i) 

 

Table 2: Orbit of F(z) at s=0.1 and s'=0.5 for (z0=-1.634519296 -0.01947061561 i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

57.  0.4233 67.  0.4237 

58.  0.4234 68.  0.4237 

59.  0.4234 69.  0.4237 

60.  0.4235 70.  0.4237 

61.  0.4235 71.  0.4237 

62.  0.4236 72.  0.4237 

63.  0.4236 73.  0.4237 

64.  0.4236 74.  0.4237 

65.  0.4236 75.  0.4238 

66.  0.4236 76.  0.4238 

Here we skipped 56 iteration and observed that the value converges to a fixed point after 74 iterations 

 
Fig2. : Orbit of F(z) at s=0.1 and s'=0.5 for (z0=-1.634519296 -0.01947061561 i) 
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7.2 Fixed points of cubic polynomial 

 

Table 1: Orbit of F(z) at s=0.1 and s'=0.5 for (z0= 0.005386148102+0.005954274996i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

53.  0.4232 63.  0.4237 

54.  0.4232 64.  0.4237 

55.  0.4233 65.  0.4238 

56.  0.4234 66.  0.4238 

57.  0.4235 67.  0.4238 

58.  0.4235 68.  0.4238 

59.  0.4236 69.  0.4238 

60.  0.4236 70.  0.4238 

61.  0.4236 71.  0.4239 

62.  0.4237 72.  0.4239 

Here we skipped 52 iteration and observed that the value converges to a fixed point after 70 iterations 

 
Fig 1.  Orbit of F(z) at s=0.1 and s'=0.5 for (z0= 0.005386148102+0.005954274996i) 

 

Table 2: Orbit of F(z) at s=0.5 and s'=0.4 for (z0 = -0.09631341431+0.0695165015 i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1.  0.3072 11.  0.4161 

2.  0.3484 12.  0.4162 

3.  0.3763 13.  0.4163 

4.  0.3935 14.  0.4163 

5.  0.4036 15.  0.4164 

6.  0.4093 16.  0.4164 

7.  0.4125 17.  0.4164 

8.  0.4143 18.  0.4164 

9.  0.4152 19.  0.4164 

10.  0.4158 20.  0.4164 

Here observe that the value converges to a fixed point after 14 iterations 
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Fig2. Orbit of F(z) at s=0.5 and s'=0.4 for (z0 = -0.09631341431+0.0695165015 i) 

 

7.3 Fixed points of Biquadratic polynomial 

 

Table 1: Orbit of F(z) at s=0.1 and s'=0.5 for (z0= 0.3000244068+0.1862906688 i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

54.  0.4804 64.  0.4809 

55.  0.4805 65.  0.4809 

56.  0.4805 66.  0.481 

57.  0.4806 67.  0.481 

58.  0.4807 68.  0.481 

59.  0.4807 69.  0.481 

60.  0.4808 70.  0.481 

61.  0.4808 71.  0.481 

62.  0.4808 72.  0.4811 

63.  0.4809 73.  0.4811 

Here we skipped 53 iteration and observed that the value converges to a fixed point after 71 iterations 

  
Fig1. Orbit of F(z) at s=0.1 and s'=0.5 for  (z0= 0.3000244068+0.1862906688 i) 

 

Table 2: Orbit of F(z) at s=0.5 and s'=0.4 for (z0= 0.08055725605+0.038502707i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1.  0.0893 10.  0.4812 

2.  0.2714 11.  0.4812 
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3.  0.3827 12.  0.4812 

4.  0.438 13.  0.4811 

5.  0.4637 14.  0.4811 

6.  0.4747 15.  0.4811 

7.  0.4791 16.  0.4811 

8.  0.4806 17.  0.4811 

9.  0.4811 18.  0.4811 

10.  0.4812 19.  0.4811 

Here observe that the value converges to a fixed point after 12 iterations 

 

   
Fig2. Orbit of F(z) at s=0.5 and s'=0.4 for  (z0= 0.08055725605+0.038502707i) 

 

8.    Conclusion: 
 

In this paper we studied the tangent function which is one of the members of transcendental family. Relative 

Superior Julia sets possess 2n wings. Besides this, these Julia sets explores the presence of central black region, 

which are the Mandelbrot images of respective sets. For even powers, Relative Superior Mandelbrot sets show 

symmetry only along the real axis while on the other hand, for odd terms, body maintains its symmetry along both 

axes. The fractal images thus developed undertakes the properties of both sine and cosine functions. The results 

thus obtained are innovative. Our study is unique in sense that we have used escape time criteria for 

transcendental function to generate fractals using Relative Superior Ishikawa iterates, otherwise results according 

to past literature would have shown Julia sets to be disconnected. 
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