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ABSTRACT 

Decision making in a complex and dynamically changing environment of the present day demands a new 

techniques of computational intelligence for building equally an adaptive, hybrid intelligent decision support 

system. In this paper, a Decision Tree-Neuro Based model was developed to handle loan granting decision 

support system and clinical decision support system(Eye Disease Diagnosis) which are two important decision 

problems that requires delicate care. The system uses an integration of Decision Tree and Artificial Neural 

Networks with a hybrid of Decision Tree algorithm and Multilayer Feed-forward Neural Network with 

backpropagation learning algorithm to build up the proposed model. Different representative cases of loan 

applications and eye disease diagnosis were considered based on the guidelines of different banks in Nigeria and 

according to patient complaint, symptoms and physical eye examinations to validate the model. Object-Oriented 

Analysis and Design (OO-AD) methodology was used in the development of the system, and an object-oriented 

programming language was used with a MATLAB engine to implement the models and classes designed in the 

system. The system developed, gives 88% success rate and eliminate the opacity of an ordinary neural networks 

system. 

Keywords: Decision Tree-Neuro Based Model, Backpropagation Learning Algorithm, Object-Oriented Analysis 

and Design, MATLAB Embedded Engine, Loan Granting, Eye Diseases Diagnosis. 

 

1. Introduction 

A decision support system (DSS) is a computer-based information system that supports business or 

organizational decision-making activities. DSSs serve the management, operations, and planning levels of an 

organization and help to make decisions, which may be rapidly changing and not easily specified in advance. 

Decision makers are faced with increasingly stressful environments – highly competitive, fast-paced, near real-

time, overloaded with information, data distributed throughout the enterprise, and multinational in scope. The 

combination of the Internet enabling speed and access, and the maturation of artificial intelligence techniques, 

has led to sophisticated aids to support decision making under these risky and uncertain conditions. These aids 

have the potential to improve decision making by suggesting solutions that are better than those made by the 

human alone. 

They are increasingly available in diverse fields from medical diagnosis to traffic control to engineering 

applications. The granting of loans by a financial institution (bank or home loan business) is one of the important 

decision problems that require delicate care. Wrong decision may lead to bank distress and even near collapse of 

national economy which may require huge bail-outs from government to keep the economy going.  

In this paper, decision tree-neuro based model will be developed for the loan granting decision support system 

and eye disease diagnosis, which is a hybrid of decision tree and neural network. This hybrid approach enables 

us to build rules for different groups of borrowers and eye diseases separately. In the first   stage, bank customers 

or eye diseases are segmented into clusters, that are characterized by similar features and then, in the second step, 

for each group, decision trees are built to obtain rules that are feed into the neural net for indicating clients 

expected not to repay the loan or presence or absence of an eye disease. The main advantage of applying the 

integration of two techniques consists of building models that, may better predict risk connected with granting 

credits for each client with good explanations, than while using each method separately. The developed model 

was analyzed and designed using appropriate tools and the implementation was carried out using C programming 

language with an embedded MATLAB engine i.e. C programming was used with its classes to call MATLAB 

tools at different stages.  

 

2.0 Literature Review  

An artificial neural network (NN) is a computational structure modelled loosely on biological process. NNs 

explore many competing hypothesis simultaneously using a massively parallel network composed of non-linear 

relatively computational elements interconnected by links with variable weights. It is this interconnected set of 

weight that contains the knowledge generated by the Neural Networks(NN). NNs have been successfully used 
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for low- level cognitive tasks such as speech recognition and character recognition. They are been explored for 

decision support and knowledge induction [1][2][3] . In general, NN models are specified by network topology, 

node characteristics, and training or learning rules. NNs are composed of large number of simple processing 

units, each interacting with others via excitatory or inhibitory connections. Distributed representation over a 

large number of units, together with interconnectedness among processing units, provides a fault tolerance. 

Learning is achieved through a rule that adapt connection weights in response to input patterns. Alterations in the 

weights associated with the connections permits adaptability to new situations [4] 

A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible 

consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm. 

Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a 

strategy most likely to reach a goal. Another use of decision trees is as a descriptive means for calculating 

conditional probabilities.  

In financial institutions Loan applications can be categorized into good applications and bad applications. Good 

applications are the applications that are worthy of giving the loan. Bad applications are those ones that should 

be rejected due to the low probability of the applicants ever returning the loan. The institution usually employs 

loan officers to make credit decisions or recommendations for that institution. These officers are given some 

hard rules to guide them in evaluating the worthiness of loan applications. After some period of time, the officers 

also gain their own experiential knowledge or intuition (other than those guidelines given from their institution) 

in deciding whether an application is loan worthy or not. Generally, there is widespread recognition that the 

capability of humans to judge the worthiness of a loan is rather poor [5]. Some of the reasons are: 

(i) There is a large gray area where the decision is up to the officers, and there are cases which are not 

immediately obvious for decision making;  

(ii) Humans are prone to bias, for instance the presence of a physical or emotional condition can affect the 

decision making process. Also personal acquaintances with the applicants might distort the judgmental capability;  

(iii) Business data warehouses store historical data from the previous applications. It is likely that there are 

knowledge hidden in this data, which may be useful for assisting the decision making. Unfortunately, the task of 

discovering useful relationships or patterns from data is difficult for humans [6]. The reasons for such difficulties 

are the large volume of the data to be examined, and the nature of the relationships themselves that are not 

obvious. 

Given the fact that humans are not good at evaluating loan applications, a knowledge discovery tool thus is 

needed to assist the decision maker to make decisions regarding loan applications. Knowledge discovery 

provides a variety of useful tools for discovering the non-obvious relationships in historical data, while ensuring 

those relationships discovered will generalize to the new/future data [7][8]. This knowledge in the end can be 

used by the loan officers to assist them in rejecting or accepting applications. Past studies show that even the 

application of a simplistic linear discriminant technique in place of human judgment yields a significant, 

although still unsatisfactory increase in performance [5]. Treating the nature of the loan application evaluation as 

a classification [9] and forecasting problem [10], have also been offered.  

Techniques in literature ranges from traditional statistical methods like logistic regression [11], k-nearest neigh-

bor [12], classification trees [13] or simple neural network models [14][15][16], as well as cluster analysis 

[17][18][19] to combination of methods to obtain stronger general rules[20].The combination approach allowed 

for connecting two kinds of representation knowledge and for formulating rules for a set of typical examples.  

The use of expert system as a mean of conducting medical diagnosis and recommending successful treatments 

has been a highly active research field in the past few years. Development of medical expert system that uses 

artificial neural networks (ANN) as knowledge base appears to be a promising method for diagnosis and possible 

treatment routines. One of the major applications of medical informatics has been the implementation and use of 

expert systems to predict medical diagnoses based upon a set of symptoms [21]. Furthermore, such expert 

systems serve as an aid to medical professionals in recommending effective laboratory tests and treatments of 

diseases. An intelligent computer program assisting medical diagnosis could provide easy access to a wealth of 

information from past patient data. Such a resource may help hospitals reduce excessive costs from unnecessary 

laboratory test and ineffective patient treatment, while maintaining high quality of medical care. One major 

drawback of conventional medical expert systems is the use of static knowledge base developed from a limited 

number of cases and a limited population size, demographics, and geographic location. The knowledge base is 

inherently not dynamic and is not routinely updated to keep up with emerging trends such as the appearance or 

increased prevalence of unforeseen diagnoses. The result is that, after a given period of time this inflexibility 

limits the use of the knowledge base as it no longer reflects the current characteristics of the population at risk. 

In [22], Clinical Decision Support System (CDSS) using a hybrid of neural networks and decision trees for the 

diagnosis of eye diseases was presented. Neural networks are first trained and then combined with decision trees 

in order to extract knowledge learnt in the training process. Artificial neural networks are used for the diagnosis 
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of selected eye diseases according to patient complaint, symptoms and physical eye examinations. The trained 

network diagnosis the eye diseases according to the knowledge the network acquired by learning from previous 

eye diseases. After successful training, knowledge is extracted from these trained networks using decision trees 

in the form of ‘if-then’ rules. The system can be used by ophthalmologists to minimize unnecessary laboratory 

tests and reduce operational costs in treatment of eye diseases. The general paradigm can be applied to other 

categories of diseases. 

 

3.0 Methodology 

In this paper, an integration of Decision Tress and Neural Networks is used to form a hybrid called Decision 

Tree-Neuro Based Decision Support System (DTNBDSS). The implementation of the design was carried out on 

two areas:- Loan granting decision support system(LGDSS) and Clinical Decision Support System( Eye 

Diseases Diagnosis) 

3.1 Analysis of the Method used 

When decision trees and neural networks are compared, one can see that their advantages and disadvantages are 

almost complementary. For instance knowledge representation of decision tree is easily understood by humans, 

which is not the case for neural networks; decision trees have trouble dealing with noise in training data, which 

is again not the case for neural networks; decision trees learn fast and neural networks learn relatively slow, etc. 

Therefore, the idea is to combine decision trees and a neural network in order to combine their advantages seems 

to be a welcome research area. 

Artificial neural networks (ANN) are very efficient in solving various kinds of problems. But Lack of 

explanation capability (Black box nature of Neural Networks) is one of the most important reasons why artificial 

neural networks do not get necessary interest in some parts of industry [23]. Even though neural networks have 

huge potential we will only get the best of them when they are integrate with other computing techniques, fuzzy 

logic and so on[24]. 

Decision Tress on the other hand simple to understand and interpret. People are able to understand decision tree 

models after a brief explanation, but decision-tree learners can create over-complex trees that do not generalize 

the data well. This is call overfitting, mechanisms such as pruning are necessary to avoid this problem. 

3.2  Decision Tree Neuro-Based Model Design 

The development of decision tree neuro-based model is to fine tune the intelligence decision making progress in 

a complex computational and organizational decision making process so that it can adapt to the present day 

complex and dynamically changing environment. Financial decision making have increasingly become far more 

challenging, on the other side the ever changing nature of our environment is bring new eye diseases every day 

hence, making the use of decision trees less efficient in handling such increasing complexity of decision making 

process based on increasing volume of data required in decision making 

In the design of the system model, there are two major parts to the system as illustrated in the decision tree 

neuro-based architecture in figure3.3. The first part is the decision tree part which handles decision making 

based on the fundamental decision rules. At the end the decision tree output becomes the input to the neural net 

which uses the result as a pad to start-up further refinement that we believe resulted in a much high level of 

accuracy in decision-making.  

Ordinarily humans are the ones that will select an action from a decision tree based on the suggested lines or 

actions in complex organizational conditions. These conditions are built-in into the algorithm that reduces the 

complexity and the computational effort required by system in arriving at a given result based on the sample 

input and the resultant output from the tree. The processing effort of the neural net carries out further refinement 

based on the level of processing done by the decision tree. The decision tree then acts as the first processing 

engine for the system. In the model presented, the neural net takes over and completes the final decision making 

process from the point that complex decisions stop. This greatly reduces possibilities of error in decision making 

process involving complex organizational situations or in areas where wrong a decision leads to irredeemable 

catastrophic consequences such as loan granting. 

The procedure of designing a neural network model is a logical process. The process was not a single-pass one, 

but it required going back to previous steps several times (see figure1). The neural net hidden layer processes the 

input variables based on the algorithm and the weight of the threshold offered to the system. The computation of 

the hidden layer is based on various trials until the error is minimized. The overall design is as shown in figure2. 
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Figure1: Adjusting network based on a comparison of the output and the target 

 

 
Figure2: Decision Tree Neuro-Based  Architecture 

 

In figure2 the root case leads to parameters as children of the decision tree. The number of parameters are based 

on the features identified in the case to be resolved by the decision tree Neuro-Based model. Once the parameters 

are identified and determined as the child nodes, their possible outcomes become the next level of the tree 

children. The number of outcomes varies based on the parameters; hence the tree may not necessarily be a binary 

tree.  Once the outcomes are determined they form the bases for input variable into the neural net on the right 

hand side of the system. The variables are then transformed to the first and second layers where possible and 

depending on the conditions from the decision tree outcomes. The output can then be generated based on this 

possible handling of variables from the neural net. The decision tree neuro-based model is clearly divided into 

two and has an interlinking interface that joined them to make it a single model.  

3.3 Data for the System 

To carry out this study a random selection was made in a universe of clients of a bank in Nigeria, 1000 credit 

contracts, 500 considered as good and 500 considered as bad, dated from March 2009 to April 2011. All these 

contracts had already matured, that is to say the sample was collected after the due date of the last installment of 

all contracts. This is an historical data-base with monthly information on the utilization of the product. Based 

upon this structure, the progress of the contract could be accompanied and particularized when the client did not 

pay one or more installments. 

Of this data set, 500 cases were used in the training and 500 were used in the testing. Both training and testing 

data sets contained half-good applications and half-bad applications. There are 12 influential variables over the 

loan decision. The definition and recoding of the variables are given in Table 3.1. On the other hand; the output 

for the neural network was 1 for good applications or 0 for bad applications. 
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Table1. Loan Granting Decision Factor 

Variable 

code 

Variable description Variable Explanation 

X1 Age 1 if the applicant age is accepted, 0 otherwise 

X2 Income 0 if income < N 40,000, 1 for (N40,000≤income≤ N 100,000) and 2 for 

(income≥ N100,000). 

X3 Job Experience 0 if (exp < 6 months), 1 for (6 months≤exp< 2years) and 2 (exp ≥ 2years)  

X4 Account type 1 for payroll account, 2 for self account 

X5 Nationality 1 for Nigerian, 0 otherwise 

X6 Residency 1 resident in Nigeria, 0 otherwise 

X7 Loan Size 1 if (100,000≤ LS≤350,000) if X4=1, 0 otherwise Or 1 if (100,000≤ 

LS≤250,000) if X4=0, 0 otherwise 

X8 Place of work 1 of company is accredited by the bank, 0 otherwise 

X9 Guarantor 1 if applicant has guarantor, 0 otherwise 

X10 Collateral 1 if collateral exist, 0 otherwise 

X11 Debt balance ratio 1 for good DBR and 0 otherwise 

X12 Social security 1 if applicant has social security, 0 therwise 

 

Table1 Eye Test Decision Tree Input Data 

Symptom Description Output 

1 Recent negative examination Yes or no 

2 Eye pressure normal Yes or no 

3 Optic nerve shape normal Yes or no 

4 Iris angle open Yes or no 

5 Iris angle closed Yes or no 

6 Cornea thickness normal Yes or no 

7 Recent hazy/blurred vision Yes or no 

8 Seeing rainbow colored circles around bright lights Yes or no 

9 Severe eye pain Yes or no 

10 Severe head pain Yes or no 

11 Nausea/vomiting  Yes or no 

12 Sudden sight loss Yes or no 

 

3.4 Decision Tree Modeling 

The operation of DTs are based on the ID3 or C4.5 divide-and-conquer algorithms[25] and search heuristics 

which make the clusters at the node gradually purer by progressively reducing disorder in the original data set. 

The algorithms place the attribute that has the most predictive power at the top node of the tree and they have to 

find the optimum number of splits and determine where to partition the data to maximize the information gain. 

The fewer the splits, the more explainable the output is as there are less rules to understand. Selecting the best 

split is based on the degree of impurity of the child nodes. For example, a node which contains only cases of 

class good_loan or class bad_loan has the smallest disorder = 0. Similarly, a node that contains an equal number 

of cases of class good_loan and class bad_loan has the highest disorder = 1. Disorder is measured by the well 

established concept of entropy and information gain which we formally introduce below. 

Given a collection S, containing the positive (good_loan) and negative examples (bad_loan) of 

some target concept, the entropy of S relative to this Boolean classification is 

   (1) 

where  is the proportion of positive examples in S and  is the proportion of negative examples 

in S. If the output variable takes on k different values, then the entropy of S relative to this k-wise classification is 

defined as 

        (2) 

Hence we see that both when the category is nearly - or completely - empty, or when the category nearly 

contains - or completely contains - all the examples, the score for the category gets close to zero, which models 

what we wanted it to. Note that 0*ln(0) is taken to be zero by convention. 
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Thus, if disorder is measured by entropy, the problem of trying to determine the best attribute to choose for a 

particular node in a tree can be obtained by following measure that calculates a numerical value for a given 

attribute, A, with respect to a set of examples, S. Note that the values of attribute A will range over a set of 

possibilities which we call Values(A), and that, for a particular value from that set, v, we write Sv for the set of 

examples which have value v for attribute A.  

In tree-growing, the heuristic plays a critical role in determining both classification performance and 

computational cost. Most modern decision-tree learning algorithms adopt a (im)purity-based heuristic, which 

essentially measures the purity of the resulting subsets after applying the splitting attribute to partition the 

training data. Information gain, defined as follows, is widely used as a standard heuristic. 

      (3) 

where S is a set of training instances, X is an attribute and x is its value, Sx is a subset of S consisting of the 

instances with X = x, and Entropy(S) is defined as 

       (4) 

where  is estimated by the percentage of instances belonging to in S, and  is the number of classes. 

is similar. 

 

3.4 Neural Networks Modeling 

Artificial Neural networks learn by training on past experience using an algorithm which modifies the 

interconnection weight links as directed by a learning objective for a particular application. A neuron is a single 

processing unit which computes the weighted sum of its inputs. The output of the network relies on cooperation 

of the individual neurons. The learnt knowledge is distributed over the trained networks weights. Neural 

networks are characterized into feedforward and recurrent neural networks. Neural networks are capable of 

performing tasks that include pattern classification, function approximation, prediction or forecasting, clustering 

or categorization, time series prediction, optimization, and control. Feedforward networks contain an input layer, 

one or many hidden layers and an output layer. Equation (5) shows the dynamics of a feedforward network. 

        (5) 

where  is the output of the neuron j in layer ,  is the output of neuron j in layer  (containing m 

neurons) and  the weight associated with that connection with j.  is the internal threshold/bias of the neuron 

and  is the sigmoidal discriminant function 

Backpropagation is the most widely applied learning algorithm for neural networks. It learns the weights for a 

multilayer network, given a network with a fixed set of weights and interconnections. Backpropagation employs 

gradient descent to minimize the squared error between the networks output values and desired values for those 

outputs. The goal of gradient descent learning is to minimize the sum of squared errors by propagating error 

signals backward through the network architecture upon the presentation of training samples from the training 

set. These error signals are used to calculate the weight updates which represent the knowledge learnt in the 

network. The performance of backpropagation can be improved by adding a momentum term and training 

multiple networks with the same data but different small random initializations prior to training. In gradient 

descent search for a solution, the network searches through a weight space of errors. A limitation of gradient 

descent is that it may get trapped in a local minimum easily. This may prove costly in terms for network training 

and generalization performance. In the past, research has been done to improve the training performance of 

neural networks which has significance on its generalization. Symbolic or expert knowledge is inserted into 

neural networks prior to training for better training and generalization performance as demonstrated in [26]. The 

generalization ability of neural networks is an important measure of its performance as it indicates the accuracy 

of the trained network when presented with data not present in the training set. A poor choice of the network 

architecture i.e. the number of neurons in the hidden layer will result in poor generalization even with optimal 

values of its weights after training. Until recently neural networks were viewed as black boxes because they 

could not explain the knowledge learnt in the training process. The extraction of rules from neural networks 

shows how they arrived to a particular solution after training. 

The backpropagation algorithm with supervised learning was used, which means that we provide the algorithm 

with examples of the inputs and outputs we want the network to compute, and then the error (difference between 

actual and expected results) is calculated. The idea is to reduce this error, until the ANN learns the training data. 
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The training begins with random weights, and the goal is to adjust them so that the error will be minimal. The 

activation function of the artificial neurons in ANNs implementing the backpropagation algorithm is given as 

follows[27] in equation6,7,8,9. 

 

Where:  are the inputs,  are the weights,  are the actual outputs,  are the expected outputs and η - 

learning rate.  

 

4.0 Testing and Results 

Several data files for both processing modes were generated and the network’s functionality was tested 

extensively for various sized training and testing files. The results indicated that the system was indeed able to 

perform both loan application processing and eye test diagnosis as predicted. As an example, two 500 vector data 

files were generated that represent 500 loan applicants and 500 medical patients. The data for these cases is 

given in loan1tran.mat and eye1trn.mat.  An additional 500 vectors was generated for testing both modes. This 

data is given in loan1tst.mat and eye1tst.mat. 

Both train and test data files were processed through the tree module to generate 500 vector long input train and 

test files for the ANN inference engine of module netinf. This data is given in loan2trn.mat, loan2tst.mat, 

eye2trn.mat and eye2tst.mat. NOTE: 2 corresponds to an input file for the netinf module and 1 corresponds to an 

input file for the tree module. This naming convention does not have to be adopted; however, it is advisable to 

utilize some scheme that will minimize confusion when processing the modules. The netinf module creates trains 

and tests the ANNs. There are several network parameters that utilize default values; however, these may be 

edited to achieve more favorable results. The results obtained; however, are promising. For example, ANNs were 

built, loan500.mat and eye500.mat that were able to achieve the desired rms error rate of 0.01 for loan 

processing and eye test diagnosis, respectively. This is shown in Figs. 3 and 4, below. 

 

Figure 3: Training Curve for loan500 
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Figure 4: Training Curve for eye500 

These networks were tested on the corresponding 500 vector test sets and the results are below in figure 5 and 6. 

respectively. 

 
Figure 5: Error Curve for loan500 
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Figure 6: Error Curve for eye500 

As the criterion for selection/denial and disease presence/absence was linearly separable, represented by a 

threshold of 0.5, these results clearly indicate the success of the LDSS in solving the problems for the given data. 

4.1 Performance of the system using Random Tests  

In testing the system randomly, forty different tests from the data sets for testing the system were carried out at 

random and the result compared with the actual data in file collected from the bank. This data set was used for 

the Decision Tree, Neural Networks and LDSS. Table3 and Table4 for Bank A and Bank B respectively, show 

the result indicating TRUE POSITIVE(TP) where system suggested grant loan and the actual grand loan, TRUE 

NEGATIVE(TN) where the system suggested don’t grant and the actual is don’t grant, FALSE POSITIVE(FP) 

where the system suggested grant loan but actual is don’t grant, FALSE NEGATIVE(FN) where the system 

suggested don’t grant but actual is grant loan. 

Table3: Result from Bank A 

Decision Tree Neural Networks LDSS 

TP = 5 FP = 1 Total = 6 TP = 7 FP = 1 Total = 8 TP = 9 FP = 1 Total = 10 

FN = 5 TN = 9 Total = 14 FN = 3 TN = 9 Total = 12 FN = 1 TN = 9 Total = 10 

Total = 10 Total = 10 Total = 20 Total = 10 Total = 10 Total = 20 Total = 10 Total = 10 Total = 20 

 

Table4: Result from Bank B 

Decision Tree Neural Networks LDSS 

TP = 7 FP = 4 Total = 11 TP = 8 FP = 4 Total = 12 TP = 9 FP = 2 Total = 11 

FN = 3 TN = 6 Total = 9 FN = 2 TN = 6 Total = 6 FN = 1 TN = 8 Total = 9 

Total = 10 Total = 10 Total = 20 Total = 10 Total = 10 Total = 20 Total = 10 Total = 10 Total = 20 

 
For Decision Tree, , for Neural Networks,  and for LDSS, 

. 

4.2 Performance Comparison with decision Tree alone and Neural Networks alone. 

The system was developed in a way that different cases can be executed using Decision(DT) alone, Neural 
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Networks(NN) alone and LDSS( the Decision Tree-Neuro Based System). The performance of the Decision 

Tree-Neuro based system was compare with the performance of Neural Networks and Decision Tree alone using 

the receiver operating characteristics (ROC) curve from Table2 and Table3 using MATLAB software 

package(MATLABR2009b). The result is as shown in figure7. 
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Figure 7: Comparison of LDSS with NN and DT 

Explanations: From Figure 7, the ROC curve for LDSS was able to correctly classify over 80% of customers as 

bad or good without causing false alarms. This is followed by the ROC curve for neural networks with 70% 

classification with no false alarms. The least is the ROC curve for decision tree with 50% detection. Figure 7 

again shows that the performance of LDSS is in agreement with other classification software, but performs better. 

This relative advantage of LDSS over others is as a result of combining decision tree and neural networks. 

 

5.0 Conclusion 

Decision making, particularly in a complex and dynamically changing environment of the present day is a 

difficult task that requires new techniques of computational intelligence for building adaptive, hybrid intelligent 

decision support systems. The research work thus proposed Decision Tree- Neuro based Decision Support 

System with 88% accuracy for decision support. The developed system can provide explanation why a particular 

customer was selected knowing that a customer may protest his rejection.  

The works thus contribute the following to Knowledge:- 

1. Design a Decision Tree-Neuro Based architectural topology to implement a decision support system. 

1. Design of a Decision Tree-Neuro Based model that can adequately decide if customers applying for 

loan should be granted or not. 

2. By changing variables in the system can be used to as clinical decision support system to diagnosis eye 

diseases. 

6.0 Recommendations 

The contribution in this work is recommended:- 

1. To financial institutions, particularly in Nigeria for loan granting applications. Given the fact that 

humans are not good at evaluating loan applications together with the fact that Nigeria is full of 

nepotism, tribalism and corruption, necessitates the need for robust knowledge tool using Decision Tree 

– Neuro based Decision support system to assist banks in credit risk evaluation for the sustainability of 

the banks and Nigerian economy bearing in mind that the loan officer may be asked for explanations 

why certain applicants are chosen in preference to others.  
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2. To medical experts (ophthalmologists) as an aid in the decision making process and confirmation of 

suspected cases. Also, a non expert will still find the work useful in areas where prompt and swift 

actions are required for the diagnosis of a given eye disease covered in the system. Medical 

practitioners who operate in areas where there are no specialist (ophthalmologist) can also rely on the 

system for assistance.  

 

References 

[1] Gallinari, P. (1998):Predictive models for sequence modelling, application to speech and character 

recognition.Adaptive Processing of Sequences and Data Structures, Lecture Notes in Computer Science 

Volume 1387, 1998, pp 418-434 

[2] Gevaert, W., Senov, G. and Mladenov, V.(2010). Neural Networks for Speech Recognition. Journal of 

Automatic Control, University of Belgrade, vol. 20:1-7 

[3] Matan, O., Kiang, R. K., Stenard, C. E., Boser, B.,Denkar, J. S., Henderson, D., Howard, R. E., 

Hubbard, W., Jackel, L. D. and Le Cun, Y.(1990). Hand Written Character Recognition Using Neural 

Networks Architectures. Proceeding of the 4
th

 USPS Advanced Technology Conference, Washington 

D.C., Pp 1003-1011. 

[4] Ralston, A. and Reilly, E. D.(2000). Encyclopedia of Computer Science, London : Nature Pub. Group. 

Ref. QA76.15 .E48 2000. 

[5] Glorfeld, L.W. & Hardgrave, B.C. (1996): An improved method for developing neural networks: The 

case of evaluating commercial loan creditworthiness. Computer Operation Research, 23 (10), Pp: 933-

944. 

[6] Handzic, M. & Aurum, A. (2001). Knowledge discovery: Some empirical evidence and directions for 

future research. Proceedings of the 5th. International Conference on Wirtschafts Informatics (WI'2001), 

19-21 September, Augsburg, Ge rmany. 

[7] Bigus, J.P. (1996): Data mining with neural networks: Solving business problems from application 

development to decision support. McGraw Hill, USA. 

[8] Marakas, G.M. (1999): Decision support systems in the twenty-first century. Prentice Hall, New Jersey, 

USA. 

[9] Smith, K.A. (1999): Introduction to neural networks and data mining for business applications. 

Eruditions Publishing, Australia. 

[10] Thomas, L.C. (1998): A survey of credit and behavioural scoring: Forecsting financial risk of lending to 

customers. Retrieved June 5, 2002, from www.bus.ed.ac.uk/working_papers/full_text/crc9902.pdf 

[11] Steenackers A.,and Goovaerts M.J.(1998): A credit scoring model for personal loans. Insurance 

Mathematics & Economics, 8, 31-34. 

[12] Henley W.E., Hand D.E.(1997). Construction of a k-nearest neighbor credit-scoring system. IMA 

Journal of Mana-gement Mathematics, 8, 305-321. 

[13] Davis, R. H., Edelman, D. B., and Gammerman, A. J.(1992):Machine Learning Algorithms for Credit-

Card Applications,. IMA Journal of Mathematics Applied in Business and Industry (4), Pp: 43-51. 

[14] Desai V.S., Crook J.N., Overstreet G.A. Jr(1996): On comparison of neural networks and linear scoring 

models in the credit union environment. European Journal of Operational Research, 95(1), Pp: 24-37. 

[15] Baesens B., Setiono R., Mues C, Vanthienen J.(2003): Using Neural Network Rule Extraction and 

Decision Tables for Credit-Risk Evaluation, Management Science, Volume 49 , Issue 3, March 2003, 

Pp:312 – 329. 

[16] West, D.(2000): Neural Network Credit Scoring Models, Computers & Operations Research, vol. 27, 

no. 11-12, pp. 1131-1152. 

[17] Chi G., Hao J., Xiu Ch., Zhu Z. (2001): Cluster Analysis for Weight of Credit Risk Evaluation Index. 

Systems Engineering-Theory Methodology, Applications, 10(1), Pp. 64-67. 

[18] Lundy M.(1993): Cluster Analysis in Credit Scoring. Credit Scoring and Credit Control. New York: 

Oxford Uni-versity Press. 

[19] Luo Y.Z., Pang S.L., S.(2003): Fuzzy Cluster in Credit Scoring. Proceedings of the Second 

International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003, 2731-2736. 

[20] Baesens, B., Van, T., Gestel, M. Stepanova et al.,(2005):Neural network Survival Analysis for Personal 

Loan Data, Journal of the Operational Research Society, vol. 56, no. 9, Pp. 1089- 1098, Sep. 

[21] Bakpo, F. S. and Kabari, L. G. (2011):Diagnosing Skin Diseases using an Artificial Neural Network, 

Artificial Neural Networks - Methodological Advances and Biomedical Applications, kenji suzuki (ed.), 

isbn: 978-953-307-243-2, intech, Available from: 

http://www.intechopen.com/articles/show/title/diagnosing-skin-diseases-using-an-artificial-neural-

network 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.7, 2013 

 

19 

[22] Kabari, L. G and Nwachukwu, E. O. (2012): Neural Networks and Decision Trees For Eye Diseases 

Diagnosis, Advances in Expert Systems, Petrica Vizureanu (Ed.), ISBN: 978-953-51-0888-7, InTech, 

Available from: http://www.intechopen.com/books/advances-in-expert-systems/neural-networks-and-

decision-trees-for-eye-diseases-diagnosis 

[23] Kumar, D. S., Sathyadevi, G. and Sivanesh, S.(2011): Decision Support System for Medical Diagnosis 

Using Data Mining, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 

1,ISSN (Online): 1694-0814,www.IJCSI.org. 

[24] UKessay.com(2013):Advantages and Limitation of Neural Networks. Retrieved from 

http://www.ukeassay.com/essays/education on 11/06/2013. 

[25] Quinlan, J. R.(1987): Simplifying Decision Trees, International Journal of Man-Machine Studies, vol. 

27, Pp.221-234, 1987. 

[26] Chandra R., and Omlin C. W.(2007): Knowledge Discovery Using Artificial Neural Networks For A 

Conservation Biology Domain, Proceedings of the 2007 International Conference on Data Mining, Las 

Vegas, USA, In Press, 2007. 

[27] Haykin, S. (1999): Neural Networks: a Comprehensive Foundation. Second Edition. Prentice Hall. 

 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 


