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Abstract 

This study embarks on a comprehensive analysis to evaluate the efficiency and scalability of in-memory 
computing (IMC) compared to traditional disk-based processing for big data analytics. Utilising the "New York 
City Taxi Trip Duration" dataset from Kaggle, we designed an experiment focusing on three critical analytical 
tasks: aggregation, sorting, and filtering. Our objective was to quantify the performance improvements offered 
by IMC, as facilitated by Apache Spark, against conventional SQL queries executed on a disk-based system. The 
findings reveal that IMC consistently outperforms disk-based processing in execution time, with significant 
reductions observed across all tasks. Specifically, the aggregation task highlighted the stark contrast in data 
retrieval speed, demonstrating IMC's superior efficiency with a completion time of 47.3 seconds, compared to 
138.7 seconds for disk-based processing. Similar disparities were noted in sorting and filtering tasks, further 
accentuating IMC's performance advantage. Resource utilisation analysis, focusing on CPU and RAM 
consumption, indicated higher demands associated with IMC, underscoring the trade-off between enhanced 
speed and increased resource usage. The investigation provides a nuanced understanding of the practical 
implications of adopting IMC for big data analytics, especially considering the resource constraints of home 
computing environments. By juxtaposing theoretical advantages with empirical data, this paper contributes to the 
ongoing discourse on optimising data processing methodologies in the era of big data, offering insights into the 
balance between computational efficiency and resource management.  
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1. Introduction 

The burgeoning volume of data generated by digital technologies has underscored the critical role of big data 
analytics in contemporary research and industry applications. Among the myriad of challenges big data poses, 
the efficiency and scalability of data processing stand paramount. This study mainly concerns the comparative 
efficacy of in-memory computing over traditional disk-based methods in big data analytics (Chen, P. H., & 
Keville, K., 2022). 
Historically, the reliance on disk-based data processing has been a bottleneck in achieving the desired 
computational speed and scalability due to the mechanical limitations of disk operations. In contrast, in-memory 
computing, which utilises Random Access Memory (RAM) for data storage and manipulation, offers a 
promising alternative. This approach can reduce data access time significantly, improving the overall 
performance of analytical tasks. 
Recent studies have increasingly highlighted the advantages of in-memory computing. For instance, Zaharia et al. 
(2010) introduced Apache Spark, a unified analytics engine for large-scale data processing, which leverages in-
memory computation to enhance performance (Lee, J., Choi, J., & Koo, D., 2016). Similarly, Plattner and Zeier 
(2011) discussed the transformational impact of in-memory data management on business applications, 
emphasising its capability to perform real-time analytics and transactional processes concurrently (Awan, A. J., 
Vlassov, V., Brorsson, M., & Ayguadé, E., 2016). Despite these advancements, the scalability of in-memory 
computing, particularly in handling vast datasets within the constraints of available memory, remains a topic of 
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ongoing research (Ketu, S., & Agarwal, S., 2015). In parallel, the work of Abubaker (2024) on disk-based 
indexing techniques for NIR-Trees using polygon overlays presents an interesting contrast, demonstrating the 
ongoing relevance and optimization potential of disk-based methods in specific contexts of data analytics. This 
inclusion highlights the broader landscape of data processing technologies, underscoring the importance of 
diversifying approaches to tackle the multifaceted challenges presented by big data analytics. 
This study aims to empirically investigate the efficiency and scalability of in-memory computing for big data 
analytics. Specifically, the research aims to: 

1. Compare the performance of in-memory computing against traditional disk-based processing in 
executing common analytical operations such as aggregation, sorting, and filtering on a large dataset. 
2. Evaluate both approaches' resource utilisation, including CPU and memory consumption, under varying 
data loads. 
3. Examine the impact of data size on the scalability of in-memory computing, identifying thresholds where 
performance gains diminish or adverse effects emerge. 

This investigation is conducted through a series of experiments using a public dataset from Kaggle, "New York 
City Taxi Trip Duration," encompassing millions of records (Kaggle, n.d.). The choice of dataset and analytical 
operations are designed to reflect realistic scenarios encountered in big data analytics, providing insights 
applicable to academic research and industry practice. 
In doing so, this study contributes to the existing literature by offering a nuanced understanding of the practical 
limitations and opportunities of in-memory computing in the context of big data analytics. Furthermore, it 
provides evidence-based recommendations for practitioners considering the adoption of in-memory technologies 
to enhance their analytical capabilities. 
The significance of this inquiry extends beyond the academic sphere, touching on the operational efficiencies 
that can transform business practices. In an era where data is dubbed the 'new oil,' the ability to process and 
analyse large volumes of information rapidly and accurately is a competitive edge that many organisations strive 
for. Thus, the findings of this study are poised to offer tangible benefits to a wide range of stakeholders, 
including data scientists, IT professionals, and business strategists who seek to optimise their data analytics 
workflows. 
Moreover, the methodological rigour applied in conducting the experiments ensures the reliability and validity of 
the results. By utilising a well-documented and publicly available dataset, the study adheres to principles of 
reproducibility and transparency, which are cornerstone values in scientific research. The choice of analytical 
operations – aggregation, sorting, and filtering – covers a broad spectrum of standard data processing tasks, 
thereby ensuring the applicability of the findings across different domains and use cases. 
Additionally, the study's focus on resource utilisation sheds light on the often-overlooked aspect of 
computational efficiency. While much of the existing literature emphasises the speed of data processing, this 
research also considers the technology's cost-effectiveness in terms of CPU and memory usage. This holistic 
approach provides a more comprehensive understanding of the trade-offs in selecting an appropriate computing 
paradigm for big data analytics. 
In-memory computing has opened new avenues for processing and analysing large datasets with unprecedented 
speed and efficiency. However, the scalability of this technology under varying conditions and data loads 
remains an area ripe for exploration. By addressing this gap in the literature, the present study aims to enrich the 
body of knowledge on big data analytics and guide future technological advancements in this field. Through a 
meticulous examination of in-memory computing's performance and resource utilisation, this research clarifies 
the conditions under which this technology excels and highlights its limitations, thereby paving the way for 
informed decision-making and innovation in big data processing. 

 

2. Theoretical Foundations of In-Memory Computing 

 
The advent of in-memory computing (IMC) marks a paradigm shift in how data is processed and analysed, 
especially in the context of big data analytics. By leveraging Random Access Memory (RAM) to store data 
temporarily, IMC facilitates data access orders of magnitude faster than traditional disk-based storage systems. 
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This section delves into the core principles of IMC, juxtaposing its strengths and weaknesses against 
conventional disk-based analytics while highlighting pivotal technologies like Apache Spark that embody the in-
memory computing ethos. 
2.1 Theoretical Underpinnings of In-Memory Computing 

In-memory computing (IMC) significantly differs from traditional, disk-based data processing methodologies 
(Ma, Y., Du, Y., Du, L., Lin, J., & Wang, Z., 2020). At its core, IMC leverages the system's main memory (RAM) 
for data storage and processing, contrasting sharply with the conventional reliance on slower, mechanical disk 
storage. This shift towards memory-centric data management is propelled by the exponential growth in data 
volumes and the concurrent demand for faster processing speeds to facilitate real-time analytics and decision-
making processes. 
IMC is predicated on the principle that accessing data stored in RAM is orders of magnitude faster than 
retrieving the same data from a disk drive. This speed disparity arises from the mechanical latencies inherent to 
disk storage—such as seek time and rotational latency—absent in solid-state memory operations. By storing data 
in RAM, IMC systems can achieve microsecond-level access times, significantly enhancing the performance of 
data-intensive applications. 
The architecture of an IMC system is designed to maximize the advantages of rapid data access (Ielmini, D., 
Lepri, N., Mannocci, P., & Glukhov, A., 2022). Data is partitioned and distributed across the memory of multiple 
nodes in a clustered or grid environment, enabling parallel processing and fault tolerance. This distribution 
increases processing speed by leveraging multiple processors simultaneously and ensures data availability 
through replication strategies that mitigate the risk of data loss due to hardware failures. 
The primary advantage of IMC lies in its ability to accelerate the performance of applications that require 
immediate data access and real-time analytics (Dazzi, M., Sebastian, A., Benini, L., & Eleftheriou, E., 2021). 
Financial trading platforms, online retail recommendation systems, and real-time fraud detection mechanisms are 
exemplary use cases that benefit from IMC's speed and agility. Furthermore, IMC facilitates complex event 
processing (CEP) and high-performance computing (HPC) tasks (Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, 
M., Chen, L.-Y., Zhang, B., & Deaville, P., 2019; Yu, H., Ni, L., & Dinakarrao, S. M. P., 2021), where processing 
large volumes of data in real-time is critical. 
Another significant benefit of IMC is its impact on application simplification (Jia, H., Ozatay, M., Tang, Y., 
Valavi, H., Pathak, R., Lee, J., & Verma, N., 2021). Traditional disk-based architectures often necessitate 
complex designs to mitigate storage bottlenecks, including elaborate caching mechanisms and data pre-fetching 
strategies. IMC, by contrast, allows for more straightforward application architectures by removing these 
bottlenecks, enabling developers to focus on business logic rather than performance optimization. 
Despite its advantages, the adoption of IMC is not without challenges. The volatile nature of RAM implies that 
data stored in memory can be lost during a power failure or system crash. Consequently, IMC systems must 
incorporate persistent storage mechanisms and sophisticated data recovery strategies to safeguard against data 
loss. Moreover, the cost of RAM, although decreasing, remains higher than that of disk storage, presenting 
financial considerations for organizations contemplating the transition to IMC. 
2.2 Limitations and Challenges of In-Memory Computing 

The exploration of In-Memory Computing (IMC) challenges and limitations spans several dimensions, including 
economic implications, scalability issues, data volatility, and technical vulnerabilities. Here are some insights 
derived from recent research on the topic: 
Economic Considerations: The financial burden associated with high RAM costs, compared to traditional disk 
storage, remains a significant barrier to IMC adoption, particularly for small and medium-sized enterprises 
(SMEs) with limited IT budgets. Despite the decreasing price of RAM, the necessity for large memory 
allocations to manage extensive datasets ensures that cost remains a critical concern (Böhm, 2019). 
Scalability Challenges: The direct relationship between the size of datasets and required memory capacity 
underscores scalability as a primary concern. This challenge becomes increasingly pronounced in areas where 
data accumulates rapidly, such as social media analytics, IoT sensor data aggregation, and real-time financial 
transaction monitoring (Karimzadeh et al., 2023). 
Data Volatility: The inherent volatility of RAM, with data loss upon power or system failure, poses substantial 
risks to data integrity and availability. Ensuring data persistence demands the implementation of robust data 
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recovery and persistence mechanisms, adding complexity and potentially diminishing the performance benefits 
of IMC (Huang & Qin, 2019). 
Technical Vulnerabilities: Challenges related to memory management, such as garbage collection (GC) and 
memory fragmentation, especially in high-performance systems, can significantly impact system responsiveness 
and throughput. This is particularly true for Java-based systems where GC processes are automated (Verma et al., 
2019). 
The literature underscores the multifaceted challenges faced by IMC, highlighting the need for ongoing research 
and development to overcome these barriers. These include the exploration of new memory architectures, the 
intelligent use of emerging non-volatile memory technologies, and strategies to minimize memory interference 
for predictable performance in shared memory systems (Mutlu, 2016). 
For a more detailed examination of these challenges and potential solutions, the following sources offer 
comprehensive insights: 
Ielmini, Lepri, Mannocci, & Glukhov (2022) discuss the feasibility, reliability, and maturity of IMC technologies, 
particularly in the context of neural accelerators. 
Gao, Yang, Zhao, & Zhao (2021), through their research, address the current status and future prospects of IMC, 
emphasizing the ongoing need for innovation in this area. 
These references offer a starting point for those interested in delving deeper into the complexities of IMC and its 
potential impact on future computing paradigms (Ribeiro, Méhaut, & Carissimi, 2010; Das & Singh, 2014; Lee 
et al., 2023; Kondo, Fujita, & Nakamura, 2002). Additionally, memory fragmentation can degrade performance 
over time as the system struggles to allocate large contiguous memory blocks for new data. Addressing these 
technical challenges requires sophisticated memory management techniques and, potentially, custom solutions 
tailored to specific use cases and data workloads. Security considerations also present a challenge for IMC 
implementations. The storage of sensitive data entirely in RAM necessitates stringent security measures to 
protect against unauthorised access, especially in multi-tenant environments or public cloud deployments. 
Ensuring data encryption in memory and secure access controls are paramount, adding layers of complexity to 
IMC solution design and administration. 
2.3 Comparative Analysis with Disk-Based Analytics 

The advent of in-memory computing (IMC) has fundamentally altered the landscape of data analytics, offering a 
paradigm shift away from traditional disk-based analytics. This section juxtaposes these two divergent 
approaches, shedding light on each's inherent strengths and weaknesses and providing insight into their 
application contexts. 
2.3.1. Disk-Based Analytics: A Bedrock of Data Storage 

Traditionally, disk-based storage systems have been the cornerstone of data analytics, valued for their durability, 
cost-effectiveness, and extensive storage capacity. The advent of solid-state drives (SSDs) has somewhat 
mitigated the speed disadvantages traditionally associated with hard disk drives (HDDs), offering faster data 
access times and reduced latency (Cheong, S.-K., Lim, C., & Cho, B.-C., 2012). Despite these advancements, 
disk-based systems intrinsically suffer from slower read/write speeds than RAM due to their reliance on 
mechanical operations. 
The economic viability of disk storage continues to be a compelling advantage, particularly for applications 
requiring long-term data retention or dealing with massive datasets unsuitable for expensive RAM storage 
(Opolskii, V., & Stupina, M., 2021). Additionally, the non-volatile nature of disk storage ensures data persistence 
without the need for continuous power, a critical consideration for archival data and applications where data 
integrity and availability are paramount (Harnsoongnoen, S., 2017). 
2.3.2. In-Memory Computing: Speed and Volatility 

MC, by contrast, excels in environments where speed and performance are critical. Processing and analyzing 
data directly within RAM eliminates the latency issues associated with disk storage, facilitating real-time 
analytics and decision-making capabilities. This speed advantage is particularly relevant in financial services, 
online transaction processing, and other domains where milliseconds can determine the success or failure of 
operations (Park, M., Nam, S., Choi, C.-H., Shin, Y., Cho, W., & Lee, K.-H., 2015; Mohamed, N., & Al-Jaroodi, 
J., 2014; Gupta, M., Verma, V., & Verma, M., 2014). 
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However, RAM's volatile nature presents a significant challenge, necessitating robust strategies for data 
persistence and recovery to safeguard against power failures or system crashes (Djamaluddin, B., Ferianto, T., & 
Akbar, H., 2020; Li, X., & Mao, Y., 2015). Furthermore, equipping servers with sufficient RAM to handle large 
datasets can be prohibitive, limiting the scalability of in-memory solutions for some organizations (Chen, Q., 

Hsu, M., & Zeller, H., 2011). 
2.3.3. Choosing the Right Approach 
The decision between IMC and disk-based analytics does not rest solely on a binary choice between speed and 
storage capacity. Hybrid models often represent the most pragmatic approach, leveraging both technologies' 
strengths. For instance, hot data—information frequently accessed and requiring rapid processing—can be 
allocated to RAM, while cold data, accessed less frequently, can be stored on disk. This strategy enables 
organizations to optimize their IT infrastructure for performance and cost-effectiveness (Mhalagi, S., Duan, L., 
& Rad, P., 2018). Moreover, technological advancements such as non-volatile memory express (NVMe) and 
software-defined storage (SDS) are narrowing the performance gap between disk and RAM, offering new 
avenues for creating efficient, scalable data storage and processing solutions (Praciano, F. D. B. S., Abreu, I. C., 
& Machado, J. C., 2020; Ito, T., Noguchi, H., Kataoka, M., Isoda, T., & Murase, T., 2020). 
2.4 Key Technologies: Spotlight on Apache Spark 
Apache Spark is a quintessential embodiment of in-memory computing's evolution, pushing the boundaries of 
what is possible in big data analytics. Conceived at UC Berkeley's AMPLab in 2009, Spark was designed to 
overcome the limitations of the Hadoop MapReduce framework, notably its disk-heavy processing and lack of 
iterative computation support. Spark's introduction marked a paradigm shift, offering a versatile, in-memory data 
processing framework that significantly accelerates analytical workloads (Salloum, S., Dautov, R., Chen, X., 
Peng, P. X., & Huang, J., 2016). 
Spark's architecture is ingeniously designed to balance computational speed with resource efficiency. At its core, 
Spark operates on the principle of distributed data processing, allowing it to harness the power of multiple nodes 
in a cluster. This distributed nature is key to Spark's ability to process vast datasets at unparalleled speeds. Unlike 
traditional MapReduce, which writes intermediate results to disk, Spark processes data in RAM, drastically 
reducing the latency involved in computational tasks (Shanahan, J., & Dai, L., 2015). 
The cornerstone of Spark's architecture is the Resilient Distributed Dataset (RDD), an immutable distributed 
collection of objects that can be processed in parallel. RDDs provide fault tolerance through lineage information; 
if a partition of an RDD is lost, Spark can recompute it using the RDD's lineage graph, thus ensuring data 
integrity without data replication. This innovative approach optimises resource utilisation and simplifies the data 
processing model, making Spark an ideal platform for a wide array of computational tasks, from batch 
processing to real-time analytics (García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F., 2017). 
Spark's computational prowess extends far beyond traditional batch processing. It supports a rich ecosystem of 
libraries, including Spark SQL for interactive queries, MLib for machine learning, GraphX for graph processing, 
and Structured Streaming for real-time analytics. This comprehensive suite of tools enables developers and data 
scientists to tackle diverse data processing and analytical tasks within a unified framework, fostering a 
streamlined development process and facilitating complex data pipelines. 
One of Spark's most lauded features is its in-memory computation, which significantly speeds up iterative 
algorithm standards in machine learning and data mining. By keeping intermediate results in RAM and 
minimising disk I/O, Spark can offer performance improvements of several orders of magnitude over disk-based 
systems. 
Accessibility is another pillar of Spark's success. Its API is available in multiple programming languages, 
including Java, Scala, Python, and R, making it accessible to a broad community of developers and analysts with 
varying backgrounds. The Python interface, PySpark, has been mainly instrumental in its adoption, given 
Python's popularity in the data science community. 
Moreover, Spark benefits from a vibrant and active community. Its open-source nature has fostered a 
collaborative environment where developers and organisations contribute to its ongoing development and 
improvement. This community-driven approach has led to rapid iterations and feature enhancements, ensuring 
Spark remains at the forefront of in-memory computing technologies. 
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3. Research Methodology 

Dataset Selection and Characteristics 

The "New York City Taxi Trip Duration" dataset, obtained from Kaggle, was selected for this investigation. This 
dataset comprises approximately 12.5 GB of data, representing over 10 million taxi trips. Each record 
encapsulates critical metrics, including pick-up and drop-off timestamps, geographical coordinates, passenger 
count, and trip distance. This dataset was deemed ideal for our analysis due to its voluminous size and real-world 
complexity, reflecting the high-dimensional nature of big data encountered in urban mobility studies. 
The dataset underwent rigorous preprocessing before analysis to ensure data integrity and relevance. Records 
with missing values or implausible trip durations (e.g., trips longer than 24 hours) were excluded. Furthermore, 
the dataset was indexed based on trip duration to facilitate efficient sorting operations during the experimental 
phase. 
Test Environment Configuration 

The experimental setup was hosted on a desktop with an AMD Ryzen 9 3900x 12-core processor and 64 GB of 
DDR4 RAM. Data storage was facilitated by an array of solid-state drives (SSDs): a 250 GB Samsung SSD 860 
EVO for the operating system and software and a 2 TB Samsung SSD 860 EVO designated for dataset storage 
during disk-based processing tasks. The system ran Windows 11, optimised for performance with background 
services minimised. 
Apache Spark version 3.1.2 was the primary analytical tool chosen for its robust in-memory computing 
capabilities and wide adoption in big data analytics. Spark was configured to operate locally, fully utilising the 
12-core processor and allocating 50 GB of RAM for in-memory processing tasks to simulate a high-performance 
computing environment. 
Experimental Procedure 

The experimental procedure was structured into three main tasks: aggregation, sorting, and filtering, executed in-
memory (using Apache Spark) and disk-based (utilising traditional disk I/O operations) modes. 

 Aggregation: I calculated the average trip duration per month, demonstrating Spark's capability to 
perform complex memory aggregations and comparing them to disk-based SQL queries for the same 
calculation. 

 Sorting: Trips were ordered by duration, from shortest to longest. This task was designed to test the 
processing speed in handling large datasets during operations requiring extensive data movement. 

 Filtering: Selected trips exceeding 10 miles with 1-2 passengers, showcasing the efficiency of data 
retrieval operations under both processing approaches. 

Each task was repeated five times to ensure consistency in the results, with system caches cleared between runs 
to mitigate any caching advantages. 
Performance Evaluation Criteria 

Performance was evaluated based on two primary criteria: execution time and system resource utilisation. 
Execution time was measured using Spark's built-in timing functions and system event logs for disk-based tasks. 
Resource utilisation, including CPU and RAM usage, was monitored using Windows Performance Monitor, 
providing insights into the efficiency and scalability of in-memory versus disk-based processing. 
The criteria were chosen to provide a comprehensive understanding of the speed and operational cost associated 
with each processing method, considering the balance between performance gains and resource demands. 
 
4. Results 

This investigation meticulously assessed the comparative efficiency and resource utilisation of in-memory 
computing (IMC) versus traditional disk-based processing, utilising the "New York City Taxi Trip Duration" 
dataset. Our experiment involved three core analytical tasks: aggregation, sorting, and filtering, each executed 
across both computational paradigms. This section delineates the results obtained, offering a detailed analysis 
and juxtaposing the performances of the two approaches under scrutiny. Figures 1-3 offer a structured depiction 
of the data gathered from our investigation, contrasting in-memory computing (IMC) with disk-based processing 
approaches. Through these visuals, we aim to deliver a clear, comparative insight into how each method 
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performs across varied analytical tasks such as aggregation, sorting, and filtering. These figures serve not only to 
illustrate the substantial disparities in execution times but also to detail the differences in CPU and RAM usage 
between the two computing methodologies. This delineation aids in understanding the efficiency and resource 
demands of IMC in contrast to the more traditional disk-based processing, highlighting IMC's advantages in 
speed and its implications for hardware resource requirements. 
 

 
Figure 1. Execution time by task type 

 
4.1. Execution Time Analysis 

Aggregation Task: The aggregation operation, which calculated the average trip duration per month, underscored 
the superior speed of IMC. In-memory processing through Apache Spark, on average, completed the task in 
47.35 seconds. In contrast, the disk-based method, relying on conventional SQL queries executed against a 
stored dataset on an SSD, required 138.75 seconds. The stark difference illustrates the impact of data retrieval 
speed, with IMC benefiting from direct RAM access. 
Sorting Task: Similar disparities were observed during the sorting operation, where trips were organised by 
duration. The in-memory approach achieved this in 82.58 seconds on average, whereas the disk-based approach 
lagged significantly, taking 296.48 seconds. The increased complexity of the sorting operation, coupled with the 
larger volume of data movements, further accentuated the efficiency of IMC. 
Filtering Task: The filtering task of selecting trips over 10 miles with 1-2 passengers also highlighted IMC's 
speed advantage. In-memory computations were completed in 25.82 seconds, while disk-based operations 
required 75.24 seconds. This task, involving conditional data retrieval, benefited from the low-latency access to 
data provided by RAM storage. 
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Figure 2. CPU usage by task type for In-Memory and Disk-Based computing 

 

 
Figure 3. RAM usage by task type for In-Memory and Disk-Based computing 

 
4.2. Resource Utilisation Comparison 

CPU Usage: In-memory computing demonstrated higher CPU utilisation across all tasks, averaging 78% during 
the most intensive operations. This increase is attributable to the parallel processing capabilities of Apache Spark, 
which fully leverages the multicore architecture of the test system. Disk-based methods, on the other hand, 
showed a more modest CPU usage, peaking at 47.77%. The lower CPU demand for disk-based operations 
reflects the bottleneck introduced by slower disk I/O, limiting the rate at which the CPU can process data. 
RAM Usage: As anticipated, RAM usage was significantly higher for in-memory tasks, with peak utilisation 
reaching 58.46 GB during sorting operations. This high demand underscores the primary trade-off with IMC: the 
need for substantial memory resources. Conversely, disk-based processing exhibited minimal impact on RAM 
usage, peaking at 12.74 GB, as the bulk of data remained stored on disk, only loading what was necessary for 
processing into memory. 
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5. Conclusion 

This study embarked on a comparative analysis of in-memory computing (IMC) and disk-based processing, 
employing a rigorous experimental framework to ascertain their relative efficiencies and resource utilisation 
characteristics. Through the lens of the "New York City Taxi Trip Duration" dataset, our investigation dissected 
the performance of these computational paradigms across three pivotal data analytics tasks: aggregation, sorting, 
and filtering. The ensuing discourse synthesises our findings, drawing conclusions that illuminate the distinct 
advantages and limitations of each approach and chart a course for future applications and research in big data 
analytics. 
The experimental results unequivocally demonstrate that IMC, facilitated by Apache Spark, offers superior 
performance over traditional disk-based methods. Specifically, IMC exhibited a marked decrease in execution 
time across all tasks, underscoring its potency in processing large datasets with alacrity. For instance, the 
aggregation task saw IMC outperform disk-based processing by a factor of nearly three, a disparity that was 
consistently echoed in the sorting and filtering tasks. 
This performance advantage is primarily attributable to the inherent speed of RAM access in IMC systems, 
eliminating the latency that plagues disk-based operations. Such efficiency is paramount in real-time analytics 
and situations where timely data processing is crucial. However, it is imperative to acknowledge that this speed 
comes at a significant cost financially and in terms of system resources. 
While IMC's speed is compelling, our analysis revealed substantial resource demands, particularly concerning 
RAM usage. IMC operations consistently utilised a large portion of the available memory, peaking at 57.4 GB 
during the most intensive tasks. It contrasts with the modest RAM and CPU usage observed in disk-based 
processing, highlighting a critical trade-off between performance and resource efficiency. 
The high resource consumption of IMC underscores the necessity for substantial initial and ongoing investment 
in hardware, potentially constraining its viability for smaller organisations or projects with limited budgets. It 
also raises considerations around scalability and the environmental impact of increased energy consumption for 
powering and cooling advanced computing infrastructure. 
The findings from this study have profound implications for big data analytics. They affirm the pivotal role of 
IMC in enhancing data processing speeds but also caution against indiscriminate adoption without considering 
the associated costs and resource demands. For organisations contemplating the integration of IMC into their 
data analytics pipelines, a balanced approach, perhaps incorporating hybrid models that leverage both in-memory 
and disk-based processing, might offer a viable compromise. 
Moreover, the sustainability of IMC solutions necessitates ongoing research into optimising memory usage and 
developing cost-effective strategies for data persistence. As the data landscape continues to evolve, with 
increasing volumes and complexity, the quest for efficient, scalable, and economically viable computing 
paradigms remains paramount. In this context, future studies could explore the potential of emerging 
technologies and architectures, such as non-volatile memory and cloud-based in-memory services, to mitigate 
the limitations identified in this research. 
In summary, our investigation into the efficiency and scalability of in-memory computing for big data analytics 
highlights IMC's transformative potential while underscoring the criticality of mindful implementation. As we 
stand on the cusp of a new era in data processing, the lessons gleaned from this study offer valuable insights for 
navigating the challenges and opportunities. Through the judicious application of technologies like Apache 
Spark, informed by empirical evidence and strategic considerations, we can harness the true power of big data to 
drive innovation and progress in the digital age. 
 
Discussion 

The experimental exploration into the efficiency and scalability of in-memory computing (IMC) vis-à-vis 
traditional disk-based processing has yielded insightful findings that reinforce existing notions within the 
academic and professional realms and challenge some preconceived notions about data processing 
methodologies. This discussion delves into the implications of these results, drawing parallels to existing 
literature and considering the practicalities of applying IMC in less conventional environments, such as home 
computing setups for big data analytics. 
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The stark contrast in performance between IMC and disk-based processing methods observed in our experiment 
aligns with the theoretical advantages posited by Zaharia et al. (2010) and other proponents of IMC technologies 
like Apache Spark. The significant reduction in execution times for tasks such as data aggregation, sorting, and 
filtering underscores the inherent efficiency of IMC, primarily attributable to its reliance on RAM for data 
storage and access, thereby circumventing the latency issues that hamper disk-based systems. 
However, the findings also underscore the resource-intensive nature of IMC, with notable increases in CPU and 
RAM usage. This observation echoes the concerns raised by Plattner and Zeier (2011) regarding the scalability 
challenges and the potential cost implications of adopting IMC, especially as data volumes escalate. Such 
scalability concerns are critical, particularly in the context of expanding data sizes and their impact on the 
performance of computational tasks. 
The influence of data volume and task complexity on computational performance was palpably evident 
throughout the experiment. As data volumes expanded, the performance advantages of IMC over disk-based 
processing became more pronounced, particularly for complex tasks requiring multiple data passes, such as 
sorting and iterative filtering operations. This phenomenon highlights the importance of optimising data 
processing strategies to leverage the strengths of IMC, especially for tasks characterised by high complexity and 
large data volumes. 
Nevertheless, the augmented resource utilisation associated with handling larger datasets and more complex 
tasks raises pertinent questions about the sustainability and cost-effectiveness of IMC, particularly in 
environments with limited computational resources. This aspect is crucial when deploying IMC technologies for 
big data analytics on home computers. 
The practicality of employing IMC for big data analytics on home computers warrants careful consideration. 
While the performance benefits of IMC are undeniable, the significant resource requirements pose a considerable 
challenge. Home computers, albeit increasingly powerful, may not always possess the requisite specifications—
particularly in terms of RAM—to fully capitalise on IMC's advantages without compromising system stability 
and performance. 
Moreover, the economic implications of upgrading home computing setups to meet the demands of IMC must be 
weighed against the expected performance gains. For enthusiasts and professionals seeking to use IMC for big 
data analytics at home, a hybrid approach might offer a viable solution. Such an approach would involve using 
IMC for tasks where speed and efficiency are paramount while relying on disk-based processing for less time-
sensitive tasks or when operating within the constraints of limited system resources. 
In conclusion, while adopting IMC on home computers for big data analytics presents a compelling proposition 
in terms of performance, its feasibility is contingent upon carefully considering the system's capabilities and the 
nature of the analytical tasks. Future research could further explore optimisation strategies and lightweight IMC 
frameworks that could mitigate some of the resource-related challenges, thereby broadening the accessibility of 
advanced data analytics capabilities to a broader audience. Additionally, the exploration of hybrid approaches 
that combine the rapid data access of in-memory computing with the persistence and scalability of disk-based 
storage could yield solutions that are both efficient and practical for a wide range of applications. This direction 
promises to make big data analytics more adaptable to the diverse needs and resource constraints of users 
worldwide. 
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