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Abstract 

In cancer diagnosis, machine learning helps improve cancer detection by providing doctors with a second 
perspective and allowing for faster and more accurate determination and decisions. Numerous studies have used 
both classic machine learning approaches and deep learning to address cancer classification. In this study, we 
examine the efficacy of five commonly used machine learning algorithms; both traditional and deep learning 
models namely, Logistic Regression, Support Vector Machines (SVM), Random Forest (RF), Decision Tree and 
Deep Neural Networks (DNN). We analyze their ability to properly classify tumors as Benign or Malignant 
using the Wisconsin breast cancer dataset (WBCD). Random Forest classifier was employed to reduce model 
complexity, successfully narrowing down the number of features to 17 through cross-validation and achieving a 
validation score of 96.84%. Subsequently, a grid search was used to determine the maximum tree depth, resulting 
in five. The Synthetic Minority Oversampling Technique (SMOTE) was employed as a resampling tool to 
balance the Benign and Malignant categories adequately solving the class imbalance problem encountered in 
classification problems. After evaluating the overall performance for the unbalanced data, Random Forest 
emerged as the best classification model with an accuracy of 98.20%, followed by Logistic Regression with an 
accuracy of 97.40%. However, after applying SMOTE, both Random Forest and Logistic Regression emerged 
as the best models both with an accuracy of 94.70%. Bo th  Random Forest and Logistic Regression models 
had an outstanding performance with an area under the curve (AUC) value of 0.997 and 0.994 respectively. 
Keywords: Breast Cancer, Random Forest, Logistic Regression, Support Vector Machines, Deep Neural 
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1 Introduction 

Breast cancer remains one of the most common cancers among women worldwide, significantly impacting 
public health [1]. It is the leading cause of cancer-related deaths among women, affecting millions each year. 
Despite advances in treatment and early detection, the diagnosis of breast cancer at later stages can 
significantly diminish survival rates and increase treatment complexities. Early and accurate diagnosis is 
crucial for effective treatment and better patient outcomes. Given its high prevalence and the severe 
implications of delayed or incorrect diagnosis, there is a pressing need for innovative and more reliable 
diagnostic methods. This backdrop sets the stage for exploring enhanced machine learning techniques that can 
potentially transform the landscape of breast cancer diagnosis, promising more accurate, timely interventions. 
Breast cancer if left unchecked, the tumors can spread throughout the body and become fatal. Breast cancer 
cells begin inside the milk ducts and/or the milk-producing lobules of the breast. The earliest form (in situ) 
is not life-threatening and can be detected in early stages. Cancer cells can spread into nearby breast tissue 
(invasion). This creates tumors that cause lumps or thickening [2]. Invasive cancers can spread to nearby 
lymph nodes or other organs (metastasize). Metastasis can be life-threatening and fatal. Treatment is based on 
the person, type of cancer, and its spread. Treatment combines surgery, radiation therapy, and medications 
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[3]. In 2022, there were 2.3 million women diagnosed with breast cancer and 670,000 deaths globally. 
Female gender is the strongest breast cancer risk factor. Approximately 99% of breast cancers occur in 
women and 0.5–1% of breast cancers occur in men [2]. Breast cancer occurs in every country of the world in 
women at any age after puberty but with increasing rates in later life [4]. The treatment of breast cancer in men 
follows the same principles of management as for women. 
 
A tumor is an abnormal mass or growth of tissue that serves no specific purpose. It can develop when cells 
grow and divide too quickly [5]. Tumors can be located anywhere in the body. They grow and behave 
differently depending on whether they are benign (non-cancerous) or malignant (cancerous) [6]. A benign tumor 
is composed of cells that do not threaten to invade other tissues. The tumor cells are contained within the 
tumor and are not significantly different from the surrounding cells. Malignant tumors are composed of 
cancer cells that can develop uncontrollably and infiltrate surrounding tissues. The cancer cells in a 
malignant tumor tend to be abnormal and very different from the normal surrounding tissue [7]. A biopsy 
process allows a healthcare worker to obtain a sample of cells to determine whether a tumor is benign or 
malignant [8]. The cells will next be tested by a pathologist, a specialist who specializes in tissue examination. 
This includes examining the sample under a microscope. This is the most definitive way to determine tumor 
status, and the answer is usually clear-cut. But sometimes, the diagnosis is uncertain. It is also possible that 
cancer could be present, but the biopsy missed the area with malignant cells [2]. In lieu of this, machine 
learning (ML) which is rapidly transforming the field of healthcare, offering new ways to enhance diagnostic 
accuracy and patient treatment outcomes become useful. ML capacity to analyze large datasets and uncover 
patterns undetectable to the human eye makes it especially valuable in medical diagnostics, where early 
detection can be lifesaving. By leveraging ML, healthcare professionals can make more informed decisions, 
streamline workflows, and reduce the burden of manual tasks. This technological shift not only promises to 
improve clinical outcomes but also to revolutionize patient care by making it more data-driven and efficient. 

 

2 Related Works 

Supervised classification is one of the most common tasks undertaken by Intelligent Systems. A significant 
variety of techniques have been created based on Artificial Intelligence (Logic-based techniques, 
Perceptron- based techniques) and Statistics (Bayesian Networks, Instance-based techniques) [9]. [10] used 
an ensemble classification mechanism to diagnose breast cancer tumors and compared performance with the 
hard voting (majority-based voting) mechanism to the state-of-the-art algorithm. Results show that the hard 
voting mechanism shows better performance with an accuracy of 99.42% as compared to the state-of-the-art 
algorithm. 
[11] used six different classification methods: Multilayer Perceptron, Decision Tree, Random Forest, 
Support Vector Machine, and Deep Neural Network Analysis of Machine Learning Classifiers in Breast Cancer 
Diagnosis. Results indicate that the DNN classifier had the greatest performance in accuracy level (92%), 
indicating better results in relation to traditional models. [12] proposed data exploratory techniques (DET) 
and developed four different predictive models to improve breast cancer diagnostic accuracy. Prior to 
modelling, four-layered essential DET, e.g., feature distribution, correlation, elimination, and hyperparameter 
optimization, were deep- dived to identify the robust feature classification into malignant and benign classes. 
Results showed that SVM with polynomial kernel gained 99.3%, LR with 98.06%, KNN acquired 97.35%, 
and EC achieved 97.61% accuracy with the Wisconsin breast cancer dataset (WBCD). [13] predicted breast 
cancer using twelve classification algorithms: AdaBoost, J-Rip, LR, lazy learner, decision table, IBK, J48, 
lazy K-star, multiclass classifier, multilayer perceptron, random forest, Na¨ıve Bayes, and random tree. The 
results showed that other than Na¨ıve Bayes classification, all the algorithms performed very well with 
accuracy greater than 94% and that lazy and tree classifications outperformed other classification 
algorithms, with 99% accuracy. 
 
[14] asserted that although ensemble learning enables the improvement of performance of a base learner, it 
decreases the bias or variance. [15] proposed a new ensemble classification algorithm, CWV-BANNSVM, 
by combining Boosting Artificial Neural Network (BANN) along with two SVMs to improve the 
performance for WBCD. In contrast to traditional ensemble learning, [16] proposed a novel dynamic ensemble 
learning algorithm to automatically determine the number of neural networks and their architecture. Different 
training sets were used for each neural network hence guaranteeing better learning from the whole training 
data samples. The proposed DEL was trained several times to find the correct values of learning rate parameter 
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and the correlation strength parameter by using an incremental training approach. [17] stated that 
improvement is possible when using the ensemble boosting method. The method was integrated with a 
Radial Basis Function neural network algorithm and performance was increased to an accuracy of 98.4% for 
the WBCD dataset. Most of the literature makes use of both the traditional and the deep learning approach. 
This was reviewed that the accuracy is higher when the occurrence of true positives (TPs) and true negatives 
(TNs) is high compared to the false positives (FPs) and false negatives (FNs). Aside from accuracy, precision 
and recall are critical for performance reporting. However, for medical diagnostics, the performance of 
artificial intelligence systems should prioritize false negatives over false positives, as missing the diagnosis 
of a disease might have major consequences for patients. 
 
In the quest to enhance breast cancer diagnosis, several machine learning algorithms are being employed, 
each offering unique strengths. Logistic Regression is widely used for its simplicity and effectiveness in 
binary classification problems. Support Vector Machines (SVM) are favored for their ability to handle high-
dimensional data, making them suitable for complex diagnostic imaging tasks. Random Forest (RF) and 
Decision Trees provide robustness and ease of interpretation, crucial for medical applications where 
understanding the decision process is important. Deep Neural Networks (DNN) excel in pattern recognition, 
learning directly from pixel- level data in imaging studies, which is pivotal for identifying subtle anomalies 
indicative of early-stage tumors. These algorithms form the backbone of modern computational approaches 
to medical diagnostics, driving forward the capabilities of automated tumor classification systems. The 
main objective of this study is to examine the efficacy of five machine learning algorithms namely, Logistic 
Regression, Support Vector Machines (SVM), Random Forest, DNN and Decision tree classifier in properly 
classifying tumors as benign or malignant utilizing the Wisconsin breast cancer dataset (WBCD). This 
comparative analysis aims to discover the best performing algorithm for breast cancer diagnosis, which 
could provide useful insights to the medical field. 

 
2.1 Breast Cancer Diagnostic Workflow 

A schematic representation of the diagnostic workflow for breast cancer using machine learning and deep learning 
is depicted in Figure 1. The process begins with the feature extraction phase, where significant 
characteristics of the dataset are identified. These features are then fed into a traditional machine learning 
classifier or a deep convolutional neural network, which is part of the deep learning approach. Finally, the 
model generates a prediction indicating whether the observed patterns suggest a benign or malignant tumor. 

 

 
Figure 1: Diagram illustrating the process of diagnosing breast cancer using traditional machine learning and 

deep learning methods. 
 
 
2.2 Types of Tumors 

Figure 2 shows the fundamental differences between benign and malignant tumors. Benign tumors are non-
cancerous and do not spread to other tissues, whereas malignant tumors are cancerous and have the potential 
to spread to different parts of the body, a process known as metastasis. 
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Figure 2: Diagram illustrating the types of tumors. 
 

3 Data and Methods 

The dataset was provided in CSV file format and retrieved from Kaggle at 
https://www.kaggle.com/datasets/ uciml/breast-cancer-wisconsin-data. Diagnosis is the target and is 
classified as malignant (M) and benign (B). The number of sample class distributions for each benign and 
malignant is 357 and 212 respectively. 

 
3.1 Data Preprocessing 

The data was split into 80% training and the remaining 20% for testing. The training data consisted of 
approximately 455 samples and the testing data was comprised of 114 samples. Before training the 
data, we scale the features using MinMaxScaler normalization technique to make all features contribute 
equally to the result of our predictions. We also conducted extensive hyper-parameter tuning for each of the 
five classification models. Label encoder was employed to transform the response variable into 0 and 1, 
where 1 corresponds to a malignant tumor and 0 corresponds to a benign tumor as represented in (1) by: 
 

 
 

Synthetic Minority Over-sampling Technique (SMOTE) was employed to address the class imbalance 
problem in the breast cancer data. SMOTE works by creating synthetic samples from the minority class 
instead of simply duplicating existing samples [18]. This is achieved by randomly selecting a point from the 
minority class and computing the difference between this point and its nearest neighbors. The method then 
creates new points along the line segments joining the selected points in the feature space. By doing this, 
SMOTE adds variety to the training data, which helped in achieving a more balanced dataset and thereby 
improving the performance of a classifier. SMOTE helps in overcoming the overfitting problem which 
tends to occur when duplicating minority class samples. It also ensures that the decision boundary for the 
minority class is not too tight, allowing the model to generalize better on unseen data. Hence, SMOTE is 
particularly useful in scenarios like breast cancer diagnosis, where it is critical to detect the less frequent, but 
more dangerous cases effectively. 

3.2 Classification Models 

1. Logistic Regression (LR) is a statistical model that in its basic form uses a logistic function to model 
a binary dependent variable. LR is represented in (2) by: 

 

where x represents the feature vector, , , . . . ,  are the coefficients of the model, and  is the 
probability that the target  is 1 given  LR was employed in the study as a classification tool. 

2. Support Vector Machines (SVM) are a set of supervised learning methods used for classification, 
regression, and outlier detection. The objective of the SVM algorithm is to find a hyperplane in an N-
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dimensional space that distinctly classifies the data points quantified in (3) as: 

 

where w is the normal vector to the hyperplane and b is the bias. The optimal hyperplane maximizes the 
margin between the two classes. SVM was employed as a classification tool in this study with three 
different kernels namely linear, polynomial and radial basis function (RBF). 

3. Random Forest (RF) is an ensemble learning method for classification that operates by constructing 
a multitude of decision trees at training time and outputting the class; that is the majority vote (mode) of the 
classes of the individual trees represented in (4) by: 

Random Forest Classification = mode (Tree1(x), Tree2(x), . . . , Treen(x))                                                   (4)  

where x is the input feature vector and each Treei is an individual decision tree classifier. 

4. Classification Tree is a type of decision tree that is used for classifying instances. It makes decisions 
by splitting data based on feature values. The tree structure consists of nodes and leaves, where nodes 
represent feature choices and leaves represent decisions or classifications. The prediction for an instance x 
using a classification tree can be represented in (5) as: 
 

 
 

where  is the number of leaves in the tree,  is the class predicted by leaf ,  is the indicator function, and 
 is the region of the feature space associated with leaf . 

5. Deep Neural Network (DNN) a type of artificial neural network with multiple layers between the 
input and output layers which can model complex non-linear relationships [19]. The output of a DNN with 
L layers for an input vector x is given by the composition of multiple non-linear functions in (6) by: 

 

where  denotes the function of the  layer of the network. Each layer typically computes the 
following transformation given in (7) by: 

where  and  represent the weights and biases at layer , respectively, and  is a non-linear activation 
function like such as tanh, ReLU or sigmoid. 

3.3 Definitions of Classification Rates and Evaluation Performance 

Table 1: Classification Outcomes and Performance Statistics 
Metric Definition 
True Positive (TP) Correct positive prediction 
True Negative (TN) Correct negative prediction 
False Positive (FP) Incorrect positive prediction 
False Negative (FN) Incorrect negative prediction 
Accuracy 

 
Precision 

 
Sensitivity/Recall 

 
Specificity 

 
F1-Score 
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4 Results & Discussion 

In this section, we present the results and findings of the study. 
4.1 Diagnostic Distribution with Unbalanced and Balanced Class 

(a) Diagnosis count without SMOTE (b) Diagnosis count with SMOTE 
 

Figure 3: Diagnosis count with and without SMOTE 

Figure 3(a) indicate that there are 212 malignant cases, which is a significant concern as these represent 
cases where cancer has been confirmed. Also, there are 357 benign cases, which, while not indicative of 
cancer, still require attention to ensure they do not progress. In Figure 3(b), SMOTE has been applied to 
balance the cancer diagnosis counts. After balancing, both classes have the same counts of 357 solving the 
data imbalance problem commonly encountered in classification problems as evident in Figure 3. 

 
4.2 Analysis of Feature Interactions 

 

Figure 4: Bivariate relationships and univariate distributions. 
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From Figure 4, we observe that certain features exhibit a positive linear relationship, suggesting that as one 
feature increases, the other tends to increase as well. This is particularly evident in the scatter plot correlating 
the mean area of cells to their mean perimeter. Such a relationship is expected due to the geometric nature of 
these measurements. Also, certain scatter plots do not exhibit a clear relationship, indicating that the features 
may provide independent information valuable for classification purposes. The distributions along the diagonal 
offer insight into the variability of each feature across benign and malignant cases, where significant overlap 
may indicate a less discriminative feature in isolation. On particular note of the separation of malignant and 
benign cases in some of the feature combinations; a pronounced separation suggests that these feature pairings 
could be potent predictors for classification models, as they provide clear boundaries between the two 
diagnoses. It is these patterns that we seek to exploit in developing machine learning models that can 
accurately classify tumors based on their feature profiles, ultimately aiding in early and effective diagnosis. 
 

4.3 Exploratory Analysis of Radius and Texture Mean by Diagnosis 

 

 
Figure 5: Scatter plot of radius mean versus texture mean by diagnosis 
 
From Figure 5, there is a discernible pattern where points representing malignant tumors tend to exhibit higher 
values in both radius and texture mean, as opposed to the benign category. This observation aligns with 
clinical expectations that malignant tumors generally present more irregularities and larger sizes compared to 
their benign counterparts. The clustering of blue points corresponding to benign tumors is indicative of a 
relatively tighter grouping, suggesting less variability within these measurements. In contrast, the red points, 
signifying malignant cases, are more dispersed, reflecting a greater heterogeneity that could be attributed to 
aggressive tumor growth patterns. 
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4.4 Optimizing Feature Selection 

Within the scope of enhancing our model’s performance, we find the optimal set of features by importing 
the cross validation score function from the sklearn.model selection library, setting the cross-validation 
fold count to 5. This systematic approach enabled us to evaluate our Random Forest classifier’s performance 

across various subsets of features. 

 
Figure 6: Model’s cross-validation score with optimal features. 
 

Figure 6 illustrates the model’s increasing cross-validation score as more features are incorporated, 
identifying a plateau that indicates the optimal feature count. The analysis revealed that the highest cross-
validation score of 0.9684 resulted in an Optimum number of features of 17. The selected features, which 
are deemed to be most significant for our classification task as depicted in Figure 7 are Perimeter Worst, 
Radius Worst, Concave Points Worst, Concave Points Mean, Area Worst, Concavity Mean, Perimeter 
Mean, Area Mean, Area SE, Concavity Worst, Radius Mean, Texture Worst, Radius SE, Perimeter SE, 
Texture Mean, Smoothness Worst, and Compactness Worst. These features collectively form the core 
attributes for effectively distinguishing between malignant and benign tumors, thereby enhancing the 
predictive precision of our model. 
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Figure 7: Feature Importance of the 17 optimal features. 
 

 
4.5 Model Optimization via Hyperparameter Tuning 

Before arriving at the optimal models, a thorough optimization process was conducted using grid search 
cross- validation to fine-tune the hyperparameters. For random forest, the grid search tested various 
combinations of maximum tree depth, minimum samples required to split a node, and minimum samples 
required at a leaf node. This comprehensive search across the hyperparameter space included depth values 
ranging from 3 to 20, with minimum sample splits and leaves tested at several critical thresholds. The grid 
search determined the best-performing model to have a ‘max depth’ of 5, along with ‘min samples leaf’ and 
‘min samples split’ both 2. This model configuration achieved a cross-validation score of 0.96, signifying a 
high level of predictive accuracy while maintaining a balance between model complexity and generalization 
capability. 

 
Table 2: Gridsearch with 5-fold cross-validation 

 
Model Max. Depth Min. Sample Leaf Min. Sample Split Accuracy 

Random Classifier 5 2 2 0.96 
Decision Classifier 10 5 2 0.93 

 
We chose the Random Classifier model from Table 2 because it demonstrated the highest accuracy of 0.96 
in our tests, showing superior performance over the Decision Classifier. 
Additionally, using grid search for support vector classifier (SVC), we set up the parameters and the 
distributions to sample to tune hyperparameters for an SVM. These are the cost or regularization parameter 
and was set as [0.1, 1, 10, 100] and also the kernel coefficients as [1, 0.1, 0.01, 0.001]. The best kernel 
coefficient, gamma after the search resulted in 0.001 with a regularization parameter of 1. We then proceed 
to fit the SVM model for the 3 kernel functions: Linear, RBF and Polynomial. The deep neural network 
(DNN) models were built using TensorFlow and Keras, leveraging the Sequential and Dense classes for 
model architecture. Label encoding was employed to transform non-numerical labels into a numerical form, 
while one-hot encoding was applied to convert class vectors into a binary class matrix. The DNN model was 
structured to use a range of neurons per layer and varying learning rates for the Adam optimizer. The DNN 
model employed ReLU activation for hidden layers and softmax for the output layer, optimizing for 
categorical crossentropy loss and monitoring accuracy. Hyperparameter tuning was executed using 
RandomSearch with a focus on maximizing validation accuracy. 
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The model was then trained using 50 epochs, with the best-performing model selected based on its 
validation accuracy. The best validation accuracy achieved during hyperparameter tuning was 
approximately 93.41%, indicating the model’s proficiency in classifying the validation data. The tuning was 
completed in a time-efficient manner, taking only about 1 minute and 3 seconds. Over the span of 50 training 
epochs, the model’s performance consistently improved. It started with a high initial loss, yet decent 
accuracy, and progressed through typical mid-training adjustments. By the end of 50 training epochs, the loss 
had substantially decreased, and accuracy had correspondingly increased as evident in Figure 8, evidencing 
effective learning from the training data. Upon evaluation with test data, the model’s accuracy was about 
92.98%, which is remarkably close to the validation accuracy, showcasing its capability to generalize well. 
The model’s test loss stood at 0.3619, underscoring its efficacy. 

 

(a) Model Accuracy Over Epochs (b) Model Loss Over Epochs 
Figure 8: Model Accuracy and Loss Over Epochs 
 
Figure 9 shows the optimized decision tree after hyperparameter tuning. The tree’s maximum depth of five 
was carefully chosen to prevent overfitting, ensuring that the model remains generalizable to new data. This 
depth allows the tree to capture sufficient complexity in the data patterns without becoming overly 
specialized to the training data. Here, each node represents a decision based on the features of the breast 
cancer dataset, and the terminal nodes indicate the resulting classification as either benign or malignant. 

 

Figure 9: Optimal Decision tree with maximum depth of 5. 
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4.6 Confusion Matrices for Classification Models With and Without SMOTE 

The confusion matrices of the various models under consideration for the classification of breast cancer 
tumors are summarized in Table 3 for unbalanced data (without SMOTE) and balanced data (with SMOTE). 

 
Table 3: With and Without SMOTE Confusion Matrices for Classification Models  

Models Without SMOTE With 
SMOTE 

Random Forest Predicted Benign Predicted Malignant  Predicted Benign Predicted Malignant 

Actual Benign 66 1  62 5 
Actual Malignant 1 46  1 46 
Logistic Classifier      
Actual Benign 66 1  62 5 
Actual Malignant 2 45  1 46 
Decision Tree      
Actual Benign 63 4  59 8 
Actual Malignant 2 45  3 44 
SVM (Linear)      
Actual Benign 66 1  63 4 
Actual Malignant 7 40  4 43 
SVM (Polynomial)      
Actual Benign 64 3  62 5 
Actual Malignant 2 45  2 45 
SVM (RBF)      
Actual Benign 61 6  59 8 
Actual Malignant 3 44  3 44 
DNN      
Actual Benign 59 8  59 8 
Actual Malignant 2 45  3 44 

 
From Table 3, the without SMOTE confusion matrix indicates that Random Forest model is highly effective 
in classifying cases of breast cancer. It correctly identified 66 out of 67 actual benign cases and 46 out 
of 47 actual malignant cases, demonstrating high accuracy and precision. Misclassifications are minimal, 
with only 1 benign case incorrectly identified as malignant and 1 malignant case incorrectly identified as 
benign, suggesting the model is well-calibrated for both sensitivity and specificity in this context. However, 
after applying SMOTE, Random Forest model correctly identified 62 out of 67 actual benign cases and 46 
out of 47 actual malignant cases. The number of correct predictions of the actual benign cases dropped by 
4 while the number of incorrect predictions increased by 4. The without SMOTE confusion matrix for 
Decision Tree classifier successfully predicted 63 cases as benign when they were indeed benign (True 
Negative), and it correctly identified 45 cases as malignant that were actually malignant (True Positive). 
However, there were 2 cases where malignant tumors were incorrectly predicted as benign (False Negative), 
and 4 cases where benign tumors were mistakenly classified as malignant (False Positive). These results 
suggest that while the decision tree classifier is quite accurate, attention should be paid to the False 
Negatives due to the critical nature of early and correct diagnosis in breast cancer treatment. Likewise, after 
the application of SMOTE, decision tree classifier model correctly identified 59 out of 67 actual benign 
cases and 44 out of 47 actual malignant cases. The number of correct predictions of the actual benign cases 
dropped by 4 while the number of incorrect predictions of actual benign cases increased by 4. Similar trends 
were observed by the confusion matrix of the logistic classifier and SVM (linear) but with additional 1 and 3 
correct predictions for the malignant class respectively. Both SVM (polynomial) and SVM (RBF) also share 
similar characteristics with actual benign cases decreasing by 2 while the number of incorrect predictions of 
actual benign cases increasing by 2. The number of TP and FN remains the same for both SMOTE and 
without SMOTE. For the DNN classifier, the number of TN and FP remains the same for both SMOTE and 
without SMOTE. While the number of FN increased by 1, the number of TP decreased by 1. 
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4.7 Machine Learning Models Performance Evaluation 
Table 4: Model Comparison Results For With and Without SMOTE 

Models Accuracy Precision Recall Specificity F1-Score 
Without SMOTE (Testing)      
Random Forest 0.982 0.979 0.979 0.985 0.979 
Logistic Classifier 0.974 0.978 0.957 0.985 0.967 
Decision Tree 0.947 0.918 0.957 0.940 0.938 
SVM (Linear) 0.930 0.976 0.851 0.985 0.909 
SVM (Polynomial) 0.956 0.938 0.957 0.955 0.947 
SVM (RBF) 0.921 0.880 0.936 0.910 0.907 
DNN 0.912 0.849 0.957 0.881 0.900 
With SMOTE (Testing)      
Random Forest 0.947 0.979 0.979 0.925 0.979 
Logistic Classifier 0.947 0.979 0.979 0.925 0.979 
Decision Tree 0.904 0.846 0.936 0.881 0.889 
SVM (Linear) 0.930 0.915 0.915 0.940 0.915 
SVM (Polynomial) 0.939 0.900 0.957 0.925 0.928 
SVM (RBF) 0.904 0.846 0.936 0.881 0.889 
DNN 0.904 0.846 0.936 0.881 0.889 

 
The Random Forest classifier performed very well on the original unbalanced class with good model 
evaluation metrics but after the class was balanced using SMOTE, both the Random Forest classifier and the 
Logistic regression models performed above the other models with equal accuracies of 94.70%. We 
therefore concluded that both Random Forest and Logistic classifiers were the most appropriate models for 
breast cancer data classification. This decision is supported by the model’s superior performance across 
metrics, including precision, recall, specificity, F1-score and AUC. The high model evaluation metrics of 
both the Random Forest model and the Logistic before and after the application of SMOTE indicate that 
these models can correctly classify the majority of the cases in the given dataset. The precision and recall 
values show the model’s strength in minimizing false positives and false negatives, which is crucial in 
medical diagnostic applications. Moreover, the high F1-score suggests a balanced classification performance 
for both classes, (benign and malignant) as it is to be noted that accuracy is not a good measure for 
unbalanced data classification. 

 

5 Models Comparison with ROC Curves 

Here, we compare the AUC values of the classification models. 

 

Figure 10: Comparison of AUC for All Models 
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The Receiver Operating Characteristic (ROC) curve, a graphical plot illustrating the diagnostic ability of the 
breast cancer data is presented in Figure 10. It shows the trade-off between the true positive rate (TPR) and 
the false positive rate (FPR) at various threshold settings. The area under the curve (AUC) provides a 
measure of the model’s ability to distinguish between the malignant and benign classes. In Figure 10, we 
observe the following AUC scores: Random Forest has an AUC of approximately 0.9968, Logistic classifier 
has 0.9936, SVC with linear kernel has 0.9939, SVC with RBF kernel is at 0.9844, SVC with Polynomial 
kernel has 0.9847, the Decision Tree model has 0.9563, and the Deep Neural Network (DNN) is at 0.9504. 
All models significantly outperform the random chance classifier, which is represented by the diagonal black 
dashed line with an AUC of 0.5. The ROC curves are closer to the top-left corner of the plot, which 
indicates a high true positive rate and a low false positive rate, suggesting that the models have a strong 
discriminatory power for the positive class. The proximity of these curves and their AUC scores close to 1.0 
reflect the excellent predictive power of the models on the given breast cancer data. The Random Forest and 
SVC with default parameters marginally outperform the other models, indicating their superiority in this 
specific classification task. 

 

6 Conclusion 

The application of machine learning for breast cancer classification over the past few years has yielded 
significant insights into the efficacy of various algorithms in distinguishing between benign and malignant 
tumors. By employing five prevalent machine learning models such as Logistic regression, Support Vector 
Machines (SVM), Random Forest, DNN and Decision Tree classifier on the breast cancer data, this study not 
only reinforced the capability of these models in clinical settings but also highlighted the superior performance 
of the Random Forest classifier. The Random Forest model’s good model evaluation metrics for the 
unbalanced class underscore its robustness, driven by its ability to manage the complexity through the 
reduction of features to seventeen optimal predictors. This feature reduction, achieved via cross-validation, 
facilitated a more streamlined model that outperformed its counterparts, Logistic Regression and SVM 
(polynomial). The Logistic model followed closely demonstrating its effectiveness, particularly in terms of 
sensitivity and specificity. Meanwhile, the rest of the models, though slightly lagging in some evaluation 
statistics still proved to be a viable option for cancer classification. However, after applying SMOTE to 
balance the data, both Random Forest and Logistic Regression emerged as the best models with equal 
accuracies of 94.70%. Random Forest and Logistic Regression models performed outstandingly with an 
area under the curve (AUC) value of 0.997 and 0.994 respectively. The grid search methodology was used 
to fine-tune the Random Forest model further by determining an optimal maximum tree depth of five, 
enhancing the model’s predictive accuracy and making it the most suited model for clinical application. The 
success of these models, particularly the Random Forest and Logistic Regression, not only confirms their 
potential in supporting diagnostic processes but also suggests a pathway for future research where these 
models could be integrated into real-world clinical workflows to augment the diagnostic capabilities of medical 
practitioners. In conclusion, this study has shown how machine learning presents itself as a promising avenue 
for enhancing the accuracy, efficiency, and reliability of cancer diagnostics. Future studies may focus on 
integrating these models with other diagnostic tools and technologies to provide a holistic diagnostic 
framework, potentially increasing the survival rates and improving patient outcomes through early and 
accurate detection. Further research should also investigate the model’s applicability in a clinical 
environment and explore the potential of combining the classifier with other modalities, such as imaging 
data, to enhance diagnostic accuracy. Additionally, researchers should aim to develop methods that improve 
the interpretability of the Random Forest classifier without compromising its performance. 
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The data used to support the findings of this study are available on Kaggle and can be assessed at https: 
//www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data. 
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