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Abstract

The purpose of this paper is to study the two dimensional deformation in a thermoelastic microelongated solid. A
mechanical force is applied along the interface of fluid half space and thermoelastic microelongated half space.
The normal mode analysis has been applied to obtain the exact expressions for displacement component, force
stress and temperature distribution. The effect of microelongation on the displacement component, force stress
and temperature distribution has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.
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1. Introduction

The dynamical interaction between the thermal and mechanical has great practical applications in
modern aeronautics, astronatics, nuclear reactors, and high-energy particle accelerators. Classical elasticity is not
adequate to model the behavior of materials possessing internal structure. Furthermore, the micropolar elastic
model is more realistic than the purely elastic theory for studying the response of materials to external stimuli.
(Eringen and Suhubi 1964) and (Suhubi and Eringen 1965) developed a nonlinear theory of micro-elastic solids.
Later (Eringen 1965,1967) developed a theory for the special class of micro-elastic materials and called it the
"linear theory of micropolar elasticity". Under this theory, solids can undergo macro-deformations and micro-
rotations. (Eringen 1971)extended his work to include the axial stretch during the rotation of molecules and
developed the theory of micro-polar elastic solid with stretch. The micropolar theory was extended to include
thermal effects by(Nowacki 1966), (Eringen 1970), (Tauchert et al. 1968), (Tauchert 1971), (Nowacki and
Olszak 1974). One can refer to (Dhaliwal and Singh 1983) for a review on the micropolar thermoelasticity and a
historical survey of the subject, as well as to (Eringen and Kafadar 1976) in "Continuum Physics" series in which
the general theory of micromorphic media has been summed up.

There are two important generalized theories of thermoelasticity. The first is due to (Lord and Shulman
1967). The second generalization of the coupled theory of elasticity is known as the theory of thermoelasticity
with two relaxation time or the theory of temperature-rate-dependent thermoelasticity. (Muller 1971), in the
review of thermodynamics of thermoelastic solids, proposed an entropy production inequality, with the help of
which he considered restrictions on a class of constitutive equations. A generalization of this inequality was
proposed by (Green and Laws 1972). (Green and Lindsay 1972) obtained another version of the constitutive
equations. These equations were also obtained independently and more explicitly by (Suhubi 1975). This theory
contains two constants that act as relaxation times and modify all the equations of coupled theory, not only the
heat equations. The classical Fourier law of heat conduction is not violated if the medium under consideration
has a centre of symmetry.

(Barber 1984) studied thermoelastic displacements and stresses due to a heat source moving over the surface of a
half plane. (Sherief 1986) obtained components of stress and temperature distributions in a thermoelastic
medium due to a continuous source. (Dhaliwal et al. 1997) investigated thermoelastic interactions caused by a
continuous line heat source in a homogeneous isotropic unbounded solid. (Chandrasekharaiah and Srinath 1998)
studied thermoelastic interactions due to a continuous point heat source in a homogeneous and isotropic
unbounded body. (Sharma et al. 2000) investigated the disturbance due to a time-harmonic normal point load in a
homogeneous isotropic thermoelastic half-space. (Sharma and Chauhan 2001) discussed mechanical and thermal
sources in a generalized thermoelastic half-space. (Sharma et al. 2004) investigated the steady-state response of
an applied load moving with constant speed for infinite long time over the top surface of a homogeneous
thermoelastic layer lying over an infinite half-space. (Sarbani and Amitava 2004) studied the transient
disturbance in half-space due to moving internal heat source under L-S model and obtained the solution for
displacements in the transform domain. (Aouadi 2006) studied thermomechanical interaction in a generalized
thermo-microstretch elastic half space. (Deswal and Choudhary 2008) studied a two-dimensional problem due to
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moving loads in generalized thermoelastic solid with diffusion. (El. Maghraby 2010) considered two
dimensional problem of generalized thermoelastic half space under the action of body forces and subjected to
thermal shock. (Youssef 2010) solved the problem on a generalized thermoelastic infinite medium with a
spherical cavity subjected to a moving heat source. (S. Shaw and B. Mukhopadhyay 2012, 2013) discussed a
couple of problems in a thermoelactic microelongated medium subjected to heat source.

2. Fundamental Model

The constitutive equation for a homogeneous, isotropic, microelongated, thermoelastic solid are

0
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microelongational constants, Lz is the specific heat at constant strain, K is the thermal conductivity, 1y is the
component of microstretch vector @y, and @y, are coefficent of linear thermal expansion where T is temperature

above reference temperature 1 o » 4 18 heat flux, ¢ is microelongational scalar, s displacement vector. £ =1

and 2 for L-S and G-L theories respectively.The field equation of motion according to[33, 34] and heat
conduction equation according to [35] for the displacement, microelongation and temperature changes are,
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Here we have considered a homogenous, microelongated, isotropic, infinite, thermoelastic body at a uniform
reference temperature Ty in Xy -plane with displacement vector © = (u,v,0), i.e two dimensional disturbance
of medium is assumed. Hence equations (5)-(7) become
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The equations of motion and stress components in fluid are:

;0%
(A V(Vai')=p’
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f =2u rfr 5!1
where, 1 I is displacement vector, A’ is Lame's constant and p‘ is density of fluid.
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For convenience the following non-dimensional variables are used:
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Using above non dimensional variables, the equations (8)-(11) reduces to (after dropping superscripts)
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3. Normal Mode Analysis
The solution of the considered physical variables can be decomposed in terms of normal mode and can be
considered in the following form

A
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where @ is complex frequency, b is wave number in ¥ -direction and " (x),v"(x), T (x), @ (x),

0; (x),u’ g (x),v/ : (%), O'U/* (x) are the amplitudes of field quantities.
Using Normal mode in equation (14)-(20), we get
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where, 4, = @° +hb*, A, =(1+1,5,,0), A, = &* +hb*, A, =b* + h, + h,&",
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In a similar manner we can show that v (x), @ (x), @ (x) satisfies the equation

(D® + AD°® + BD* + CD* + E)(v (x),0" (x),0 (x))=0 (29)
which can be factorized as follows, (D> —k ) (D> —k; (D> — ki) D> —k})u"(x) =0 (30)
The Series solution of equation (28) has the form
4
u'(x) =Y [M, (b "] (1)
n=l1
. =S kX
vi(x) =DM, (b,w)e "] (32)
n=1
* 4 v —k X
T'(x)=2 [M,(b,@)e "] (33)
n=l1
* 4 " -k X
¢ (x)=2 M, (bwe "] (34)
n=1

where M, (b, @), M, (b,w), M n (b, ), M n (b,w) are specific function depending upon b , @ and k. ;

n =1,2,3,4 are the roots of characteristic equation (30).
using equation (31)-(34) in equation (21)-(24), we get the following relations
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Similarly for medium II (i.e fluid half space), the solutions are of the form
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4. Applications

In this section we determine the parameter M, ; (7=1,2,3,4,5). In the physical problem, we should suppress
the positive exponential that are unbounded at infinity. Constants M, M,,M;,M, and M ; have to be

selected such that boundary condition at the surface x =0 takes the form,

) wt+iby'.=.f, =g/ 0=0 aT:()
o, =0, —Pe JVEY 0, =050 .
where P, is the magnitude of mechanical force.

J A S

Using the expressions of o ., o, , V, V 70,,,0, T @ into above boundary conditions, gives the

following equations satisfied by the parameters.
4 4
Z:ZI[HMzMn ] - LMS = _Pl > Zn:I[HlnMn ] - QMS = O’ Zn:I[HSnMn ] = 09
4 4
anl[Hmen ] = O’ anl[HannMn ] =0

Solving the above system of equations , we get the component of normal displacement, normal force stress and

temperature distribution at the interface of thermoelastic microelongated half space and fluid half space.
4.1 Special Case: Taking @ = 0, we get the Thermoelastic solid (TS).
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5. Numerical Results and Discussions
In order to illustrate the theoretical results obtained in the preceding section , we present some numerical results
for the physical constants [32]:

A =7.59x10" N/m?*, i = 1.89x10"° N/m*, a, = 0.61x107° N, p=2.19x10° kg/m’
B, =0.05x10°N/m’K , B, =0.05x10°N/m’K , C, = 966J/(kgk) T, =293K

Jo =0.196x107"m* A, =2, =037x10""N/m*, ¥ =2.14x10" Nim*

o’ =10 kgm’, t, =0.01, t, =0.0001, K =252J/msK

The computations are carried out for the value of non-dimensional time ¢ = 0.2 in the range 0 < x <10 and
on the surface y =1.3 .The numerical values for normal displacement, normal force stress and temperature

distribution are shown in Figures (1)-(3) for G-L theory by taking J,, =0, o,, =l and B, =1.0,
w=w,+1&, w,=-0.3,5=0.1and b=1.3.
(a) Thermoelastic microelongated solid(TMS) by solid line with dashed symbol .

(b) Thermoelasic solid(TS) by dashed line with centered symbol m.

It is observed from Figure-1 that the values of normal displacement increases in the range 0 < x <2 for
thermoelastic microelongated solid (TMS) whereas it decreases in the same range for thermoelastic solid(TS)
and then follow oscillatory pattern in the range 2 < x < 10. From Figure-2 and Figure-3 it is clear that value of
normal force stress and temperature distribution for thermoelastic microelongated solid(TMS) is more towards
the point of application of mechanical source as compared to thermoelastic solid(TS) in the range 0 <x < 1.5 and
then decreases to follow oscillatory pattern in the range 1.5< x <10. Hence, there is significant effect of
microelongation .
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