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Abstract 

The maximum annual streamflow data of River Hadejia gauging station obtained from the Hadejia Jama’are Ko

madugu TrustFund, Damaturu for the period of 1963 to 2014 were subjected to flood frequency analysis. Three p

robability distribution functions; Extreme Value Type 1 (EV-1), Lognormal (LN), and Log Pearson Type III (LP

 III) were used for the analysis. The models were used to predict and compare corresponding flood discharge esti

mates at 2, 5, 10, 25, 50, 100 and 200 years return periods. The results for EV-1, LN and LP III at 200 years retur

n period indicated predicted discharge values of 157.419, 169.43 and 135.21 respectively. From the results, logn

ormal distribution model gives higher flood discharge estimates and therefore it is recommended to be utilized fo

r safe design.  
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1. Introduction 

A flood occurs when there is an unusual high stage of a stream or river. This is due to runoff from precipitations 

in quantities too large to be confined in the normal water surface elevations of the stream or river. This may 

result from unusual combination of meteorological factors (Mustapha and Yusuf, 2012). 

How frequently a flood event of a given magnitude may be expected to occur is of great importance, because 

almost every activities on a particular flooded area might be controlled by it (Hosking and Wallis, 1997). Flood 

frequency analysis with various  risks of exceedence is therefore needed for a wide range of engineering 

problems; planning for weather related emergencies, reservoir management, pollution control, and insurance risk 

calculations (Gottschalk and Krasovskaia, 2001; Kjeldsen et al, 2002; Saf, 2008). 

In hydrological events, there are numerous and unpredictable sources of uncertainties about the physical 

processes (Hosking and Wallis, 1997). Thus, stochastic models (such as flood frequency analysis) are very 

important and desirable to estimate how often a specified event will occur on average in a particular area.  

The primary objectives of flood frequency analysis are to determine the return periods and then to estimate the 

magnitudes of events for design return periods beyond the recorded range. The intermediary between these two 

objectives is the theoretical probability distribution. The fitted distribution is used to estimate event magnitudes 

corresponding to return periods less than or greater than those of the recorded events (Mustapha and Yusuf, 

2012). However, it must be emphasized that the prediction is statistical and not guaranteed. Many factors such as 

a change in the precipitation pattern in the drainage basin, construction of artificial levees and dams, and 

deforestation and urbanization can introduce significant errors into the flood frequency analysis (Mustapha and 

Yusuf, 2012). 

Return period, T, may be defined as the time interval for which a particular flood having magnitude QT (also 

known as quantiles) is expected to be exceeded (Mengistu, 2008).  

Numerous probability distribution functions have been used to model phenomena such as stream flow, 

precipitation, etc., which are characterized by significant variability and not significantly explained by physical 

principles (Wurbs and James, 2009). However, the three most used probability distribution models for flood 

frequency analysis are: EV- I (Extreme value type -1), Log -normal, and Log Pearson Type III (Mustapha and 

Yusuf, 2012).  

Extreme value type -1 

EV-I (Extreme value type I) also referred to as Gumbel Maximum distribution is one of the most commonly 

used distribution in flood frequency analysis, the exponential probability function of largest values fits 

symmetrically the distribution of annual maximum flood events, and is given by: 
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       …    …    …   …    …    …    …     …     …        (1) 

 Where; P is the probability of occurrence of given flood being equaled or exceeded, and y is the reduced variate, 

which is a function of probability and is given by: 

    …  …  …. …  …    …    …   …    …    …    …     …     …   (2) 

The parameters are estimated by the equation: 

   …  …  …. …  …    …    …   …    …    …    …     …     …   (3) 

  …  …  …. …  …    …    …   …    …    …   …   … (4) 

For a given return period T, the reduced variate yT is given by: 

     …  …    …    …   …    …    …    …     …     …        (5) 

 is related to  by: 

   …  …. …  …    …    …   …    …    …    …     …     …   (6) 

Lognormal  

Natural phenomena have values greater than zero and may be unconstrained theoretically in the upper range. 

Lognormal distribution fits those conditions. The logarithms of the hydrological variables follow a normal 

distribution. Its probability distribution function (PDF) is given by: 

  …  …    …    …   …    …    …    …     …     …   (7) 

The two parameters; mean , and standard deviation,  are given by: 

                        …  …    …    …   …    …    …    …     …     …   ….  …  ..        (8) 

Where  magnitude of the ith event and N the total number of events. 

  …  …    …    …   …    …    …    …     …     …   … …   (9) 

The PDF of lognormal distribution is derived from substituting the equation in the normal: 

     …  … …    …   …    …    …    …     …     …   (10) 

Since the logarithm of x follows a normal distribution, the mean and standard deviation becomes: 

                        … . …  …    …    …   …    …    …    …     …     …     (11) 

       …  …    …    …   …    …    …    …     …     …    (12) 

 

Therefore, the probability of exceedence related to an occurrence period can be applied to the logarithms as: 

                      …  …    …    …   …    …    …    …     …     …       (13) 

Where, K is the frequency factor. 

 

Log Pearson Type III 

This distribution involves the transformation of random variable x as a Pearson Type III from natural units to 

logarithmic units and computes the mean, standard deviation and skew coefficient parameters of the distribution. 

The mean is expressed as: 

                               …  …    …    …   …    …    …    …     …     …   …      … (14) 

Standard deviation: 

  …  …    …    …   …    …    …    …     …     …   (15) 

Skew coefficient: 

   …  …    …    …   …    …    …    …     …     … …  (16) 
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For any probability level, the value of x is computed from: 

                    …  …    …    …   …    …    …    …     …     …   …    (17) 

The value of k can be obtained from tables in Standard Hydrology Textbooks.  

2. Materials and Methods 

2.1 Study Area 

The study area is located in the North Western part of Nigeria on the Hadejia River. It falls within geohraphical 

coordinates of 12º26’N and 10º04’E and has a drainage area of 25,900km
2
.
 
The upstream section of the Hadejia 

River system lies on the largely impermeable Basement Complex rocks. The upstream Basement Complex 

region is hilly (with peaks of up to 1,200 m). In the upstream area, from 1980 onwards, there has been a 

tendency for the tree-dominated savannah to be replaced by land-use for rainfed agriculture and grazing 

(Afremedev, 1999). The middle and downstream parts are, except for some ancient sand dunes, relatively flat. 

Most of the flows in the Hadejia River system (∼80%) is regulated by Tiga Dam. The Hadejia River splits into 

three channels in the Hadejia Nguru Wetland: The Marma channel which flows into the Nguru Lake, the old 

Hadejia River which joins up with the Jama’are River to become the Yobe River and the relatively small Burum 

Gana River (Goes, 2001). A map showing the Hadejia – Jama’are River Basin is presented in Figure 1. 

 

 
Figure 1: The Hadejia Jama’are Komadugu Yobe Basin  

Source: Komadugu Yobe Basin Project (2006) 

2.2 Methodology  

2.2.1 Data Collection 

Data were collected on discharge/streamflow for the period of 52 years (1963 – 2014).  The data were subjected 

to Flood Frequency Analysis (FFA). Three probability distribution models namely: Extreme Value Type I 

(Gumbel), Lognormal and Log-Pearson Type III were utilized for the analysis. 

2.2.2 Confidence Bands 

 Confidence band was constructed for the fitted distribution around the flood frequency curve to 

determine the reliability of points representing the annual maximum discharge X for a recurrence interval T 

(Chow et al., 1988). 

 For estimating the event magnitude for return period T, the upper limit, UT,   and lower limit, LT,  may 
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be specified by adjustment of equation (13). 

UT,  … …    …    …   …    …    …    …     …     …  …  ….      (18) 

And  

LT,  … …    …    …   …    …    …    …   …     …  ….  ….   …  (19) 

Where  and  are the upper and lower confidence limit factors, which can be determined for normally 

distributed data using the non – central t – distribution (Kendall and Stuart, 1967). Approximate values for these 

factors are given by the following formulae (Natrella, 1963, U. S. Water Resources Council, 1981): 

…  …    …    …   …    …    …    …     …     …   …   …        (20) 

…  …    …    …   …    …    …    …     …     …   …   …         (21) 

Where; 

 …  …    …    …   …    …    …    …     …     …   …        (22) 

           …  …    …    …   …    …    …    …     …     …   …   …  …   (23) 

 3. Results and Discussions 

3.1 Extreme Value Type I Distribution  

For the observed stream flow data, the mean ( ) = 72.62 and Standard deviation (Sx) = 23.0416. The parameters 

were estimated as;  = 17.97 and u= 62.25. 

 
 

 
For different values of , the various  were obtained. 

Table 1. Predicted flood discharge values for different return periods for Extreme Value Type I Distribution  

T (yrs)  U    

2 0.367 62.25 17.97 6.595 68.845 

5 1.500 62.25 17.97 26.955 89.205 

10 2.250 62.25 17.97 40.433 102.683 

25 3.199 62.25 17.97 57.486 119.739 

50 3.902 62.25 17.97 70.119 132.369 

100 4.600 62.25 17.97 82.662 144.912 

200 5.296 62.25 17.97 95.169 157.419 

 

Table 2. Calculation of 95% confidence limits for Extreme Value Type I Distribution 

T (yrs) 2 5 10 25 50 100 200 

Za 1.599 1.599 1.599 1.599 1.599 1.599 1.599 

KT 0 0.842 1.282 1.751 2.054 2.326 2.576 

 0.224 1.123 1.996 3.012 3.650 4.218 4.737 

 -0.224 0.604 0.633 0.580 0.563 0.554 0.547 

UT,  77.781 98.497 118.611 142.021 156.720 169.800 181.767 

LT,  67.459 86.537 87.213 85.970 85.602 85.380 85.227 

 

3.2 Lognormal Probability Distribution  

The observed annual maximum discharge values (Q) have been transformed to log values in Table 3 for 

subsequent analysis using lognormal distribution. The frequency factor (K) for normal and log normal for 
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different return periods can be obtained from the tables in standard Hydrology textbooks for Pearson and Log 

Pearson distribution but with skew (G) equal to zero (Wurbs and James, 2009). The K values for Pearson Type 

III and Log- Pearson Type III distributions for zero skew coefficients are given in Table 4. 

Table 3. Log transformed data for Lognormal/Log Pearson Type III Distributions 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 

Q 139.44 107.22 107.09 105.05 98.30 98.13 95.72 95.72 95.72 95.69 94.84 94.22 

Log Q 2.14 2.03 2.03 2.02 1.99 1.99 1.98 1.98 1.98 1.98 1.98 1.97 

 

13 14 15 16 17 18 19 20 21 22 23 24 25 26 

93.5

7 

92.0

5 

84.8

7 

84.7

3 

83.6

2 

82.9

4 

79.4

8 

79.4

8 

78.6

1 

78.1

1 

77.1

5 

77.1

5 

76.6

7 

74.6

0 

1.97 1.96 1.93 1.93 1.92 1.92 1.90 1.90 1.90 1.89 1.89 1.89 1.88 1.87 

 

27 28 29 30 31 32 33 34 35 36 37 38 39 

74.60 74.24 71.90 71.74 68.13 66.35 65.21 58.73 58.73 58.73 58.13 53.96 53.96 

1.87 1.87 1.86 1.86 1.83 1.82 1.81 1.77 1.77 1.77 1.76 1.73 1.73 

 

40 41 42 43 44 45 46 47 48 49 50 51 52 

52.70 52.64 52.64 49.68 48.31 48.19 47.96 47.15 41.30 38.98 34.56 33.21 24.44 

1.72 1.72 1.72 1.70 1.68 1.68 1.68 1.67 1.62 1.59 1.54 1.52 1.39 

 

Sum Mean Stan. Dev Skew 

3776.34 72.62 23.0416 0.20703 

95.54 1.84 0.15103 -0.7017 

 

Table 4. K values for different return periods for lognormal distribution  

Skew coefficient (G=0) Recurrence interval, T (yrs) 

2 5 10 25 50 100 200 

K 0.000 0.842 1.282 1.751 2.054 2.326 2.576 

 

From equation (17), the predicted flood discharge values for the lognormal distribution at different return periods 

and K values (Table 4) were obtained and presented in Table 5.  

Table 5. Predicted flood discharge values for different return periods for lognormal distribution 

T (yrs) KT  T   T  (m
3
/s) 

2 0 0.15103 0 1.84 1.840 69.18 

5 0.842 0.15103 0.1272 1.84 1.967 92.68 

10 1.282 0.15103 0.1936 1.84 2.034 108.14 

25 1.751 0.15103 0.2645 1.84 2.105 127.35 

50 2.054 0.15103 0.3102 1.84 2.150 141.25 

100 2.326 0.15103 0.3513 1.84 2.191 155.24 

200 2.576 0.15103 0.3891 1.84 2.229 169.43 
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3.3 Log Pearson Type III Distribution 

In applying Log-Pearson type III probability distribution model to the annual maximum data of the river; the 

mean, standard deviation and skew coefficient of the log transformed data of Table 3, were obtained as; 1.84, 

0.15103 and -0.7017 respectively. The K factor values for different return period values for skew coefficient (-

0.7017) were obtained from tables available in standard Hydrology Text Books. The values of KT  for thesame 

return periods are presented in Table 6.  

From equation (17), the predicted flood discharge values for the log Pearson Type III distribution at different 

return periods and K values (Table 6) were obtained and presented in Table 7.  

Table 6. K values for different return periods for Log Pearson Type III distribution  

Skew Coefficient (G= -0.7017) Recurrence interval, T (yrs) 

2 5 10 25 50 100 200 

K 0.116 0.857 1.183 1.488 1.663 1.806 1.926 

 

Table 7. Predicted flood discharge values for different return periods for log Pearson Type III distribution 

T (yrs) KT (G= -0.7017)  T   T  (m
3
/s) 

2 0.116 0.15103 0.018 1.84 1.858 72.11 

5 0.857 0.15103 0.129 1.84 1.969 93.11 

10 1.183 0.15103 0.179 1.84 2.019 104.47 

25 1.488 0.15103 0.225 1.84 2.065 116.15 

50 1.663 0.15103 0.251 1.84 2.091 123.31 

100 1.806 0.15103 0.273 1.84 2.113 129.72 

200 1.926 0.15103 0.291 1.84 2.131 135.21 

 

The results of the 2, 5, 10, 25, 50, 100 and 200 years return periods frequency analysis based on maximum 

instantaneous flow recorded on the Hadejia River at Hadejia gauging station from 1963 to 2014 using Extreme 

value Type 1(EV-I), Lognormal (LN) and Log Pearson Type III (LPIII) distributions are summarized in Table 8. 

Table 8. Summary of flood quantile estimates for different probability distributions 

T(yrs) 
Flood quantile estimates (m

3
/s) 

Extreme Value Type 1 Lognormal Log Pearson Type III 

2 68.845 69.18 72.11 

5 89.205 92.68 93.11 

10 102.683 108.14 104.47 

25 119.739 127.35 116.15 

50 132.369 141.25 123.31 

100 144.912 155.24 129.72 

200 157.419 169.43 135.21 
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Table 9. Quantile estimates by distributions and percentage deviations from LN values 

 (yrs) 

E

V-1 N PIII 

% deviation of EV-1 

values from values LN 

% deviation of LPIII 

values from LN values 

2 68.845 69.18 72.11 
0.48 -4.24 

5 89.205 92.68 93.11 
3.75 -0.46 

10 102.683 108.14 104.47 
5.05 3.39 

25 119.739 127.35 116.15 
5.98 8.79 

50 132.369 141.25 123.31 
6.29 12.70 

100 144.912 155.24 129.72 
6.65 16.44 

200 157.419 169.43 135.21 
7.09 20.20 

Table 9 presents the quantile estimates obtained for the specific return periods of 2, 5, 10, 25, 50, 100, 200 years 

obtained by fitting the three probability distribution models to the observed flood data and the computed 

percentage deviation of the EV-1 and LPIII quantile values from their corresponding LN values. As indicated in 

Table 9, the percentage deviation of the EV-1 predicted values from LN predicted values ranges from  0.48% at 

T= 2years  to  7.09% at T =200years. However, the lognormal distribution predicted higher quantile values than 

the corresponding values predicted by EV-1 and LPIII distributions. Moreover, the percentage deviation of LPIII 

predicted values from LN predicted values for the corresponding return periods ranges from -4.24% at T=2 years 

to 20.20% at T=  200 years, and for lower return periods ( up to T=10 years), LPIII predicted quantile estimates 

are higher than the corresponding values predicted by EV-1 distribution. Also, from the table, it can be seen that 

all the distributions gave similar magnitudes for corresponding return periods with the indicated degree of 

deviation, whereas, for corresponding values of return periods, the disparities in the percentage deviation of EV-

1 and LPIII predicted quantile values increased with increasing return periods. 

 

4. Conclusion  

This study presents the flood frequency analysis of Hadejia River using the streamflow data at Hadejia gauging 

station recorded between 1963 and 2014, and subjecting same to three probability distribution models; Extreme 

Value Type 1 (EV-1), Lognormal (LN) and Log Pearson Type III (LPIII).  

EV-1, LN and LPIII can be utilized for frequency analysis of the Hadejia River flood data. However, it is safer to 

use the lognormal distribution because it gives higher quantile magnitude. 

 

5. Recommendations 

At the end of this study, the following recommendations were made; 

i.Establishment of Telemetric Data Collection Platform (DCP) station on the river is needed to carry out reliable 

design and operation of hydraulic structures and for flood plain and flood risk mapping. 

ii.The use of GIS should be encouraged to introduce terrain analysis in flood prediction. 

iii.Regional flood frequency analysis should be utilized to provide useful alternative to the single site analysis 

especially in cases where records are short and in situations where estimates are needed in ungauged sites. 

 

References 

Afremedev Consultancy Services Limited (1999): Hadejia – Jama’are – Komadugu Yobe Basin  Catchment. 

Action Plan for Integrated Natural Resource Management, Nigeria.    

Chow, V.T., D.R. Maidment and L.W. Mays. 1988. Applied hydrology. McGraw-Hill Book Company, New 

York, 572p. 

Goes, B. J. M. (2001). Effects of damming the Hadejia River in semiarid Northern Nigeria lessons learnt for 



Civil and Environmental Research                                                                                                                                                    www.iiste.org 

ISSN 2224-5790 (Paper) ISSN 2225-0514 (Online) 

Vol.8, No.9, 2016        

 

131 

future Management. Regional Management of Water Resources (Proceedings of a symposium held during the 

Sixth IAHS Scientific Assembly at Maastricht, The Netherlands, July 2001. IAHS Publ. no. 268:73-153 

Gottschalk, L., & Krasovskaia, I. (2001). Regional flood frequency analysis, - a  theoretical background. Lecture 

notes in Stochastic Hydrology. Department of Geophysics. University of Oslo, Norway. 

Hosking, J. R. M., & Wallis, J. R. (1997). Regional frequency analysis: an approach based on L-moments. 

Cambridge: Cambridge University Press, England. 

Kendall, M. G. and Stuart, A. (1967). The advanced theory of Statistics. Hafner, Volume 3. New  York, USA. 

Kjeldsen T.R., Rosbjerg D. (2002). Comparison of regional index flood estimation procedures based on the 

extreme value type I distribution. Stochastic Environmental Research and Risk AssP a g e  | 131essment. 

16(5):358-373. 

KYBP (2006). Komadugu Yobe Basin Water Audit Report by Afremedev Consultancy Services Limited for 

FMWR-IUCN-NCF Komadugu Yobe Basin Project, Kano, Nigeria. 

Mengistu, D. (2008). Regional Flood Frequency Analysis for Upper Awash Sub- Basin (Upstream of Koka). 

Dissertation. Civil Engineering, Engineering. Addis Ababa University. Ethiopia.  

Mustapha, S. and Yusuf, M. I. (2012). A Textbook of Hydrology and Water Resources. Topsmerit page 

publishers, Abuja, Nigeria. 

Natrella, M. G. (1963). Experimental Statistics NBS Handbook 91. U.S. Government printing office, 

Washington DC, USA. 

Saf, B. (2008). Application of index procedures to flood frequency analysis in Turkey. Journal of  the American 

Water Resources Association, 44(1):37-47. 

United States Water Resources Council (USWRC) (1981) Guidelines for Determining Flood Flow Frequency. 

Bulletin No. 17B, 15-19. 

Wurbs, R. A. and James, W. P. (2009). Water Resources Engineering, PHI Learning Private Limited, New 

Delhi, India. 

 

 

 


