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Abstract 

Contamination of underground water as a result of excessive crack on clay liner material is a prevalent 

phenomenon in an engineered landfill. Volumetric shrinkage strain (VSS) is one of the veritable properties 

considered for selection of materials suitable for liners and cover in waste containment systems. Material devoid 

of excessive shrinkage and cracking during climate change could possibly make a better barrier material that will 

eventually limit or control infiltration of leachate in an engineered landfill. Hence, to obtain a clay liner and covers 

system that are safe and robust, stabilization of such soil (expansive clay soils) becomes imperative. In order to 

stabilize or reduce excessive cracking and shrinkage of this soil, earlier researchers have employed cement, 

chemicals, and fibers. However, in recent times, the ill effects of these stabilizers on the environment have been 

realized, and hence their replacement with sustainable materials that are mostly agro and or industry by-products 

is becoming necessary. Tropical dark grey clay treated with up to 8 % Groundnut shell ash (GSA), was carried out. 

Specimen were compacted using British standard light (BSL) and British standard heavy (BSH) compactive efforts; 

at water contents between 2% dry and 4% wet of optimum. The compacted specimens were extruded and subjected 

to drying under laboratory conditions to evaluate its desiccation induced shrinkage and hence its suitability as a 

cover material in waste containment facilities. Results of this study show that changes in mass and volumetric 

shrinkage strain were large within the first five days of drying. Volumetric shrinkage strain increased with higher 

moulding water contents (MWC) and water contents relative to optimum (WRO). The effect of GSA treatment on 

VSS was not consistent from -2 to +2 % of optimum moisture content. For specimen prepared at +4 % of optimum 

moisture content, VSS decreased up to a threshold of  28% at 6 % GSA and 30% at 4% GSA for BSH and BSL 

compactive effort, respectively. Generally, lower compactive effort (BSL) with higher moulding water content 

and lower dry density produced higher VSS. A regression function was developed from the data to estimate VSS 

given the compaction water content relative to optimum (WRO), groundnut shell ash content (GSA), plasticity 

index (PI), percentage fine content (PF) and compactive effort (CE). Compaction water content relative to optimum 

significantly correlated with VSS, thus should be strictly regulated during field compaction to realize a durable 

hydraulic barrier.  
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1. Introduction 

The importance of desiccation-induced shrinkage study on hydraulic barrier material is very significant in the 

structure of liner frameworks. Undue volume changes in varying extraordinary climate conditions (from dry to 

wet seasons) result to cracks being formed at their surface and subsequently spread deeper inside their matrix. This 

could result in the numerical increment in of hydraulic conductivity values. An increase in the hydraulic 

conductivity value past the reasonable most extreme farthest point of 10-9 m/s prompts permeation of fluid through 

the cracks. Failure of the liner framework ends up unavoidable as the quality of the crack soils diminishes whilst 

there are expanded progression of contaminants through its crevices into the ground. Clay liners are constantly 

exposed to drying amid construction and post construction but splitting and cracks becomes evident because 

shrinkage is a potential issue. Daniel and Benson (1990) suggested a most extreme volumetric shrinkage strain of 

4% for any material to be reasonable for the development of a hydraulic barrier. The structure of the liner will of 

course depends on accomplishing a material with the ideal hydraulic conductivity. Be that as it may, the decrease 

in hydraulic conductivity is frequently linked by an increase in volume due to the vulnerability of clay to drying 

shrinkage. The impact of this on the properties and the structure of a compacted barrier is that it could change with 

time thus bringing about a decrease of the viability of the barrier. Also, the deterioration of barrier can be as a 

result of volumetric changes foisted by climatic wet-dry or volumetric changes connected with the interactions of 

clay structure with leachate. 

The environmental suitability, feasibility, and performance of the beneficial reuse of industrial and 

agricultural waste material are increasingly being investigated by researchers. Different stabilization agents 
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(asphalt, lime, fly ash, aqueous polymers, bagasse ash and blast furnace slag) have been used to reduce shrinkage, 

cracking and even dust generation especially in clayey barrier soils under synergistic environmental stresses. Blast 

furnace slag, bagasse ash, and fly ash were shown to improve desiccative properties of lateritic soils as clay liners 

for up to 15% treatment (Osinubi et al., 2009; Osinubi and Eberemu 2010). Researchers have also shown that some 

of the soil properties (soil index properties (workability) and compaction characteristics) of fine grained soils can 

be enhanced by the addition of pozzolanic fly ash (Nicholson and Kashyap 1993; Coka 2001; Pandian and Krishma 

2003; Trzebiatowski et al., 2004; Terzi 2009). Furthermore, quite a number of studies on the use of compacted 

fine grain soil as liners and cover in waste containment application are reported (Liman, 2009; Osinubi and 

Nwaiwu, 2005, 2005a,b; Osinubi and Eberemu, 2006; Osinubi and Eberemu, 2009b; Osinubi and Amadi, 2006; 

Osinubi and Amadi, 2009, 2010; Jayanthi et al., 2017).  

Large quantities of waste materials from mineral, agricultural, domestic and industrial sources are generated 

daily, and the safe disposal of these wastes has increasingly become a major concern around the world (US. EPA, 

2009). Consequently, safeguarding the environment from pollutants arising from wastes generated by man-made 

activities and disposal systems in less developed countries is at present a subject of growing concern. This is 

because of its negative impact on the environment, particularly on soil and groundwater which ultimately affects 

the health of the populace (Eberemu and Osinubi 2010; Eberemu et al., 2010; Mitchel 2008). Groundnut shell is 

an agricultural waste obtained from milling of groundnut. Nigeria contributes about 7 percent of world groundnut 

production which makes Nigeria the 3rd largest producer of groundnut in the world thus account for large 

groundnut shell wastes. In some places they are dumped in open land fill. This litters the environment.  Meanwhile, 

the ash from groundnut shell has been categorized under pozzolana (Alabadan et.al, 2006), with about 8.66% 

Calcium Oxide (CaO), 1.93% Iron Oxide (Fe2O3), 6.12% Magnesium Oxide (MgO), 15.92% Silicon Oxide (SiO2), 

and 6.73% Aluminum Oxide (Al2O3). The utilization of this pozzolana as a replacement for traditional stabilizers 

will go a long way in actualizing the dreams of most developing countries of scouting for cheap and readily 

available construction materials. Groundnut shell ash as a partial replacement material for cement in concrete was 

achieved with a measure of success (Alabadan et al., 2005). Agricultural waste is increasingly becoming a focus 

for researchers because of its enhanced pozzzolanic capabilities when oxidized by burning. 

Tropical clayey soils treated with GSA for use as a hydraulic barrier material in waste containment systems 

has the potential to using up some of the groundnut shell generated; this may be particularly advantageous to land 

fill operations in areas where groundnut production is high. This paper considers the results of the study of the 

physical properties of a tropical clayey soil treated with GSA for potential usage as barriers in waste containment 

application. The study is focused on the desiccation effect of compacted tropical black clay treated with groundnut 

shell ash with possible effect of ameliorating cracks as well as reducing shrinkage characteristics..  

 

2. Material and Method 

2.1 Material 

Soil: The black cotton soil used in this study was collected from a study burrow area located in Adamawa state 

Numan Local Government (latitude 9o 27’ 49.46”N and longitude 12o01’ 50.23” E) Adamawa State in Nigeria by 

using the method of disturb sampling at depth ranging from 1.0 to 1.5m. The dominant clay mineral from the X-

ray diffraction studies on the soil from the burrow area is montmorillonite. It is dark grey in colour and classified 

as A-7-6 (26) according to AASHTO soil classification system (AASHTO 1986) and CH according to the Unified 

Soil Classification System (ASTM 1992).   

Groundnut shell ash (GSA): Groundnut shell was packed in heaps and burnt to ashes by open air burning, 

allowed to cool and then carefully sieved through 0.075 mm aperture (BS No. 200) sieve to get rid of undesirable 

materials. The sieved specimen was preserved in an airtight polythene bag to prevent pre-hydration and kept in 

the laboratory to be used for the test. The GSA was admixed with the soil in stepped increase of 2% from 0% to 

8% by dry weight of soil to establish five different soil – GSA mixtures. A sample of the soil and ash was analyzed 

for its oxide composition. The oxide composition of black cotton soil (BCS) and GSA (Table 1) was done using 

the Atomic Absorption Spectrophotometer (AAS) of the Nigerian Geological Survey Agency Kaduna, Nigeria.  

 

2.2 Methods  

Index Properties: Laboratory tests were performed to determine the index properties of the natural soil and soil 

mixtures in accordance with British Standards BS 1377 (1990) and BS 1924 (1990), respectively.  

Compaction: Two compactive effort namely standard Proctor or British Standard Light (BSL) and modified 

Proctor or British Standard Heavy (BSH) were used in tests involving the moisture density relationship and 

volumetric shrinkage, simulating the variation in compaction energies that might occur in the field. The air-dried 

soil samples passed through the BS sieve with a 4.76 mm aperture were mixed with 0, 2, 4, 6 and 8 % groundnut 

shell ash (GSA) by weight of dry soil were used. Proctor or British Standard Light (BSL) and modified Proctor or 

British Standard Heavy (BSH) compactive efforts were carried in accordance with British Standard BS 1377(1990). 

Volumetric shrinkage: Drying: The volumetric shrinkage upon drying was measured by extruding the cylindrical 
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specimens, which were compacted using the BSL and BSH energy levels. The air dried soil – GSA mixtures were 

compacted at at four different moulding water contents i.e., 2% dry of optimum (-2%), optimum moisture content 

(0%), 2% wet of optimum (+2%) and 4% wet of optimum (+4%), from the compaction moulds. The extruded 

cylindrical specimens were placed serially on a laboratory bench and allowed to dry at a uniform temperature of 

25 ± 2ºC for 30 days to dry naturally because natural drying is considered as a simulation of field conditions. 

Dimensions (three each) of the diameters and heights for each specimen were measured at marked interval of 1200 

of the sample at five days interval with the aid of a digital vernier caliper accurate to 0.01 mm. The mass of the 

sample was also measured at this interval with a digital weighing balance. The average diameters and heights were 

used to compute the volumetric shrinkage strain using the following expression: 

                      ��� =  
�����

��
                                                                                    (1) 

where; VSS is volumetric shrinkage strain, Vo is original volume of moist compacted cylindrical specimen and Vf  

is the final volume of dry compacted cylindrical specimen.  

 

3. Results and Discussion 

3.1 Index Properties 

The results of the physical properties of the natural soil used in this study are summarized in Table 2. The soil is 

classified under the A-7-6 (26) subgroup of the AASHTO classification system (AASHTO, 1986) or CH in the 

unified Soil Classification System (USCS) (ASTM, 1992). The liquid limit and plasticity index values of 70.63 

and 31 %, respectively, indicate suggest signify that the soil is highly plastic. Accordingly, the soil falls below the 

standard recommended for most geotechnical construction works (Butcher and Sailie, 1984).  

Table 1. Oxide composition of black cotton soil (BCS) and groundnut shell ash (GSA) 

Oxide composition BCS (%) GSA (%) 

SiO2 51.41 33.36 

Al2O3 20.29 6.73 

MgO 1.22 4.72 

K2O 0.55 25.38 

CaO 3.38 10.91 

Ti2O 2.73 . 

P2O5 0.05 . 

SO3 0.06 6.4 

V2O5 0.15 . 

Fe2O3 13.20 2.16 

MnO 1.08 - 

NiO 0.07 - 

CrO3 0.02 - 

Na2O 0.06 - 

ZnO 0.05 - 

ZrO2 0.01 - 

Eu2O3 0.02 - 

CuO 0.02 - 

Loss on Ignition(LOI) 4.87 10.25 
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Table 2. Results of tests on natural black cotton soil 

Property Quantity 

Percentage passing BS No 200 sieve (%) 75 

Natural moisture content (%) 14.5 

Liquid limit (%) 70.63 

Plastic limit (%) 32 

Plasticity index (%) 31 

Linear shrinkage (%) 21 

Specific gravity 2.34 

Free swell 90 

AASHTO classification A-7-6 (26) 

UCSC CH 

NBRRI classification High swell potential 

Colour Dark grey 

Dominant clay mineral montmorillonite 

Maximum dry density Mg/m3  

British Standard light (standard proctor) 1.45 

British Standard heavy (modified proctor) 1.67 

Optimum moisture content (%)  

British Standard light (standard proctor) 17 

British Standard heavy (modified proctor) 15 

 

3.2 Atterberg limits  

The results show improved index properties with a decrease in liquid limit (LL) up to a threshold of 6 % GSA 

content, an increase in plastic limits (PL) with a resulting decrease in plasticity index (PI) to a limit at 4 % GSA 

content. These are due to physiochemical changes on the clay particles caused by cation exchange between the 

GSA and clay sized fractions. When treated with with up to 8% GSA, the liquid limit and plastic limit ranged from 

51 – 63% and from 32 - 38%, respectively, thus resulting in a decrease of plasticity index (PI) values from 31% at 

0% GSA content to 16% at 4% GSA content. The linear shrinkage decreased with increase in the ash content for 

up to 4% treatment. Similar results indicative of enhanced index properties were obtained when fly ash (Coka 

2011), rice husk ash (Eberemu, 2011) and iron ore tailing (Etim et al., 2014; Osinubi et al., 2015) was used. The 

Atterberg limits are indices of the quantity of clay sized particles and their mineralogical composition. Typically, 

higher liquid limits and plasticity indices values are linked with soils having a significant amount of clay particles 

or particles having higher surface activity. Also, lower hydraulic conductivities is associated with soils having 

higher liquid limits or plasticity indices (Benson et al., 1994). However, some researchers (Daniel, 1993; Rowe et 

al., 1995) suggested that materials with plasticity index (PI) ≥7% would be suitable for a hydraulic barrier. 

Therefore the different soil- GSA mixes employed in this study are suitable materials for hydraulic barriers.  

 
Figure1. Variation of Atterberg limits of soil with groundnut shell ash content 
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3.3 Compaction Characteristics 

The variation of the maximum dry density (MDD) of the black cotton soil with GSA content is shown in Fig.2. 

The MDD initially decreased on addition of GSA to a value of 1.32 Mg/m3 at 2% GSA content and afterward 

increased with increasing GSA content for the BSL energy level. The initial decrease in MDD is not unconnected 

with the initial simultaneous flocculation and agglomeration of clay particles caused by cation exchange leading 

to increase in volume and decrease in dry density. Also, this could be due to the comparatively low specific gravity 

value of 2.15 of the GSA compared to that of the soil which is 2.37. This is in agreement with the works of 

Ferguson (1993), Nicholson and Kashyap (1993) as well as Osinubi et al.  (2007). However, as the amount of GSA 

increased, the MDD equally increased which may be due to the increased amounts of more pozzolanic material in 

the soil matrix. For specimen compacted using BSH, the MDD was unaffected up to 2 % GSA as its values was 

observed to be constant at 1.67Mg/m3 within 0 to 2% GSA content range. Beyond this range, the MDD slightly 

increased to 1.68 Mg/m3 and then subsequently decreased. The reason for the slight increase as well as decrease 

in MDD with increasing GSA content is same as explained for the case of BSL. Regardless of the trend as observed 

for both BSL and BSH compactive effort, it can be observed that higher compactive effort produced higher MDD 

while lower compactive effort produced lower MDD i.e. the MDD increased with higher compactive effort for 

each of the specimens. 

 
Figure 2.  Variation of maximum dry density of black cotton soil with groundnut shell ash content 

The effect of groundnut shell ash (GSA) content on the optimum moisture content (OMC) of the black cotton 

soil at BSL and BSH respectively is shown in Figure 3. Generally, the OMC increased with increasing GSA 

treatment from 17 % to 22 % and from 15 % to 19% for both specimens compacted at BSL and BSH, respectively. 

The observed increase could be attributed to the increase in fine content follow-on from the addition of GSA with 

larger surface area that required more water for hydration. This finding is consistent with the works other 

researchers (Eberemu et al., 2011; Moses et al., 2016; Ijimdiya et al., 2012; Etim et al., 2017). The OMC also 

reduced with higher compactive effort for each of the specimens.  

 
Figure 3.  Variation of optimum moisture content of black cotton soil with groundnut shell ash 
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3.4.1 Changes during drying 

The variation of cylindrical mass of specimens, prepared at the OMC for different compaction efforts and up to 

8% GSA, with drying period is shown in Figure 4.a – e, respectively. Generally, in all cases the changes or loss in 

mass was sharp within the first five days of drying as observed from the drop of the graph and subsequently became 

relatively constant until samples were completely dried. It could be that the mass stops changing when the cavity 

pressure has decayed to zero due to loss of moisture. After this, the volumetric shrinkage becomes constant. The 

findings observed in this study mirror those of the previous studies that have also examined the effect of drying 

period on the mass of specimen (Albrecht and Benson 2001; Osinubi and Eberemu 2010; Eberemu 2011; Moses 

et al., 2016). The changes in mass during drying were unaffected by the ground nut shell ash treatment and 

compactive effort, although specimens with higher compactive effort plotted above those with lower effort from 

the plots of changes in mass during drying  which is due to the higher dry density generated by higher compactive 

effort. These results are consistent with those reported (Osinubi and Eberemu, 2010, Albrecht and Benson, 2001 

and Moses et al., 2016).   

 
Figure 4: Variation of mass with time during volumetric shrinkage at the OMC for (a) the natural soil (b) 2% 

GSA (c) 4% GSA (d) 6% GSA (e) 8% GSA 

The results of volumetric shrinkage strain (VSS) with time at the OMC for the various compactive efforts 

with ground shell ash treatment up to 8% are shown in Figure 4. Results recorded show that the rates of change in 

volumetric shrinkage strain were generally sharp within the first five days of drying after which they reduced 

gradually and became relatively constant by the tenth-fifteenth day when the samples were fully dried for all the 

efforts used. It can be observed that these changes were affected by the compactive efforts. This translates to the 
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fact that volumetric shrinkage strain values were higher at lower compactive efforts owing to the higher moulding 

water content contained at lower compactive efforts since volumetric shrinkage strain is proportional to moulding 

water content. This finding further confirms the association/correlation between volumetric shrinkage strain and 

compaction condition (Osinubi and Nwaiwu 2008). This result is also consistent with that reported (Albrecht and 

Benson, 2001, Das, 1998.). Taha and Taha (2011) confirms that most of the changes in soil structure or the total 

volume occur during the initial drying phase. Invariably, this implies that the decrease in the water content 

contained in a soil will results to a corresponding decrease in the volumetric shrinkage. Likewise, if soil density 

increases, the volumetric shrinkage decreases, which in turn causes cracks in the soil to decrease as well.  

   

  

 
Figure 5: Variation of volumetric shrinkage strain with time at the OMC for (a) the natural soil (b) 2% GSA (c) 

4% GSA (d) 6% GSA (e) 8% GSA 
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3.4.2 Effect of moulding water content  

The effect of moulding water content on the volumetric shrinkage strain is shown in Figure 6a-e. The result is that 

of a general increase in VSS with higher moulding waste content. In the course of drying, it was observed that the 

VSS was more obvious for specimens compacted at higher moulding. These results match those observed in earlier 

studies (Daniel and Wu (1993), Albrecht and Benson (2001), Osinubi and Eberemu 2010, Moses 2016)). The 

explanation to this according (Mitchell, 1976) is associated with the drying shrinkage in fine-grained soils which 

depends on particle movement due to pore water tension developed by capillary menisci, that if two samples of 

given clay are at the same initial water content but different fabrics, the one that is the more deflocculated and 

dispersed shrinks most; which is due to average smaller pore sizes, allowing greater capillary stresses and easier 

relative movement of particles and particle groups. Furthermore, samples compacted at higher moulding water 

contents, had more water in their void spaces that resulted in higher shrinkage on drying since volumetric shrinkage 

is proportional to the volume of water leaving the pore spaces. The VSS for the natural soil (0 % GSA) ranged 

from 27.62 – 32.5 % for 15 – 21 % moulding water content compacted at BSL. Likewise from 26.17 – 30.77 % 

for 13 – 19 % moulding water content compacted at BSH. Similarly, in all cases of GSA treatment and compactive 

efforts, compacted between -2 to +4 of the OMC the volumetric shrinkage follows similar trend with that of the 

untreated soil with a trend of increasing VSS with higher moulding water. These results are in consistent with 

those of Haines, (1923), who described the drying process of saturated soil  as having two stages; the first stage 

occurring as water leaves the soil without the entry of air, since air is not entering the soil, the volume change is 

equal to the volume of water leaving the soil. The main volume change occurs during the first stage when water 

surrounding the individual soil particles to move closer as the water retreats. At some point, the particles contact 

each other, and the drying process slows as the soil structure begins to resist additional volume change. In the 

second stage, air enters the soil and replaces the water being removed because the particles are in contact. Little 

changes in soil structure or total volume occur during this stage. Regardless of the compactive efforts, the general 

trend shows that the entire volumetric shrinkage strain obtained for the various GSA treatment (ranging up to 8% 

content) exceeded the maximum permissible 4%. This probably could be due to increased water as contained in 

the voids of compacted specimen leading to increased shrinkage. It could be that the range of GSA considered was 

not enough to stabilize the soil structure and therefore the 4% allowable VSS could not be achieved. From the 

foregoing, it can be said that higher GSA treatment beyond 8% would be needed to possibly stabilize the soil 

against desiccation shrinkage and conceivable cracks. Though there was decreased in VSS, its consideration in 

effective and robust hydraulic barrier construction may not be feasible because the allowable VSS was not 

achieved as earlier mentioned 
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Figure 6. Variation of volumetric shrinkage strain versus moulding water content for (a) the natural soil (b) 2% 

GSA (c) 4% GSA (d) 6% GSA (e) 8% GSA 

3.4.2 Effect of water content relative to optimum 

The variation of volumetric shrinkage strain with water content relative to optimum is shown in Figure 7a-d. 

Generally, volumetric shrinkage strain increased with higher moulding water content relative to optimum for the 

natural soil compacted at moulding water contents in the range from -2 to +4% of the OMC, The maximum 

permissible VSS values of 4% were not obtained for all moulding water content relative to optimum and for both 

compaction efforts. Generally, specimens compacted at higher moulding water content shrank more during drying 

but with higher compactive energy, the relative effect of volumetric shrinkage strain is reduced. This result is 

consistent with those reported by Daniel and Wu (1993) as well as Albrecht and Benson (2001). 
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Figure 7: Variation of volumetric shrinkage strain with water content relative to optimum for (a) the natural soil 

(b) 2% GSA (c) 4% GSA (d) 6% GSA (e) 8% GSA 

3.4.3 Effect of groundnut shell ash on the volumetric shrinkage 

The variation of volumetric shrinkage strain with groundnut shell ash content at -2, 0, +2 and +4% OMC is shown 
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Figure 8. Variation of volumetric shrinkage strain with groundnut shell ash for (a) -2 % OMC (b) 0% OMC (c) 

+2% OMC (d) +4% OMC 
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3.4 Statistical analysis 

3.4.1 Regression analysis for volumetric shrinkage strain 

Regression analysis in geotechnical engineering was reported by several researchers (Osinubi and Nwaiwu 2008; 

Bassey et al., 2017; Sani et al., 2017; Moses et al., 2018; Sani et al., 2019). Mini-tab R15 software and XLSTART 

2014 statistical tool incorporated as an add-in in Microsoft Excel were used for the regression modelling and 

correlation analysis, respectively. The volumetric shrinkage strain (VSS) taken as dependent variable was 

expressed as a function of these independent variables; water content relative to optimum (WRO), groundnut shell 

ash content (GSA), plasticity index (PI), percentage fines, (PF) and compactive effort denoted by compactive effort 

index (CE). Therefore, based on multiple regression analysis, the VSS is expression is: 

��� = 24.128 + 0.608��� + 0.147��� + 0.096�� + 0.013�� − 0.93�         (2) 

where VSS, WRO, GSA, PI and PF are expressed in percentages and CE is an integer categorical variable 

where CE was assigned the values -1 and + 1 for BSL and BSH compaction levels, respectively. Result of 

regression analysis show that all the parameters considered have effect on the volumetric shrinkage strain of the 

soil. The statistical parameters for the equation are given in Table 3.The coefficient of multiple determination, R2, 

for equation (2) is 0.731, while the adjusted R2 value is 0.691. The overall F-statistic (18.561) obtained is 

statistically significant at 95% confidence limit (i.e., α = 0.05). The p-value for compaction WRO as well as 

compactive effort were less than 0.05. The coefficient of each parameter show the extent of the effect of the 

parameter on the volumetric shrinkage strain. WRO, GSA, PI and PF having positive coefficients depict the fact 

that increase in these parameters (WRO, GSA, PI and PF) will slide towards increase in volumetric shrinkage 

strain of the compacted soil. On the other hand CE having negative coefficients, depict decrease in VSS with 

increase in CE. Therefore, care should be taken to ensure these variables are properly managed and regulated at 

the site during ground compaction to accomplish a sustainable barrier system. 

The line fit plot shows relationship between volumetric shrinkage strain (laboratory and predicted) of 

specimen with GSA content and WRO (see Fig 9 and 10). GSA content and compaction WRO variables were 

considered based on their higher coefficient compared to other variables in the VSS regression function. It is 

obvious from the fit line plot that the model yielded almost a perfect predicted values of VSS  from measured 

laboratory values with  most of the points (i.e. for predicted and measured values) having more or less unified 

point on the line fit plot (see Fig 9 and 10). The line fit plot were mostly observed to be overlapping each other.  

The graphical plot of Fig. 11 provides the comparison of predicted and measured values of VSS. The predicted 

values from the regression model and measured laboratory result of volumetric shrinkage strains using a linear 

relationship, shows a strong relationship between predicted values  and measured laboratory result having  

correlation coefficient R2 = 0.731 (see Fig 11). 

Table 3. Results of multiple regression analysis for volumetric shrinkage strain 

Variables Coefficients Standard Error t Stat P-value Regression parameters 

Intercept 24.128 8.280 2.914 0.006 R2 = 0.73 

WRO 0.608 0.078 7.747 0.000 Adjusted R2 = 0.69 

GSA 0.147 0.122 1.198 0.239 Standard Error = 1.109 

PI 0.096 0.049 1.950 0.060 Observations = 40 

PF 0.013 0.105 0.122 0.904  
CE -0.930 0.175 -5.301 0.000   

 
Figure 9. Variation of volumetric shrinkage strain (Laboratory and predicted values) of soil with soil – groundnut 

shell ash mixture using line fit plot 
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Figure 10. Variation of volumetric shrinkage strain (Laboratory and predicted values) of soil – groundnut shell 

ash mixture with water content relative to optimum using line fit plot 

 
Figure 11. Plot of predicted VSS values against measured VSS values of black cotton soil – GSA mixture. 

3.4.2 Correlation analysis of volumetric shrinkage strain: 

The correlation analysis for black cotton soil with VSS and the parameters related with VSS (WRO; GSA; PI and 

PF) reveals varying level of associations. The results of the correlation analysis are shown in Table 4-6. Positive 

correlation was observed between VSS and the associated parameters (WRO; GSA; PI and PF). The correlation 

coefficients, R, are relatively high (R ≥ 0.70) for volumetric shrinkage strain and compaction water content relative 

to optimum on one hand, having p values less than 0.05. On the other hand, the R-value for VSS and GSA (0.042; 

p ≥ 0.05); PI (0.093; p ≥ 0.05); PF (0.016; p ≥ 0.05) disclosed a low values correlation. These variables (GSA, PI 

and PF) could probably indicate low effect on the VSS values. The overall results of p-values and coefficient of 

determination (R2) are shown in Tables 5 and 6, respectively. 

Table 4 Correlation matrix (Pearson) for volumetric shrinkage strain with associated parameters 

 Variables VSS WRO GSA PI PF 

VSS 1     
WRO 0.703 1    
GSA 0.042 0.524 1   
PI 0.093 -0.360 -0.719 1  
PF 0.016 0.440 0.845 -0.707 1 

 

Tables 5. P-values (Pearson) for volumetric shrinkage strain with associated parameters 

Variables VSS WRO GSA PI PF 

VSS 0         

WRO < 0.0001 0    
GSA 0.797 0.001 0   
PI 0.568 0.023 < 0.0001 0  
PF 0.924 0.004 < 0.0001 < 0.0001 0 
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Table 6. Coefficient of determination, R2 (Pearson) for volumetric shrinkage with associated parameters 

Variables VSS WRO GSA PI PF 

VSS 1         

WRO 0.495 1    
GSA 0.002 0.274 1   
PI 0.009 0.129 0.516 1  
PF 0.000 0.194 0.713 0.499 1 

VSS = volumetric shrinkage strain; WRO = water content relative to optimum; GSA = groundnut shell ash content; 

PI = plasticity index; PF = percentage fine content 

 

4. Conclusion 

Laboratory tests were conducted on black cotton soil treated with up to 8% GSA content to assess desiccation 

effect on the compacted material for use as a hydraulic barrier in waste containment facility. The treated soil was 

compacted using British standard light (BSL) and British standard heavy (BSH) at moulding water contents of -2, 

0, 2 and 4% of the respective optimums. Compacted samples were extruded from moulds and volumetric shrinkage 

strain (VSS) values were recorded at interval of 5 days up to 30 days of drying. The VSS decreased within the first 

five (5) days of drying and became constant by the 15th day. It was observed that VSS increased with higher 

moulding water and moulding water content relative to optimum, while it decreased with higher compaction effort. 

Volumetric shrinkage strain generally decreased with higher percentages of groundnut shell ash at all moulding 

water content regardless of the compaction effort used whilst none of its values fell within the acceptable range of 

less than or equal 4% for consideration in barrier formation. It has been established through this study that agro 

by-products (groundnut shell ash) can be considered as potential stabilizing agents to amend an expansive soil or 

to create a composite, which would reduce shrinkage and cracking. To realize this, a mathematical relationship 

between the volumetric shrinkage and related parameters (water content relative to optimum (WRO), groundnut 

shell ash content (GSA), plasticity index (PI), percentage fines, (PF) and compactive effort denoted by compactive 

effort index (CE)) was proposed. It is believed that this relationship would be quite useful for selecting different 

agro and or industrial by-products (with similar properties) for treating expansive soils to create a sustainable 

barrier. Based on the result of the study, it is recommended that the percentages of the GSA substitute be increased 

above 8% or be replaced or mixed with a more sustainable agro-based and or industrial material for the purpose 

of consideration as liners and covers of a barrier formation provided that VSS would be drastically minimize. 
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