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Abstract. The principle of structural health monitoring of the bridge is the assessment of the structure performance or 

safety level comparing with a reference system. The most used technique is the dynamic methods which are employed to 

determine the structural dynamic characteristics and thereafter to locate the damages or changes in some zones of the 

structure. While static methods are not widely used although they are simpler than dynamic methods and also they do not 

require sophisticated equipment. In the last decade, some recent researches develop the interesting deterministic or 

probabilistic methods to evaluate the flexural rigidity or stiffness on a beam, a structure or a bridge and thus detect any 

damage. 

The idea is to analyze the static deflections of one selected point or cross-section of a beam or a bridge with a variable 

position loading. The developed numerical approach uses an inverse method to solve the static equilibrium equations of a 

variable positions loading in the structure using the finite element method. A Matlab code is developed to solve this static 

inverse problem. By knowing the deflections amplitude of a selected point in the structure corresponding to several 

positions of a load, then the stiffness reduction factor in the bridge can be estimated.  

Some examples for a beam are treated to test this new method for assessing its rigidity. 

 

1   INTRODUCTION 
 

Structure health monitoring of structures like buildings, 

bridges and dams is important for the civil engineers in 

the safety, security and the resistance evaluation. 

Another goal of this evaluation is to search, detecting 

and quantifying the eventual damages, cracks or 

changes in the structure comparing with the designed 

one. The non-destructive techniques are more common, 

economic and reliable to detect the global or local 

damages in structures. 

The damages in structure produce changes to its 

stiffness. These changes make variation in their static 

and dynamic responses. In the dynamic case, it is 

observed relative changes in frequencies and modal 

shapes measured by an accelerometers system. In the 

static case, displacements, deformations or stresses 

variations are measured by strain gauges, fiber optic 

gauges or laser displacement sensor. The static load 

testing is been the first technique used essentially for the 

bridges. In the last decades, the vibration modal 

identification is so much used for detecting damages 

and then capacity assessment of the structure.  

  Many research papers treat the techniques for damage 

identification based on static approach. Sheena et al. 

(1982) [1] presented an analytical method to assess the 

stiffness matrix by minimizing the difference between 

the real and the analytical stiffness matrix subjected to 

the measured displacement constraints. Banan et al. 

(1993) [2,3] proposed the mathematical formulation of 

two least-squares parameter estimators that element 

constitutive parameters of a finite element model that 

corresponds to a real structural system from measured 

static response to a given set of loads. Stöhr et al. (2006) 

[4] could identify the existence and locations of 

stiffness changes in a beam by the difference analyze 

between the influence lines of inclination measured 

under original and under modified structural conditions. 

Eun et al. (2007) [5] proposed an analytical method to 

predict the damage location based on the moment 

diagram calculated by both the constraint forces at 

measured points and the known external forces. Wang 

et al. (2009) [6] developed a quasi-static approach to 

analyze the measured deflection influence line at certain 

points of the beam type structure due to loading vehicle 

slowly passing the structure. Cao et al. (2011) [7] 

investigated the sensitivity analyses of fundamental 

mode shape, deflection under tip-concentrated loading 

and deflection under uniformly distributed loading in 

cantilever beams using analytical models in conjunction 

with a three-dimensional finite element method. This 

approach permitted to detect damages or cracks. 

The approach developed in this work is to indentify 

changes or damages in a beam by the only one beam 

point measurement of vertical displacement for a 

variable load position. The Bezier p-version finite 

element method is used to define the Euler-Bernoulli 

beam deflection. The used mathematical technique is an 

inverse method for estimating the flexural rigidity 

reduction factor along the beam. Two simple examples 

are treated in this paper: a beam with one change 

section and a beam with two change sections. It is also 

seen in the numerical examples that the damages cause 

perturbations in the rest of the beam. 

     

2   MATHEMATICAL FORMULATION 

2.1 The Bezier p-version finite element method  

In the beam finite element, the vertical displacement w 

can be expressed at position x. The displacement 
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function w(x) is taken as summation of m Bernstein 

polynomials as follows [8]: 
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where wi are the displacement-control points to be 

determined and Bm,i(x) are the Bernstein polynomials 

corresponding to the beam displacement. 

The Bernstein polynomials are the blending functions 

defined as x [0, L], with L is the beam length 

(Fig.1):   
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Fig.1. The typical Bernstein polynomials (m=1 to 12 order). 

 

 
Fig.2. The representation of the beam. 

 

In this study, the simply supported beam subjected to 

a variable concentrated load with a small variation in 

their cross-section is treated (Fig.2). 

 In the linear analysis of the beam, the static 

problem is defined by the typical matrix equation. It is 

shown as follows:    

      FK .            (4) 

where the beam stiffness matrix is defined as:   
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In the equation (5), E and Iy(x) are the Young modulus 

of the bean material and the variable cross-section 

moment of inertia about the horizontal local axis 

respectively. 

The beam support type (simply supported or clamped) 

can be defined by a simple elimination of the one 

extreme or two extremes of Bernstein polynomials 

respectively [8]. 

The force vector for the concentrated (P) load is 

defined as:  

   
miim xxBPF
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          (6)  

After solving the equilibrium equation (eq.4), the 

vertical displacement in the chosen beam section is:

   .)()( , sjms xxBxw          (7) 

After developing the eq.7 using eq.4 and eq.6, it is 

written: 
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2.2 The inverse method algorithm  
 

For each position (x0,k) of the load (P), the vertical 

displacement (ws,k) of the only chosen section (s) is 

measured (Fig.2). 

Then for (n) lectures of the displacement (ws), the 

equation (8) becomes: 

     )(...)()( ,0,

1
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The damage or change of the beam is modeled through 

the reduction of its bending rigidity (E.Iy) by a 

factor   . The beam can be decomposed into (p) equal 

distance intervals. Therefore, the reduction factor is 

defined  r  for each interval [xr-1, xr], r=1,p. Then the 

damaged or changed beam stiffness matrix can be 

written as:   
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where [K0] is the undamaged beam stiffness matrix and 

[Kr] is the reduced stiffness matrix localized in the 

interval (r). The matrix [Kr] can be defined also as a 

perturbed localized stiffness matrix in the interval [xr-1, 

xr]. The matrices [K0] and [Kr] are expressed 

respectively as:   
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where (Iy) is the constant cross-section moment of 

inertia of the undamaged beam. 

  

The reduction stiffness matrix [Kr] can be rewritten as: 

    rdrr KK .       r=1,p       (13) 
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Since the coefficients  r  are unknowns, the inverse of 

the matrix [K], in eq.10, is so difficult or impossible 

with the use of software packages like Mathematica, 

Maple or Matlab for example. 

  

The idea developed in this work is to apply the 

Neumann series method to inverse the stiffness matrix 

[9]: 
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This Neumann series converge if the norm 
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rKK . It is indicating that the rigidity 

reduction caused by damages must have been small. 

The parameter (T) is the order or the maximum of the 

Newmann series. 

  

In the equation 14, the inverse matrix [K]
-1

 become an 

algebraic matrix which their components are 

polynomials of the coefficients  r . 

After substituting equation 14 in equation 9, we have 

the followed relation: 
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This relation becomes a nonlinear function noted fi(r), 

specific for one lecture of flexural displacement (k) for a 

position (k) of the pointed load. It can be rewritten as: 
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Collecting the (n) lectures of each position (x0,k) of the 

pointed load, the nonlinear system is built: 
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The unknowns of this nonlinear system are the interval 

rigidity reduction coefficients  r , r=1,p. 

This mathematical formulation has been programmed in 

a Matlab code [10]. Solving the nonlinear system, 

defined in equation 17, consist of an optimization 

problem. The Levenberg-Marquardt algorithm is the 

most adapted for solving this problem and then to 

determine the interval rigidity reduction 

coefficients  r . The used termination tolerance on the 

function value is 1.10
-9

. 

It is observed in several numerical examples, that the 

Neumann series order (T) can be limited to 4 with a 

significant accuracy. 

It is noted that the number (p) of interval rigidity 

reduction coefficients  r  is lower or equal of the 

displacement lectures number (n). 

  

3   NUMERICAL SIMULATIONS  
 

 Here two examples are treated for proving the 

last algorithm to identify damages or changes in the 

beam. The first and the second examples concern the 

same simply supported beam with one and two section 

changes respectively. These examples are presented in 

the figure 3. 

 

 
Fig.3. Finite element model of the 1st example of the modified 

beam with one section change. 

 

 

 
Fig.4. Finite element model of the 2nd example of the modified 

beam with two sections change. 

 

The initial beam is considered with a constant flexural 

rigidity (E.Iy=cst). The section change is defined about 

0.10m length with -60% of moment inertia reduction. 

For these simulations, a finite element model is used to 

measure flexural displacements using Sap2000 code 

[11]. The vertical displacements are measured at mid-

span.  

The initial beam is modeled in 8 frame elements. The 

beams with one and two section changes are modeled in 
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10 frame elements and 18 frame elements respectively. 

A pointed load (P) of 10kN is used for a number of 

variable positions (x0,k). 

The initial beam is analyzed by the developed 

algorithm. In the tables 1 or 2, it is observed that the 

flexural rigidity is reduced of -2.3%. These results will 

be the reference of comparison for change identification 

and evaluation.      

 

3.1. Example with one section change 

 

 For this example, seven (7) lectures of vertical 

displacement at mid-span are used for 7 different 

positions of the pointed load P with an equal distance. 

The algorithm is used for different number of intervals 

(p=2, 4, 6 and 7). The reduction of the flexural rigidity 

is observed in Table 1. In comparison with the initial 

beam, the flexural rigidity reduction is identified 

correctly in the region the section change. The 

maximum reduction reached to -8% for a beam 

subdivision with 7 intervals.  

 
Table 1. The variation of flexural rigidity reduction along the 

beam - The beam with one section change. 
 

Number of 

intervals 

 

The beam with one section change case 
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3.2. Example with two section changes 

 

 For this example, nine (9) lectures of vertical 

displacement at mid-span are used for 9 different 

positions of the pointed load P with an equal distance. 

The algorithm is used for different number of intervals 

(p=2, 4, 6, 7 and 9). With a 9 equal intervals 

subdivision, the reduction of the flexural rigidity 

reached to -8.5% in the region of the first section 

change and -7.4% in the region of the second section 

change (Table 2). Between these two section changes, 

the rigidity is perturbed and reduced at -3.8%. 

 
Table 2. The variation of flexural rigidity reduction along the 

beam - The beam with two section changes. 
 

Number of 

intervals 

 

The beam with two section changes case 
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4   CONCLUSION 

 

 This paper presents a new approach for 

damage identification in beams utilizing lectures of 

flexural displacement of only one section with a 

variable position for an applied static force. The method 

concerns the solving of an inverse problem of a static 

equilibrium equation using Neumann series method. 

The solution of the developed computing code is the 

assessment of the flexural rigidity reduction coefficients 

defined by intervals. The numerical results of the two 

examples show that this method can locate damage and 

quantify the reduction of rigidity along the beam. For 

the next step, this approach requires to be proved by the 

experimental tests on beams and bridges. 
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