

Computing, Information Systems & Development Informatics Journal

Volume 3. No. 3. July, 2012

Comparative Evaluation of G.S.M Quality Services of Network Performance in the Nigerian Telecommunication Industry.

Mughele, E.S

Department of Computer Science Delta State School of Marine Technology Burutu, Nigeria. prettysophy77@yahoo.com

Olatokun W.A (Ph.D) Africa Regional Center for Information Science

University of Ibadan, Ibadan, Nigeria woleabbeyolatokun@yahoo.co.uk

Reference Format: Mughele E.S. & Olatokun, W.A. (2012). Comparative Evaluation of G.S.M Quality Services of Network Performance in the Nigerian Telecommunication Industry. Computing, Information Systems & Development Informatics Journal. Vol 3, No.3. pp 23-34. Online at <u>www.cisdijournal.net</u>.

Comparative Evaluation of G.S.M Quality Services of Network Performance in the Nigerian Telecommunication Industry.

Mughele, E.S. & Olatokun, W. PhD.

ABSTRACT

This study is aimed at presenting a report on the quality of services and the evaluation of GSM network performance for various locations. The indicator compares the network's capacity for calls established as against congested calls given the number of call attempts for six different locations. This is demonstrated in the ratio of the network capacity with respect to the number of call attempts, established, and congested across six distributed locations. The locations were randomly distributed; series of graphs and measurement were taken. A multi-variate analysis of variance (MANOVA), which led to the use of a non-parametric test, Kruskal-wallis H, for ranking the difference in median. The result provided comparism of the mean and the median for the optimal capacity of the attempted, established and congested calls for each location under study. This is to enable service provider determine facilities deployed to various locations, to achieve optimal performance and meet customer satisfaction.

Key words: Telecomunication, G.S.M, Teledensity, network capacity.

1. INTRODUCTION

Telecommunication infrastructure remains one of the major issues affecting technology deployment required for growth and development in Nigeria (Awe, 2007). When Nigeria gained her independence in 1960, there were only 18,724 functional telephone lines for an estimated population of 45 million, which was a "teledensity" ratio of 0.04 telephones per 100 people Mughele et al (2011). During the thirty-odd years of military rule, there was very little by way of investment in telecommunications, and other sectors did not fare any better. According to the International Telecommunication Union, by 1996 Nigeria's teledensity ratio was a mere 0.36 (Ajala 20050). It rose slightly to 0.4 by 1999; according to the Nigeria Communication Commission (NCC) (Ndukwe, 2008). Nigeria's teledensity is a far cry from the African average of 1.67. Even the NCC admits that Nigeria has had a very limited telephone network for many years, and the waiting list is estimated at over 10 million people, who have applied to the incumbent monopoly, NITEL (established in 1985) for services.

However, with the liberalization of the telecommunication industry in 2001, the story changed dramatically. The teledensity ratio had tripled within just one year of GSM operation. By May 2005 Nigeria, with an estimated population of 128,771,988, had more than 9 million GSM subscribers, making the country one of the fastest growing GSM markets in the world. At the moment, there are five GSM operators in Nigeria: MTN, GloMobile, MTEL, Airtel and Etisalat. MTN enjoys the greatest patronage, with over 4 million subscribers (Ajala 2005). It was predicted that between 2003 and 2006, Nigeria's GSM market would be Africa's fastest-growing mobile market, and this prediction had been fulfilled. The competition is getting fiercer by the day as operators have to compete desperately for the same potential subscribers.

Four years after the start of the GSM era in Nigeria, the focus is gradually shifting from providing coverage to providing quality service. Mughele et al (2011, observed that the euphoria of owning a phone set is gradually giving way to complaints of dropped calls and congestion. The operators are fast realizing that they are in a highly competitive environment where subscribers can make or break them. Dissatisfaction by subscribers give rise to a high rate of subscriber churn and low revenue for the operator. The performance of the network has a direct impact on the revenues. The NCC is putting pressure on the operators to step up the quality of services offered Nigerians and had even gone a step further to award contracts to private companies to conduct comparative analyses of the quality of service offered by each of the operators. The NCC is further threatening to sanction any operator that fails to pay attention to quality (Ndukwe, 2008).

2. RELATED LITERATURE

The GSM revolution in Nigeria started in August 2001 and brought a great change in the face of Information and Communication Technology (ICT) in the country. At the inception, the NCC licensed three major operators namely, ECONET (now Airtel), MTN, and MTEL. In year 2002 another company called GLOBACOM was licensed to provide GSM services making a total of four operators. Today MTEL is no longer in existence leaving the other three as the major operators in the country. These three major operators have been doing well relatively in the provision of voice and data communication in the country. It is therefore important for all the operators to ensure that the subscribers enjoy the best of services. One major issue is the complaints emanating from different locations of dropped calls and congestion of calls from customers. This complaint varies for the various locations at the same point in time. The challenge therefore, is that some location across the country experience high level of congestion while others are minimal based on the quality of service deployed for such locations.

2.1 Statistics and Traffic Measurement Subsystem Base Switching Center (BSC) and Mobile Switching Center (MSC) levels to have both a local and global view of the network .Different events are counted and collected by a subsystem called the Statistics and Traffic measurement Subsystem (STS) (Adegoke and Opkeki 2010). In the BSC, these events can be handovers, call setups, dropped calls, allocation of different channels, etc. There are also a number of status counters, reporting the status of equipment within the network, such as the current number of occupied channels. By continuously supervising the results from STS, the operator can obtain a very good overview of the radio network performance, which can help detect problems early. The balance of the capacity of these interfacing devices and the demand from subscribers determine the condition of congestion (Mughele at el 2012).

The cost of building a base station and its maintenance is very high, so the operators have to buy the land, antennae, transmitters, generators and employ security personnel to prevent vandalisation, before a base station site can stand. In the course of time and as the number of subscribers had grown beyond the capacity of the present cell and there is need for cell expansion or division, the operators will only need to inform the organization that is providing them with the infrastructures for the need of expansion

3. RESEARCH DESIGN

3.1 Unstructured Interview

An unstructured interview was conducted at the MTN national networking headquarters. Information

was obtained from the radio frequency analyzer manager and the network geographic manager. The data logging system was also observed. Data integrity is assured by using data obtained from MTN data logging system (Mughele et al 2012).

3.2 Sampling Techniques

The study adopted the existing strata, already in existence, the six geo-political zones in Nigeria. Six different locations were randomly selected as a representative of the entire Population. These locations are Lagos, Enugu, Port-Harcourt, Kano, Yola, and Abuja. A performance evaluation was conducted to compare and evaluate the quality of services deployed (Mughele et al 2011).

3.3 Research Hypothesis

 $\rm H_0$ There is no significant difference between Total Call attempts, Total call established and Total call congested on system capacity of the network based on location

 H_1 There is a significant difference between Total Call attempts, Total call established and Total call congested on system capacity of the network based on location

4. DATA ANALYSIS

A multivariate analysis of variance (MANOVA) was conducted to compare the means for attempted calls, established and congested call for a period of 91 days, for the randomly selected location. Since the data did not meet all the normality conditions for (MANOVA), an equivalent non-parametric test was conducted.

Adopting Kruskal-Wallis H to compare the median of the various levels of calls for all six locations to determine the quality of service and performance of network capacity. This test was conducted using Statistical Package for the Social Sciences (SPSS).

4.1 Data Analysis and Interpretation Assumptions

- One independent variable consists of **two** or more categorical independent groups.The independent variables are the locations Lagos, Yola, P.H., Abuja, Kano and Enugu, Represented as 1, 2, 3, 4, 5 and 6 respectively.
- Two or more dependent variables those are (continuous). The dependent variables are call attempted, call established and call congested.
- Multivariate Normality. The distribution is not normal. A Kruskal-Wallisnonparametric test will be most appropriate.

TOTAL CALL ATTEMPT

Fig.1. Graph Total calls Attempted for six locations -Total Call Attempt with distribution skewed to the left

<u>cisdi</u>Journal

Computing, Information Systems & Development Informatics Journal Vol 3. No. 3, July, 2012

TOTAL CALL ESTABLISHED

TOTAL CALL CONGESTED

Table.1: Kruskal-Wallis Descriptive Statistics

		Ν	Mean	Std. Deviation	Minimum	Maximum
TOTAL	CALL	1146	447551.6414	773029.01683	.00	4964612.00
TOTAL ESTABLISHED	CALL	1146	438764.9415	756443.39793	.00	4778622.00
TOTAL CONGESTED	CALL	1146	8787.3874	20300.42356	-2.00	301888.00
LOCATION WHERE COLLECTED	FROM DATA	1146	3.50	1.709	1	6

Table 2: Kruskal-Wallis Ranks

		LOCATION FROM WHERE DATA		
		COLLECTED	Ν	Mean Rank
TOTAL ATTEMPT	CALL	LAGOS	191	923.88
		YOLA	191	236.26
		PORT-HARCOURT	191	612.48
		ABUJA	191	655.99
		KANO	191	508.14
		ENUGU	191	504.25
		Total	1146	
TOTAL ESTABLISHED	CALL	LAGOS	191	924.71
		YOLA	191	235.12
		PORT-HARCOURT	191	613.75
		ABUJA	191	659.70
		KANO	191	507.55
		ENUGU	191	500.18
		Total	1146	

cisdi**J**ournal

		LOCATION FROM	WHERE	DATA		
		COLLECTED			Ν	Mean Rank
TOTAL CONGESTED	CALL	LAGOS			191	877.47
		YOLA			191	308.60
	ļ	PORT-HARCOURT			191	564.97
	l	ABUJA			191	462.76
	ļ	KANO			191	601.82
	ļ	ENUGU			191	625.38
		Total			1146	

Table 3: Kruskal-Wallis Test Statistics (a,b)

	Total Call Attempt	Total Call Established	Total Call Congested
Chi-Square	442.706	447.469	311.070
Df	5	5	5
Asymp. Sig.	.000	.000	.000

a Kruskal Wallis Test

b Grouping Variable:

5. LOCATION FROM WHERE DATA COLLECTED

The Ranks table show the mean rank of call attempts, call established and call congested for each location group. The Test Statistics table presents the Chi-square value (Kruskal-Wallis H), the degrees of freedom and the significance level.

Output of the Kruskal-Wallis

There was a **statistically significant difference** from the location from where data was collected.

CALL ATTEMPT

(H(5) = 442.706, **P** < 0.05) with a mean rank for LAGOS 923.88, ABUJA 655.99, PORT-HARCOURT 612.48,KANO 508.14, ENUGU 504.25 and YOLA 236.26.

CALL ESTABLISHED

(H(5) = 447.469, **P** < 0.05) with a mean rank for LAGOS 924.71, ABUJA 659.70, PORT-HARCOURT 613.75, KANO 507.55, ENUGU 500.18 and YOLA 235.12

CALL CONGESTED

(H(5) = 311.070, **P** < 0.05) with a mean rank for LAGOS 877.47, ENUGU 625.38, KANO 601.82, PORT-HARCOURT 564.97, ABUJA 462.76, YOLA 308.60

Therefore we accept the alternative hypothesis and reject the null hypothesis. This implies that there is a significant difference between Total Call attempts, Total call established and Total call congested on system capacity of the network based on location. This shows that the capacity of BTS, BSC, BSC and other telecommunication facilities deployed to each of the location by MTN service provider are not the same. It could be based on the number of calls emanating from such location. However, call congested showing disparity in the locations mean rank with equipment deployed. With Lagos having the highest congestion, Yola has the least congestion and Enugu has the second highest congestion may be due to the business activities, even when the population is lower than Kano and Port-Harcourt.

The one-way MANOVA is used to determine whether there are any differences between independent groups on more than one continuous dependent variable. In this regard, it differs from a <u>one-way ANOVA</u> only in measuring more than one dependent variable at the same time, unlike the one-way ANOVA that only measures one dependent variable.

5.1 Assumptions

- One independent variable consists of **two or more categorical independent groups**. The independent variables are locations which are Lagos, Yola, P.H., Abuja, Kano and Enugu, Represented as 1, 2, 3, 4, 5 and 6 respectively
- Two or more dependent variables which, are (**continuous**). The dependent variables are call attempted, call established and call congested.
- Multivariate Normality. We assume normal
- Equality of variances between the independent groups (homogeneity of variances). Levene's F Statistic has a significance value of (p<0.05)=0.000 therefore, the assumption of homogeneity of variance is not met for TOTAL CALL ATTEMPT, TOTAL CALL ESTABLISHED and TOTAL CALL CONGESTED. This would mean that we do not have similar variances.

Table 4 : Levene's Test of Equality of Error Variances(a)

	F	df1	df2	Sig.
TOTAL CALL ATTEMPT	370.933	5	1140	.000
TOTAL CALL ESTABLISHED	382.401	5	1140	.000
TOTAL CALL CONGESTED	78.801	5	1140	.000

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a Design: Intercept+LOCATION

Table 5 : Tests of Between-Subjects Effects

Source	Dependent Variable	Df	F	Sig.	Partial Eta Squared
LOCATION	TOTAL CAL ATTEMPT TOTAL CAL ESTABLISHED	5 5 5	299.732 304.373	.000 .000	.568 .572
	TOTAL CAL CONGESTED	5	92.151	.000	.288

a Computed using alpha = .05

b R Squared = .568 (Adjusted R Squared = .566)

c R Squared = .572 (Adjusted R Squared = .570)

d R Squared = .288 (Adjusted R Squared = .285)

There was a statistically significant effect on TOTAL CALL ATTEMPT (\mathbf{F} (5, 1140) = 299.732; $\mathbf{P} < .05$), TOTAL CALL ESTABLISHED (\mathbf{F} (5, 1140) = 304.373; $\mathbf{P} < .05$) and TOTAL CALL CONGESTED (\mathbf{F} (5, 1140) = 92.151; $\mathbf{P} < .05$). As such, we accept the alternative hypothesis at $\mathbf{P} < .05$. Implying that there is a significant effect due attempted, established and congested calls for each of the locations.

Table 6: Multiple Comparisons

Tukey HSD

-	(I) LOCATION FROM	(J) LOCATION		
	WHERE DATA	FROM WHERE	Mean Difference	
Dependent Variable	COLLECTED	DATA COLLECTED	(I-J)	Sig.
TOTAL CALL ATTEMPT	LAGOS	YOLA	1713824.2408(*)	.000
		PORT-HARCOURT	1455582.8796(*)	.000
		ABUJA	1441245.5393(*)	.000
		KANO	1561147.4921(*)	.000
		ENUGU	1549116.1885(*)	.000
	YOLA	LAGOS	-1713824.2408(*)	.000
		PORT-HARCOURT	-258241.3613(*)	.000
		ABUJA	-272578.7016(*)	.000
		KANO	-152676.7487(*)	.040
		ENUGU	-164708.0524(*)	.020
	PORT-HARCOURT	LAGOS	-1455582.8796(*)	.000
		YOLA	258241.3613(*)	.000
		ABUJA	-14337.3403	1.000
		KANO	105564.6126	.328
		ENUGU	93533.3089	.469
	ABUJA	LAGOS	-1441245.5393(*)	.000
		YOLA	272578.7016(*)	.000

PORT-HARCOURT 14337.3403 1.000 KANO 119901.9529 .194	
KANO 119901.9529 .194	
ENLICH	
ENUGU 10/8/0.6492 .304	
KANO LAGOS -1561147.4921(*) .000	
YOLA 152676.7487(*) .040	
PORT-HARCOURT -105564.6126 .328	
ABUJA -119901.9529 .194	
ENUGU -12031.3037 1.000	
ENUGU LAGOS -1549116.1885(*) .000	
YOLA 164708.0524(*) .020	
PORT-HARCOURT93533.3089 .469	
ABUJA -107870.6492 .304	
KANO 12031.3037 1.000	
TOTAL CALL LAGOS YOLA 1681931.6178(*) .000	
PORT-HARCOURT 1427703.0366(*) .000	
ABUJA 1410534.5759(*) .000	
KANO 1533588.0366(*) .000	
ENUGU 1524504.4764(*) .000	
YOLA LAGOS -1681931.6178(*) .000	
PORT-HARCOURT -254228.5812(*) .000	
ABUJA -2/139/.0419(*) .000	
KANO -148343.5812(*) .041	
ENUGU -157427.1414(*) .024	
PORT-HARCOURT LAGOS -1427703.0366(*) .000	
YOLA 254228.5812(*) .000	
ABUJA -17168.4607 .999	
KANO 105885.0000 .295	
APULA LACOS 1410524 5750(**) 000	
ADOJA LAGOS -1410534.5759(*) .000	
DORT HARCOURT 17160 4667 000	
PORT-HARCOURT 17168.4607 .999	
KANU 123053.4607 .149	
ENUGU 113969.9005 .218	
NANU LAGUS -1353588.0300(*) .000 YOLA 148243 5812(*) 041	
PORT-HARCOURT 105885 0000 205	
ARIIIA 122052 4607 140	
FNUGU -123035.400/ .149	
ENUGU LAGOS 1524504 4764(4) 000	
VOL Δ 157407 1414(*) 000	
$\begin{array}{c} 10LA & 15/42/.1414(*) & .024 \\ \hline DOPT HADCOUDT & 06801/4209 & 200 \end{array}$	
ABUJA -113969 9005 218	
KANO 9083.5602 1.000	
TOTAL CALL LAGOS YOLA 31892.6230(*) .000	
PORT-HARCOURT 27875.7173(*) .000	
ABUJA 30710.9634(*) .000	
KANO 27559.4555(*) .000	

Dependent Variable	(I) LOCATION FROM WHERE DATA COLLECTED	(J) LOCATION FROM WHERE	Mean Difference	Sig
Dependent Variable	COLLECTED	DATA COLLECTED	(1-3)	Sig.
		ENUGU	24611.7120(*)	.000
	YOLA	LAGOS	-31892.6230(*)	.000
		PORT-HARCOURT	-4016.9058	.200
		ABUJA	-1181.6597	.985
		KANO	-4333.1675	.135
		ENUGU	-7280.9110(*)	.001
	PORT-HARCOURT	LAGOS	-27875.7173(*)	.000
		YOLA ABUJA	4016.9058 2835.2461	.200 .590
		KANO	-316.2618	1.000
		ENUGU	-3264.0052	.429
	ABUJA	LAGOS	-30710.9634(*)	.000
		YOLA	1181.6597	.985
		PORT-HARCOURT	-2835.2461	.590
		KANO	-3151.5079	.470
		ENUGU	-6099.2513(*)	.007
	KANO	LAGOS	-27559.4555(*)	.000
		YOLA	4333.1675	.135
		PORT-HARCOURT	316.2618	1.000
		ABUJA	3151.5079	.470
		ENUGU	-2947.7435	.547
	ENUGU	LAGOS	-24611.7120(*)	.000
		YOLA	7280.9110(*)	.001
		PORT-HARCOURT	3264.0052	.429
		ABUJA	6099.2513(*)	.007
		KANO	2947.7435	.547

Based on observed means.

* The mean difference is significant at the .05 level.

The multiple Comparisons table above shows that for TOTAL CALL ATTEMPT were statistically significantly different for all cases but not between PORT-HARCOURT and ABUJA (P = 1.000), PORT-HARCOURT and KANO (P = .328), PORT-HARCOURT and ENUGU (P = .469),

ABUJA and KANO (P = .194), ABUJA and ENUGU (P = .304) and KANO and ENUGU (P = 1.000).

The multiple Comparisons table above shows that for TOTAL CALL ESTABLISHED were statistically significantly different for all cases but not between PORT-HARCOURT and ABUJA (P = .999), PORT-HARCOURT and KANO (P = .295), PORT-HARCOURT and ENUGU (P = .389), ABUJA and KANO (P = .149), ABUJA and ENUGU (P = .218) and KANO and ENUGU (P = 1.000).

The multiple Comparisons table above shows that for TOTAL CALL CONGESTED were statistically significantly different for all cases but not between YOLA and PORT-HARCOURT (P = .200), YOLA and ABUJA (P = .985), YOLA and KANO (P = .135), PORT-HARCOURT and ABUJA (P = .590), PORT-HARCOURT and KANO (P = .1000), PORT-HARCOURT and ENUGU (P = .429), ABUJA and KANO (P = .470) and KANO and ENUGU (P = .547).

These differences can be easily visualised by the plots generated by this procedure, as shown below:

Estimated Marginal Means of TOTAL CALL ATTEMPT

cisc

Estimated Marginal Means of TOTAL CALL ESTABLISHED

Table 7: TOTAL CALL ATTEMPT

LOCATION FROM				
WHERE DATA				
COLLECTED	Ν	Subset		
	1	2	3	1
YOLA	191	20546.7906		
KANO	191		173223.5393	
ENUGU	191		185254.8429	
PORT-HARCOURT	191		278788.1518	
ABUJA	191		293125.4921	
LAGOS	191			1734371.0314
Sig.		1.000	.194	1.000

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square (Error) = 259306484233.093.

a Uses Harmonic Mean Sample Size = 191.000.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed. c Alpha = .05.

Table 8: TOTAL CALL ESTABLISHED

Tukey HSD				
LOCATION FROM				
WHERE DATA				
COLLECTED	Ν	Subset		
	1	2	3	1
YOLA	191	19876.9476		
KANO	191		168220.5288	
ENUGU	191		177304.0890	
PORT-HARCOURT	191		274105.5288	
ABUJA	191		291273.9895	
LAGOS	191			1701808.5654
Sig.		1.000	.149	1.000

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 246134517783.009.

a Uses Harmonic Mean Sample Size = 191.000.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c Alpha = .05.

Table 9: TOTAL CALL CONGESTED

Ν	Subset			
1	2	3	1	
191	669.8429			
191	1851.5026			
191	4686.7487	4686.7487		
191	5003.0105	5003.0105		
191		7950.7539		
191			32562.4660	
	.135	.429	1.000	
	N 1 191 191 191 191 191	N Subset 1 2 191 669.8429 191 1851.5026 191 4686.7487 191 5003.0105 191 .135	N Subset 1 2 3 191 669.8429 - 191 1851.5026 - 191 4686.7487 4686.7487 191 5003.0105 5003.0105 191 51.5026 - 191 4686.7487 4686.7487 191 5003.0105 5003.0105 191 - 7950.7539 191 .135 .429	

Means for groups in homogeneous subsets are displayed.

Based on Type III Sum of Squares

The error term is Mean Square(Error) = 294775571.216.

a Uses Harmonic Mean Sample Size = 191.000.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c Alpha = .05.

6. CONCLUSION

Higher quality in a GSM service operation is achievable but only through fast and accurate network optimization. Using GIS in standard network monitoring tools are known to reduce the stress of the quality-monitoring engineer and increase productivity by more than 70%. The task of GSM network optimization is highly complex and specialized, but it is also a task with enormous potential rewards, as each incremental improvement in system performance can translate to huge cost savings and increased revenues for the operator. It was observed that these network operators need to improve the quality of service offered to their teeming customers. The study also shows that the congestion rate for Lagos is the highest followed by Enugu, and Yola had the least congestion experience. Redirection of call can be considered and proper study of the location conducted to determine deployment of network facilities in order to improve customer satisfaction.

REFERENCES

Adegoke, A.S. and U.K. Okpeki.(2010). "Analysis of GSM Traffic Performance". Pacific Journal of Science and Technology. 11(2):327-331.

Awe J. (2007). Nigeria: Bridging the Infra-structure Divide. http://www.dawodu.com/awe2.htm

Ajala, I (2005), Article on GIS and GSM Network Quality Monitoring: A Nigerian Case Study. <u>http://www.migration.locationintelligen</u> ce.net/articles/2030.html. Accessed. Dec. 11, 2011.

Ndukwe E. (2008), ICT Statistics Newslog-Nigeria dreams of 100% teledensity by 2020. News related to ITU Telecommunication/ICT Statistics. ict/newslog/Nigeria+Dreams+Of+100+Teledensi ty+By+2020.aspx

Ajala I., (2005). Article on GIS and GSM Network Quality Monitoring: A Nigerian Case Study. www.spatialtechnologiesltd.com/Ireti_News.php

Mughele, E.S, Olatokun W & T. Adegbola, T. (2011) -Congestion Control Mechanisms and Patterns of Call Distribution in GSM Networks – The Case of MTN Nigeria. Afr J. of Comp & ICTs. Vol 4, No. 3. Issue 2 pp 29-- 42. © African Journal of Computing & ICT December, 2011 - ISSN 2006-1781

Mughele E. S, Adegbola T Longe, O.B. & Boateng R (2012) Factor analysis for G.S.M. Services Congestion – the case of MTN Nigeria. Computing & Information Systems Journa. Vol. 16, No. 1 http://cis.uws.ac.uk/research/journal/index.html

Author's Brief

Mrs. Mughele Ese Sophia is a research scientist and a doctoral student in Africa Regional Centre for Information Science at the University of Ibadan, Nigeria. Her Ph.D field of

Interest is knowledge representation and expert systems. She holds a Diploma in computer science, B.Sc in Computer Science and masters in Information Science. Her research interest includes congestion and related issues in G.S.M telecommunication, the use of knowledge based system for automated reasoning , reasoning using Identity Based Encryption to enhance information and E-mail Security , information and knowledge management, Wireless Network protocol design, implementation of ICT in all sectors for Global development. Mughele is a Lecturer in the Department of computer science and also Director of ICT Centre at Delta state school of Marine Technology Burutu, Nigeria. She can be contact at prettysophy77@yahoo.com

Dr. Wole Michael Olatokun, obtain his masters and Ph.D degrees in Information Science from Africa Regional Center for Information Science (ARCIS). He

is currently a senior lecturer at Africa Regional Center for Information Science. His research interest includes national information and communication technology (ICT), policy issues, social informatics, gender and ICT, eCommerce, eGovernment and mobile commerce, ICT adoption and application in different settings and indigenous knowledge system. He can be contacted at woleabbeyolatokun@yahoo.co.uk wole.olatokun@mopipi.ub.bw