
Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

47

APPROACH FOR ENHANCING THE RELIABILITY
OF SOFTWARE

Raghvendra Kumar

 L.N.C.T. Group of College
Jabalpur, M.P., INDIA

Raghvendraagrawal7@gmail.com

ABSTRACT
Reliability is always important in all systems but sometimes it is more important than other quality attributes, especially in
mission critical systems where the severity of consequence resulting from failure is very high. Software reliability
engineering is focused on comprehensive techniques for developing reliable software and for proper assessment and
improvement of reliability. Reliability metrics, models and measurements form an essential part of software reliability
engineering process. Appropriate metrics, models and measurement techniques should be applied to produce reliable
software. Hence, it is the intention to develop some approaches to enhance the reliability of software by the analysis of the
structure of the software, execution scenario for various inputs and operational profile.

Keywords: Software Reliability, Rate of occurrence of failure (ROCOF), Mean Time to Failure (MTTF),

 Hardware Reliability, Mean Time between Failure (MTBR).

INTRODUCTION

1.1 Software Reliability is a field of computer engineering
whose approach is focused on comprehensive techniques
for developing reliable software and for proper assessment
and improvement of the reliability. Reliability metrics,
models, and measurements form an essential part of
software engineering process. So we should apply
appropriate metrics, models, and measurement techniques
in software reliability engineering to produce reliable
software. Reliability of a software product essentially
denotes its trustworthiness or dependability. It is known
that a software product having a large number of defects is
unreliable. Hence the reliability of a system improves, if
the number of defect is reduced. According to IEEE
“Software reliability is the probability of a failure free
operation of a computer program for a specified period of
time in a specified environment”.

Reliability is a user-oriented factor relating to quality of
software. Intuitively, if the users of the system rarely
experience failure it is considered to be more reliable than
that one that fails more often. A system without fault is
considered to be highly reliable. Software reliability is an
important aspect of software quality. Software reliability
concerns itself with how well the software functions to
meet the requirements of user. In June 4 1996, the Airane 5
Flight 501 veered off the flight path, broke off and
exploded resulting in a financial loss of the cargo and
rocket of $500 million. Although the software that was
used in Airane 5 was same as in Airane 4. In Airane 4 it
was working perfectly fine but it resulted in failure in
Airane 5. Disintegration of Airane 5 rocket 37 seconds
after launch is perhaps commonly referred to as one of the
most expensive software bugs in history
.
1.2 Software Reliability and Hardware Reliability:-The
software system reliability is classified into software
reliability and hardware reliability as the software and
hardware behave differently in any system. Hardware part
may fail due to its design and manufacturing defects.

Sometimes also a perfectly functioning hardware device
also fails despite of its well treatment. But software will
not change over time unless the software is changed or
modified intentionally. Hardware reliability is the
probability that the hardware perform its function for
specified period of time without any failure. For example,
if the resistor get short circuited we can either replace or
repair the fault part. For hardware products, it can be
observed that failure rate is high initially but decreases as
the faulty components are identified and removed. The
system then enters its useful life. After some time (called
product life time) the components wear out, and the failure
rate increases. So by repairing the hardware part its
reliability is maintained at the level it existed before the
failure occurred. Software Reliability can be increased by
applying metrics at different stages of software
development life cycle. For software the failure rate is at its
highest during integration and test. As the system is tested,
more and more errors are identified and removed resulting
in reduced failure rate.

 1.3 Techniques to Improve Software Reliability A fault
is a defect in a program that arises when programmer
makes an error and causes failure when executed under
particular conditions. Reliability can be increased by
preventing the errors and developing quality software
through all of the stages of software life cycle. To do this,
there are also metrics which helps in improving reliability
of the system by identifying the areas of requirements (for

specification), Design (for verification and validation),
Coding (for errors), Testing (for verifying) phases. a)

1.4 Requirements Reliability Metrics:-Requirements
indicate what features the software must contain. So for
this requirement document, a clear understanding between
client and developer should exist. Otherwise it is critical to
write these requirements. The requirements must contain
valid structure to avoid the loss of valuable information.
Next, the requirements should be thorough and in a
detailed manner so that it is easy for the design phase.

Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

48

The requirements should not contain inadequate
information. Next one is to communicate easily .There
should not be any ambiguous data in the requirements. If
there is ambiguous data, then it is difficult for the
developer to implement that specification. Requirement
Reliability metrics evaluates the above said quality factors
of the requirement document. Software Metrics used in
Requirement Phase are:

1. Function Points

• Count number of inputs and output, user
interactions, external interfaces, files used.

• assess each for complexity and multiply by a
weighting factor.

• Used to predict size or cost and to access project
productivity.

2. Number of requirements errors found (to assess quality)
 Change request frequency

• To access stability of requirements.

• Frequency should decrease over time. If not,
requirements analysis may not have been done
properly.

b) Design and Code Reliability Metrics The quality
factors that exist in design and coding phase are
complexity, size and modularity. If there are more complex
modules, then it is difficult to understand and there is a
high probability of occurring errors. So complexity of the
modules should be less. Next coming to size, it depends
upon the factors such as total lines, comments, executable
statements etc. The reliability will decrease if modules
have a combination of high complexity and large size or
high complexity and small size. In the later combination
also the reliability decreases because, the smaller size
results in a short code which is difficult to alter. These
metrics are also applicable to object oriented code, but in
this, additional metrics are required to evaluate the quality.

Software Metrics used in Coding Phase are:

1. Common measures

• Lines of code written per programmer per month.

• Object instructions produced per programmer
month.

• Pages of documentation written per programmer
month.

• Test cases written and executed per programmer
month.

Software Metrics used in Design Phase are 1. Number of
Parameters

• Tries to capture coupling between modules.

• Understanding modules with large number of
parameters will require more time and effort
(assumption).

• Modifying modules with large number of
parameters likely to have side effects on other
modules.

• Number of modules

• Number of modules called (estimating
complexity of maintenance).

• Fan-in: number of modules that call a particular
module. Fan-out: how many other modules it
calls.

• High fan-in means many modules depend on this
module. High fan-out means module depends on
many other modules.

• Makes understanding harder and maintenance
more time-consuming.

3. Data Bindings
� Triplet (p, x, q) where p and q are modules and X is
variable within scope of both p and q

– Potential data binding
X declared in both, but does not check to see if accessed.
Reflects possibility that p and q might communicate
through the shared variable.

– Used data binding:
A potential data binding where p and q use X. Harder to
compute than potential data binding and requires more
information about internal logic of module.

– Actual data binding:
Used data binding where p assigns value to x and q
references it. Hardest to compute but indicates information
flow from p to q. 4. Cohesion metric
� Construct flow graph for module.

• Each vertex is an executable statement.

• For each node, record variables referenced in
statement.

• Determine how many independent paths of the
module go through different statements.

• If a module has high cohesion, most of variables
will be used by statements in most paths.

• Highest cohesion is when all the independent
paths use all the variables in the module.

c) Testing Reliability Metrics Testing Reliability metrics
uses two approaches to evaluate the reliability. First, it
ensures that the system is fully equipped with the functions
that are specified in the requirements. Because of this, the
errors due to the lack of functionality decreases. Second
approach is nothing but evaluating the code, finding the
errors and fixing them.

1.5 Software Reliability Metrics There are some
reliability metrics which can be used to quantify the
reliability of software products.

Rate of occurrence of failure (ROCOF) ROCOF
measures the frequency of occurrence of unexpected
behavior (i.e. failures). ROCOF measure of a software
product can be obtained by observing the behavior of a
software product in operation over a specified time interval
and then recording the total number of failures occurring
during the interval.

Mean Time To Failure (MTTF) MTTF is the average
time between two successive failures, observed over a
large number of failures. To measure MTTF, we can record
the failure data for n failures. Let the failures occur at the
time instants t1, t2, …, tn. Then, MTTF can be calculated
as It is important to note that only run time is considered in
the time measurements, i.e. the time for which the system
is down to fix the error, the boot time, etc are not taken into
account in the time measurements and the clock is stopped
at these times.

Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

49

Mean Time to Repair (MTTR) Once failure occurs, some
time is required to fix the error. MTTR measures the
average time it takes to track the errors causing the failure
and to fix them. Mean Time between Failure (MTBR)

MTTF and MTTR can be combined to get the MTBR
metric: MTBF = MTTF + MTTR. Thus, MTBF of 300
hours indicates that once a failure occurs, the next failure is
expected after 300 hours. In this case, time measurements
are real time and not the execution time as in MTTF.
Probability of Failure on Demand (POFOD) Unlike the
other metrics discussed, this metric does not explicitly
involve time measurements. POFOD measures the
likelihood of the system failing when a service request is
made.

For example, a POFOD of 0.001 would mean that 1 out of
every 1000 service requests would result in a failure.

Availability Availability of a system is a measure of how
likely shall the system be available for use over a given
period of time. This metric not only considers the number
of failures occurring during a time interval, but also takes
into account the repair time (down time) of a system when
a failure occurs. This metric is important for systems such
as telecommunication systems, and operating systems,
which are supposed to be never down and where repair and
restart time are significant and loss of service during that
time is important.

Efficiency The amount of computing time and resources
required by software to perform desired function it is an
important factor in differentiating high quality software
from a low one.

Integrity The extent to which access to software or data by
unauthorized persons can be controlled Integrity has
become important in the age of hackers.

Flexibility The effort required to transfer the program from
one hardware to another.

Interoperability The effort required to couple one system
to another as indicated by the following sub-features:
adaptability, insatiability, conformance, replacebility.

Maintainability It is the ease with which repair may be
made to the software as indicated by the following sub-
feature: analyzability, changeability, stability, testability. If
a software needs” less mean time to change (MTTC), it
means it needs less maintainability.

2. LITERATURE SURVEY

The survey of various papers concerned with the
enhancement of software reliability is summarized as
follows.

Technique1

In this era of computer, computer are playing very
important role in our daily lives. Mechanical objects now-
a-days are replaced by digital devices, CPUs’ and software.
Increasing competition and high development costs have
intensified the pressure to quantify software quality and to
measure and control the level of quality delivered. There
are various software quality factors as defined by MC

CALL and ISO 9126 standard, however software reliability
is most important and most measurable aspect of software
quality. This paper tries to give general idea for software
reliability metrics and model used. This will focus on
software engineering principles in the software
development and maintenance so that reliability of
software will be improved. This paper provides an
overview of improving software reliability and provides
various ways to improve software reliability in the life
cycle of software development.

Reliability is a probabilistic measure that assumes that
the occurrence of failure of software is a random
phenomenon. Randomness means that the failure can’t be
predicted accurately. The randomness of the failure
occurrence is necessary for reliability modeling. In
[MIO87], it is suggested that reliability modeling should
be applied to systems larger than 5000 LOC.

Reliability Process in generic terms is a model of the
reliability-oriented aspects of software development,
operations and maintenance. The set of life cycle
activities and artifacts, together with their attributes and
interrelationships that are related to reliability comprise
the reliability process.

Software Reliability Activities are grouped into classes:
Construction Generates new documentation and code
artifacts Combination Integrates reusable documentation
and code components with new documentation and code
components. Correction Analyzes and removes defects in
documentation and code using static analysis of artifacts.
Preparation Generates test plans and test cases, and
readies them for execution. Testing Executes test cases,
whereupon failure occur Identification Makes fault
category assignment. Each fault may be new or
previously encountered. Repair Removes faults and
possibly introduces new faults. Validation Performs
inspections and checks to affirm that repairs are effective
Retest Executes test cases to verify whether specified
repairs are complete if not, the defective repair is marked
for repair. New test cases may be needed.

Software Reliability Metrics: In this paper, software
reliability measurement is divided into 4 categories:
[RAC96]

Product Metrics Function point metric is a method of
measuring the functionality of a proposed software
development based upon a count of inputs, outputs,
master files, inquires, and interfaces. It measures the
functionality delivered to the user and is independent of
the programming language. It is used primarily for
business systems; it is not proven in scientific or real-time
applications. Complexity is directly related to software
reliability, so representing complexity is important.
Complexity-oriented metrics is a method of determining
the complexity of a program's control structure, by
simplifying the code into a graphical representation.
Representative metric is McCabe's Cyclomatic
Complexity Metric McCabe's Cyclomatic complexity is a
software quality metric that quantifies the complexity of a
software program. Complexity is inferred by measuring
the number of linearly independent paths through the
program.

Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

50

The higher the number the more complex the code. Test
coverage metrics are a way of estimating fault and
reliability by performing tests on software products, based
on the assumption that software reliability is a function of
the portion of Software that has been successfully verified
or tested.

Project Management Metrics

It is known that good management can result in better
products. It has been demonstrated that a relationship
exists between the development process and the ability to
complete projects on time and within the desired quality
objectives. Costs increase when developers use
inadequate processes. Higher reliability can be achieved
by using better development process, risk management
process, configuration management process, etc.

Process Metrics

Based on the assumption that the quality of the product is
a direct function of the process, process metrics can be
used to estimate, monitor and improve the reliability and
quality of software. ISO- 9000 certification, or "quality
management standards", is the generic reference for a
family of standards developed by the International
Standards Organization (ISO).

Fault and Failure Metrics

The goal of collecting fault and failure metrics is to be
able to determine when the software is approaching
failure-free execution. Test strategy is highly relative to
the effectiveness of fault metrics, because if the testing
scenario does not cover the full functionality of the
software, the software may pass all tests and yet be prone
to failure once delivered. Usually, failure metrics are
based upon customer information regarding failures found
after release of the software. The failure data collected is
therefore used to calculate failure density, Mean Time
between Failures (MTBF) or other parameters to measure
or predict software reliability. Besides the above metrics,
other possible metrics are: Efficiency The amount of
computing time and resources required by software to
perform desired function it is an important factor in
differentiating high quality software from a low one.
Integrity The extent to which access to software or data
by unauthorized persons can be controlled Integrity has
become important in the age of hackers. Flexibility The
effort required to transfer the program from one hardware
to another. Interoperability The effort required to couple
one system to another as indicated by the following sub-
features: adaptability, insatiability, conformance,
replacebility. Maintainability It is the ease with which
repair may be made to the software as indicated by the
following sub-feature: analyzability, changeability,
stability, testability. If a software needs” less mean time
to change (MTTC), it means it needs less maintainability.
Software Reliability Improvement Techniques: In real
situations, it is not possible to eliminate all the bugs in the
software; however, by applying sound software
engineering principles software reliability can be
improved to a great extent. The layer technology in
software engineering focuses on reliability and quality of
software.

In this paper, study of software reliability can be
categorized into three parts: Modeling, Measurement &
improvement. Software reliability measurement is naive.
It can’t be directly measured, so other related factors are
measured to estimate software reliability. Software
reliability improvement is necessary & hard to achieve. It
can be improved by sufficient understanding of software
reliability, characteristics of software & sound software
design. Complete testing of the software is not possible;
however sufficient testing & proper Maintenance will
improve software reliability to great extent.

Technique2

Software reliability relies on 3 basic models such as
Usage modes describe how software is used. Trend model
describe how reliability evolve our times as certain bugs
are fixed or new bugs are introduced. Probabilistic failure
models capture the fact that failures may happen
randomly. Software Reliability Metrics: Reliability
metrics are derived from failure occurrence expressions
and data. According to this paper, reliability metrics is
categorized into 4 types. They are Probabilistic of failure
on demand (POFOD): Its main specification is for the
systems where service requests happen in an
unpredictable way or when there is a long time interval
between the requests. Rate of occurrence of failure
(ROCOF): It is specified for system where services are
demand in more regularly. Mean time to failure (MTTF):
It is specifically for the systems involving long
transactions, during which a guarantee of service
continuity and delivery should be expected. Availability
(AVAIL): It is used for system where continues service
delivery is a major concern. Software Reliability

Measurement: Reliability measurement is divided into 4
categories: Product Metrics, Project Management Metrics,
Process Metrics, Fault and Failure Metrics. Software
Process and Product Metrics are quantitative measures
that enable people to gain insight into the efficiency of
software process and the project that are conducted using
the process as a framework. Higher reliability can be
achieved by using better development process, risk
management process, configuration management process
etc. Fault metrics are used to find defects and fix those
defects. Failure metrics are based upon customer
information regarding failures found after release of
software. The failure data collection is therefore used to
calculate failure density. Mean Time Between
Failure(MTBF) or other parameters are used to measure
or predict software reliability.

Software Improvement Techniques: Software fault
should be carefully handled to make software more
reliable with as many reliable improvement techniques as
possible. Software reliability improvement techniques are
divided into 3 categories. Fault avoidance/prevention that
includes design methodologies to make software probably
fault-free. Fault removal that aims to remove faults after
development stage is completed. Fault tolerance that
assumes a system has unavoidable and undetectable faults
and aims to make provisions for the systems to operate
correctly, even in the presence of faults.

Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

51

Till now many models have been developed but how to
quantify software reliability still remains largely
unsolved. No single model can be used in all situations.
One model may work well for a set of certain software
but May completely off track for other kind of problems.
Good metrics should be used to develop model that are
capable of predicting process and product parameters.
Ideal metric should be simple, objective, easily
obtainable, valid and robust. From this paper it can be
concluded that the scope of software metrics can be
expanded to include performance evaluation and software
measurement.

Technique3

Reliability is always important in all systems but
sometimes it is more important than other quality
attributes. Software reliability engineering approach is
focused on comprehensive techniques for developing
reliable software and for proper assessment and
improvement of the reliability. Reliability metrics, models
and measurements form an essential part of software
reliability engineering process. We should apply
appropriate metrics, models and measurement techniques
in SRE to produce reliable software, as no metric or
model can be used in all situations. So, we should have
profound knowledge of metrics, models and measurement
process before applying them in SRE. In this paper, the
author represents in-depth analysis of all metrics, models
and measurements used in software reliability. According
to this paper, reliability is the probability of a system or
component to perform its required functions (output that
agrees with specifications) without failure under stated
conditions (operational profile) for a specified period of
time. Informally reliability denotes a product’s
trustworthiness or dependability.

Mathematically, reliability R(t) is the probability that a
system will be successful in the interval from time 0 to
time t. i.e. R(t) = P(T > t), t ≥ 0 Where T is a random
variable denoting the time to failure or failure time.
Unreliability F(t), a measure of failure, is defined as the
probability that the system will fail by time t” i.e. F(t) =

P(T ≤ t), t ≥ 0. In other words, F (t) is the failure
distribution function. The following relationship applies
to reliability in general. The Reliability R (t) is related to
failure probability F (t) by: R(t) = 1 - F(t). This
probability is, however, the object of interest mainly
when the probability of failure-free survival of
system/mission is of concern. Other measures are more
appropriate in other situations, and include various
reliability metrics like MTTF, ROCOF, and POFOD
which are discussed in this paper. Key concepts in

Reliability It is imperative to define key elements of
reliability before discussing finer details of software
reliability. The key elements of the reliability are as
follows: 1. Probability of failure-free operation. 2.
Duration of time of failure-free operation. 3. A given
execution environment. Their work is mainly focused on
software reliability so key elements of software reliability
are mainly defined in the context. In this paper software
reliability metrics is categorized into five types
. 1. MTTF (Mean Time to Failure) The MTTF is the
mean time for which a component is expected to be
operational. MTTF is the average time between two
successive failures, observed over a large number of

failures. To measure MTTF, we can record the failure
data for n failures. Let the failures occur at the time
instants t1, t2… tn. Then, MTTF can be calculated as It is
important to note that only run time is considered in the
time measurements, i.e. the time for which the system is
down to fix the error, the boot time, etc are not taken into
account in the time measurements. An MTTF of 500
means that one failure can be expected every 500 time
units. The time units are totally dependent on the system
and it can even be specified in the number of transactions,
as is the case of database query systems. MTTF is
relevant for systems with long transactions, i.e., where
system processing takes a long time. We expect MTTF to
be longer than average transaction length.

2. MTTR (Mean Time to Repair) MTTR is a factor
expressing the mean active corrective maintenance time
required to restore an item to an expected performance
level. This includes activities like troubleshooting,
dismantling, replacement, restoration, functional testing,
but shall not include waiting times for resources. In
software, MTTR (Mean time to Repair) measures the
average time it takes to track the errors causing the failure
and then to fix them. Informally it also measures the
down time of a particular system.

3. MTBF (Mean Time between Failures) MTTF and
MTTR can be combined to get the MTBF metric: MTBF
= MTTF + MTTR. In this case, time measurements are
real time and not the execution time as in MTTF. Thus,
MTBF of 300 hours indicates that once a failure occurs,
the next failure is expected after 300 hours

4. POFOD (Probability of Failure on Demand)

POFOD measures the likelihood of the system failing
when a service request is made. Unlike the other metrics
discussed, this metric does not explicitly involve time
measurements. A POFOD of 0.005 means that five out of
a thousand service requests may result in failure. POFOD
is an important measure and should be kept as low as
possible. It is appropriate for systems demanding services
at unpredictable or relatively long time intervals.
Reliability for these systems would mean the likelihood
the system will fail when a service request is made.

5. ROCOF (Rate of Occurrences of Failure) ROCOF
measures the frequency of occurrence of unexpected
behavior (i.e. failures). It is measured by observing the
behavior of a software product in operation over a
specified time interval and then recording the total
number of failures occurring during the interval. It is
relevant for systems for which services are executed
under regular demands and where the focus is on the
correct delivery of service like operating systems and
transaction processing systems. Reliability of such
systems represents the frequency of occurrence with
which unexpected behavior is likely to occur. A ROCOF
of 5/100 means that five failures are likely to occur in
each 100 operational time units. This metric is sometimes
called the failure intensity. Conclusion In this paper they
presented an in-depth study of software reliability
metrics, models and Software reliability measurement.

Computing, Information Systems, Development Informatics & Allied Research Vol. 4 No. 4 December, 2013

52

We observed that these three things are essential part of
software reliability engineering process and can yield
excellent results if right metrics and models are selected
during software measurement process. The key to success
with SRE is to acquaint ourselves well with details of
basic elements of SRE i.e. software reliability metrics,
models and measurement process before using them in
practice.

Technique4

Assessment of software reliability is an area of the utmost
importance for software-based systems employed in safety-
critical applications such as computer relaying of power
transmission lines. Today it is hard to think of any area in
modern society in which computer systems do not play a
dominant role In space and air navigation defense
telecommunication and healthcare to name a few
computers have taken over the most life critical tasks
Unlike most human beings computers seem to do their job
perfectly at all times and under all conditions But do they
really well most of the time they do Sometimes however a
zillion dollar satellite goes of course rocket misses its
target or a large telephone exchange gives up Possible
sources for such dissatisfactory behavior are physical
deterioration or design faults in hardware components In a
emblematic software development process, software is
deliberate as a combination of apparatuses and modules
instead of a gigantic block. Different components
contribute to erratic degrees to the overall operative of
software and thus knowledge of component prominence
can reveal vital information for software designers and test
engineers. Moreover, software reliability is estimated on
the basis of collected antique data followed by an assumed
distribution curve and is thus inherently vulnerable to
uncertainties. The fault tree is an important aid that is used
extensively for safety and reliability consideration of
component-based systems and can also be applied to
software. In this paper it is stated that Software Reliability
is an imperative to trait of software quality, together with
functionality, usability, performance, serviceability,
capability, install ability, maintainability, and
documentation. Software Reliability is rigid to achieve,
because the complexity of software tends to be high. While
any system with a high degree of complexity, including
software, will be inflexible to reach a certain level of
reliability, system developers tend to push complexity into
the software layer, with the rapid growth of system size
and affluence of doing so by upgrading the software.

3. CONCLUSION

Software reliability depth is ingenuous. Dimension is far
from communal place in software, as in other engineering
field. "How good is the software, quantitatively?" Software
consistency cannot be directly measured, so other related
factors are measured to estimate software reliability and
equate it among products.

4. FUTURE WORK

The proposed approach will be applied to some software
and results will be obtained. Further the evaluation of
proposed approach will be made.

REFERENCES

[1] Improving Software Reliability Using Software
Engineering Approach-A Review Aasia
Quyuom(Research Scholar, University of
Kashmir, India), Mehraj-Ud – Din Dar(Director,
IT & SS, University of Kashmir, India), S. M. K.
Quadri(Director Computer Sciences, University
Of Kashmir, India)

[2] Software Reliability-An Overview by
E.Sridevi,B.Aruna,P.Sowjanya(Department of
Freshman Engineering,KL University,Andhra
Pradesh,India) IJCST Vol.3,Issue 1,Jan-March
2012

[3] Metrics, Models and Measurements in Software
Reliability- Sheikh Umar Farooq (Research
Scholar, P.G Department of Computer Sciences,
University of Kashmir, Srinagar, India), SMK
Quadri (Director, P.G Department of Computer
Sciences, University of Kashmir, Srinagar,
India)and Nesar Ahmad(Department of Statistics
and Computer Applications, T. M. Bhagalpur
University, Bhagalpur, India) 10th IEEE Jubilee
International Symposium on Applied Machine
Intelligence and Informatics • January 26-28,
2012

[4] A Critical Review of Software Reliability Tariq
Hussain Sheakh(Lecturer in computer sciences at
Govt. Degree College Poonch, J&K,INDIA) Dr
S.M.K.Quadri(Director, P. G. Department of
Computer Sciences, University of Kashmir,
Srinagar-190006 Jammu and Kashmir) Vijay Pal
Singh (Assistant Professor in Computer Science
at JJT University Rajasthan) (International
Journal of Emerging Technology and Advanced
Engineering Volume 2, Issue 4, April 2012)

[5] “IEEE Std 982.2-1988, IEEE Guide for the Use
of IEEE Standard Dictionary of Measures to
Produce Reliable Software”, 1998

[6] [L. Rosenberg, T. Hammer, J. Shaw, “Software
Metrics and
Reliability”,http://satc.gsfc.nasa.gov/support/ISS
RE_NOV98/software_metrics_and_reliabil
ity.html Last Date Accessed: 25.08.2005

