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ABSTRACT 
A scan of the international literature suggests the existence in various countries of a persistent culture-based academic 

performance gap across various subjects, including computer science, and at different levels of education. Almost two 

decades after the formal demise of Apartheid, this study seeks to investigate whether a culture-based academic achievement 

gap similarly persists in the South African university classroom in the field of information and systems technology. This 

study sought to identify whether performance gaps exist between students of different races, home languages and genders in 

information systems and technology education at a South African university. Pre- and post- assessments were conducted 

with first year information systems and technology students at the University of KwaZulu-Natal in respect of three separate 

courses (Databases, Networks, Spreadsheets) attended by the same sample of students during the first semester in 2011. 

Multiple regression analyses were conducted to identify the extent to which the various independent variables (such as race, 

home language and gender) contributed to the variance of the dependent variables (improvement (gain) score and post test 

score). The findings when using post-test scores as the dependent variable suggested that there were significant culture-based 

differences in cognitive performance among first year South African university students in information systems and 

technology education. However, there were no significant differences in performance improvement (gain) scores on 

cognitive testing for the same sample. While Black students were significantly out-performed in terms of test scores, there 

were no significant differences in the extent to which students improved their marks over the period of the study (one entire 

semester). In fact, Black students improved by a slightly better margin than the Indian students, despite their raw test scores 

being lower than those for their Indian counterparts. This suggests that despite their disadvantaged educational background, 

Black students are able to respond as effectively as more advantaged students to an equalised educational context once the 

‘playing fields are levelled at university. 

  

 

 

1. INTRODUCTION 

 

Culture defined 

Definitions of culture abound and are as varied as the concept they attempt to define. Markus (2008) identifies the many 

divergent views and opinions in the literature of various academic disciplines in attempting to define and distinguish 

concepts such as ‘race’, ‘ethnicity’ and ‘culture’. It is certainly beyond the scope of this discussion to argue the merits of one 

definition over another and indeed that will not be attempted here. For the purposes of this study and in the interests of 

ensuring clear interpretation of the data present herein, it is worth clarifying at the outset that, with due respect to the 

complex definitions presented by social and differential psychologists, any reference made to ‘culture’ in this discussion is 

limited in meaning to any combination of race (used interchangeably and synonymously herein with ‘ethnicity’), home 

language and gender. Takooshian (2010) supports this inclusion of gender, race and home language as legitimate parts of a 

definition of culture and refers to seminal authors in the field of differential psychology who included these and many other 

aspects of the human condition in their definitions of what constitutes ‘culture’ (Anastasi, 1954; Cohen, 2009).  

 

1.1 A scan of international literature 
 

A review of international research reveals that there is no shortage of evidence of a culture-based performance gap in 

academic performance. This performance gap appears to persist across a variety of levels of education and subjects. For 

example, Sheehan and Marcus (1977) point out that research into differences in academic performance among ethnic groups 

in the American elementary school system consistently shows ethnicity-based disparities in achievement results. Dunn et al. 

(1990) identified culture-based variations in both learning preference and achievement among African-American, Chinese-

American, Greek-American and Mexican-American fourth, fifth and sixth grade pupils in the United States on the Group 

Embedded Figures Test. However, this disparity in the United States is not limited to school students. A study conducted at 

the University of Davis, California, compared 6,720 Physics students and identified statistically significant performance 

differences between various ethnic and gender groupings (Calder & Ashbaugh, 2005). In this study, males scored higher 

than females across all ethnicities.  
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Similarly, Stockly (2009) investigated performance data for more than 5,000 University of Texas Economics students and 

found significant variance along racial lines. Other studies find a similar trend in the Texas school system and note that since 

desegregation in the 1960s, the race based performance gap in the classroom has not improved significantly (Hanushek & 

Rivkin, 2009; Neal, 2006). Demonstrating how prolific research has been on this subject, Wiggan (2008) refers to the 

‘achievement gap  narrative’ in the literature and cites various studies in the United States that identify a performance deficit 

between various ethnic groups. Wiggan goes on to consider the experiences of higher achieving minority students with the 

objective of providing some useful insights into what can be done to close the performance gap. Like many other researchers 

in this field, Wiggan refers briefly to ‘nature’ based theories that attempt to explain the race based differences in 

performance levels , but then focuses on environmental issues such as discrimination in the classroom, socio-economic 

differences between ethnicities  in America and on what he refers to as ‘oppositional identity’, which he defines as the 

tendency of minority students to perceive the educational institution as a means of perpetuating the status quo for the 

dominant majority.  

 

It is suggested in Wiggan’s study that students can (as exemplified by the high achieving minority students he interviews) 

overcome this challenge by developing an ‘engagement’ paradigm in respect of their perceptions of and  interaction with 

teachers. Moreover, Wiggan points out that ‘teacher practices’ are perceived to be the most influential factor affecting 

performance, thus suggesting that performance can be improved by varying these strategies (Wiggan, 2008). Evidence of a 

race based academic performance gap is not limited to the United States. Richardson (2009) researched the performance of 

Open University graduates in the United Kingdom and found that the attainment of ethnic minority groups tended to be 

lower (in terms of the class of honours attained). This trend was most pronounced in the distance learning programmes and 

was found to be true despite there not being disparity in terms of demographic variables (such as socio-economic factors, age 

or subject of study) among the students being compared. Moreover, in this particular study, it was found that the these 

differences in performance levels were not concomitant with a qualitatively inferior educational experience for any given 

group of students (Richardson, 2009).  

 

Various other studies conducted in the United Kingdom report similar results.  For example, Leslie (2005) quotes the Higher 

Education Statistics Agency (HESA) for the period 1998-2000 and points out that minority ethnic groups lagged 

significantly behind other groups in respect of the number of students graduating with an upper second or better in 

universities in the United Kingdom. Connor (1996) identifies a similar trend and reports disparities in achievement among 

Black, Indian and Chinese students.  Naylor and Smith (2004) report that the probability of ethnic minority students attaining 

lower results was higher than for other groupings, even after demographic variables were controlled (based on their analysis 

of data for 1998 in the United Kingdom).  

 

1.2 Culture and computer science 

 

The challenges related to multicultural education are as prevalent in the field of computer science education as in any other 

field. The international literature abounds with discussion around race and gender differences in academic achievement and 

experiences of students in information technology education (Badat, 2010; Crombie, Abarbanel, & Anderson, 2000; 

Crombie, Abarbanel, & Trinneer, 2002; DuBow, 2011; Fisher & Margolis, 2002; Kafai, 1998; Katz, Aronis, Allbritton, 

Wilson, & Soffa, 2003; Kirkup, Zalevski, Maruyama, & Batool, 2010; Moorman & Johnson, 2003; Payton, 2003). Research 

indicates that females and minorities continue to be under-represented in information technology related employment and 

programmes of study in various countries of the world, including the United States (DuBow, 2011), the United Kingdom 

(Kirkup, et al., 2010) and South Africa (Badat, 2010; ISETT SETA, 2010). For example in the United States, females and 

minority groups such as African-Americans, Hispanics and American Indians have consistently been under-represented in 

computer and information science degrees (Margolis, 2001).  

 

This has inevitably led to under-representation of these same groups in the information technology (IT) workforce. 

According to the U.S. Bureau of Labor Statistics, there are projected to be about 1.4 million jobs related to computer and 

information technologies in America by 2018, which represents a growth of 22% over 2008 figures and is higher than for 

any other occupation (DuBow, 2011). Women and minority groups are currently poorly represented in this growing 

computing-related workforce and there is no evidence that this state of affairs is projected to change for the better in the near 

future. Table 1, for example, shows the dramatic downward trend of percentages of women employed in computing related 

occupations in the United States since 2000. The most recent figures available show that of the 897,000 women employed in 

computing related occupations in the United States, 69% are White, 16% are African-American, 9% are Asian/Pacific 

Islander and 6% are Latina/Hispanic (DuBow, 2011). 
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Table 1 Female percentage employed in computing-related occupations in the United States, 2000-2009 

Occupation 2000 2005 2009 

Operations research analysts   51% 50% 47% 

Database administrators   43% 33% 35% 

Computer support specialists   35% 33% 27% 

Computer scientists and systems analysts    34% 30% 27% 

Network systems and data communications analysts    25% 25% 25% 

Computer programmers    26% 26% 20% 

Network and computer systems administrators    23% 19% 22% 

Computer software engineers   24% 22% 20% 

Computer hardware engineers    22% 11% 9% 

 

Source: (DuBow 2011) 

 

This decline in diversity in the IT workforce is ironic, since reports suggest that technology companies with the highest 

representation of women in their senior management teams showed a higher return on equity than did those with fewer or no 

women in these roles. A recent study showed that diversity (both in terms of gender and race) was associated with increases 

in sales revenue, customers and profits (Herring, 2009). Despite the increasing demand for more skilled IT professionals in 

the United States, the number of graduates in related degrees is decreasing. Moreover, not only has the total number of 

university graduates in the field of computer or information sciences in the United States steadily declining, female and 

minority representation in this field of study remains disproportionately low (DuBow, 2011). For example, in 2009, while 

women earned 57% of all undergraduate degrees in the United States, only 18% of all computer and information sciences 

undergraduate degrees were earned by women. Of these 6,966 women, 48% were White, 19% were African-American, and 

the remainder was made up various other ethnic minorities (DuBow, 2011). 

 

The gender and race disparities also exist at secondary school level. This is illustrated by the demographics of students 

taking the Advanced Placement (AP) Computer Science exam in the United States. The College Board (The College Board, 

2012) reports that of the students taking the Computer Science exam in 2011, 55.4% were White, 4.6% were African-

American and the remainder represented various other ethnic minorities. In terms of gender, 19% were female and 81% were 

male. A considerable amount of research has been undertaken to unearth the reasons for these gender and race disparities.  

For example, research suggests that females tend to view the computer science field as ‘male dominated’ and that both the 

curriculum and the culture of computer science is such that women feel they would succeed in this arena only if they 

modeled themselves after the ‘stereotypical male computer science student’ (Fisher & Margolis, 2002; Moorman & Johnson, 

2003).  

 

Interestingly, various experiments with female only computer science classes to attempt to address these issues of perceived 

male dominance have met with some success in terms of encouraging increased participation by females and in increasing 

their sense of confidence on computer science courses (Crombie, et al., 2000; Crombie, et al., 2002; Moorman & Johnson, 

2003). Research suggests that these findings on female disaffection from computer science courses also appear to hold true 

for minority groupings. For example, Payton (2003) found that, like their female compatriots, African-American students 

tended to avoid computer and information science majors.  

 

Culture- based disparities (including those related to gender and race) in academic performance, which is a requisite for 

retention in computer and information science courses, further exacerbate this under-representation in the IT workplace. A 

variety of studies have explored the factors that influence academic performance in IT related education with a view to 

identifying ways to close the culture-based achievement gap. This research has identified a number of different factors that 

predict achievement in university IT courses, including experiential, affective, personality and cognitive factors. Examples 

of such factors include simply owning a computer (Taylor & Mounfield, 1994), having access to and using computers in 

high school (Kagan, 1988), some experience (even if it is informal ‘playing’) in computer programming (Koohang & Byrd, 

1987), confidence levels, self-efficacy and aptitudes related to mathematics, spatial and verbal reasoning (Cafolla, 1987; 

Clement, Kurland, Mawby, & Pea, 1986; Jagacinski, LeBold, & Salvendy, 1988; Webb, 1984). 
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Interestingly, despite the gender disparities in representation in the IT workforce and in computer related educational 

programmes, the literature does not find decisively that women perform worse than males in terms of IT related academic 

achievement. For example, a number of studies involving gender comparisons of academic achievement in programming 

related courses have found that female students perform as well, if not better, than male students, both in the pre-university 

and undergraduate context (Kafai, 1998; Margolis, 2001; Taylor & Mounfield, 1994; Volet & Styles, 1992).  

 

Katz et al. (2003) investigated race and gender as predictors of computer science achievement (Perl programming) among 

computer and information science students at a multi-cultural university in the United States. Whites and Asians were 

grouped in that study and identified as the ‘majority’, while African-American students were viewed as the ‘minority’. The 

dependent variables used in this study were improvement (gain) score and course grade and showed significant gender and 

race related differences in programming performance.  In respect of gender differences, Katz et al. (2003) found partial 

support in the findings of their study for the findings of other studies which reveal gender differences in software use and 

development in respect of such factors as ‘experimentation’ and ‘programming play’ (Kafai, 1998; Margolis, 2001). Race 

differences in performance were also found in this study. Katz et al. (2003) quote Light (2001)  in arguing that simply 

providing minorities with access to technology is unlikely to resolve the culture-base performance disparities they found and 

that they believe are rooted in complex issues of social inequality, pointing out that the African-American students that 

participated in their study had reported adequate access to computers during pre-college years. Katz et al. (2003) suggest that 

the minority students entered the course ill-prepared in terms of mathematics, verbal and basic programming skills, which 

the study showed were predictive of performance, and that better preparation in these skills is a major part of the solution. 

 

Turning to South Africa specifically, the ISETT SETA’s Sector Skills Plan 2011-2016 suggests that the ICT sector is 

expected to grow significantly over the next few years by about 5% per annum. This growth is expected to coincide with a 

concomitant demand for more ICT professionals. This may at first glance appear encouraging. However, the demand is for 

highly specialised skills and, as reported in the ISETT SETA’s Sector Skills Plan 2011-2016, the major employers of ICT 

skills continue to lament, not only the shortage of skills, but also the poor quality of ICT graduates coming from the 

institutions of higher learning (ISETT SETA, 2010).  Given the government’s stated objectives of 85% Black and 54% 

female representation in the ICT sector’s workforce (and the fact that current employment figures are nowhere near that 

target), there is a need for urgent attention to be paid to addressing the issues that prevent Black and female students from 

achieving their full potential in the ICT classrooms and meeting the critical need for well qualified entrants to the workplace 

(ISETT SETA, 2010).  

 

An important first step in addressing this issue is describing the nature of the culture-based performance gap in information 

systems and technology education. 

 

2. RESEARCH DESIGN AND METHODOLOGY 

 

Research Objective and Questions 

This study seeks to Identify whether performance gaps exist between students of different races, home languages and 

genders in information systems and technology education at a South African university, and explores the following research 

questions: 

 

Research question 1 (RQ1):  

“Are cultural factors predictors of cognitive test performance in information systems and technology education?” 

 

Sub-question 1.1 (SQ1.1):  

“Is race a predictor of cognitive test performance in information systems and technology education? 

 

Sub-question 1.2 (SQ1.2):  

“Is home language a predictor of cognitive test performance in information systems and technology education?” 

 

Sub-question 1.3 (SQ1.3):  

“Is gender a predictor of cognitive test performance in information systems and technology education?” 

 

2.1 Research Approach 

In addressing the research objective and questions described above, a census was attempted in terms of collecting data from 

all first year students enrolled for Information Systems and Technology at the University of KwaZulu-Natal, South Africa, 

and in respect of three different courses, each with a different lecturer. Each course was taught by a different lecturer with a 

specific demographic in terms of race, home language and gender, allowing for analysis of potential linkages between 

teacher student match/mismatch and performance scores. Of the 1,157 students enrolled in the first year programme, 496 

chose to participate as part of the cognitive testing sample for Course A (Databases), 474 participated in the Course B 

(Networks) sample, and 509 participated in the Course C (Spreadsheets) sample.  
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To measure cognitive test performance, pre- and post- training assessment tests were developed to assess the students’ 

cognitive learning in respect of each of the three courses’ subject matter. These assessment tests took the form of multiple 

choice questionnaires, an assessment approach not uncommon in the field of Information Systems and Technology when 

assessing technical skills (Roberts, 2006). Ten multiple choice questions with mutually exclusive options were presented for 

each of the three subject areas, based upon the course content for the semester. Three separate pre-tests were administered to 

each student for each of the three courses in advance of any lectures taking place. Post-tests (the same instrument) were 

subsequently administered immediately after completion of the lecture period for each course (at the end of the semester in 

this case). For each course, each student’s pre-test score was then subtracted from the post test score to obtain an 

‘improvement score’. Analysis of the data was conducted on two fronts: 

1. Using post-test score as the dependent variable; 

2. Using Improvement score as the dependent variable. 

 

Table 2 Demographics of research sample (cognitive testing) 

  Course A 

(Databases) 

Course B 

(Networks) 

Course C 

(Spreadsheets) 

    Students Lecturer Students Lecturer Students Lecturer 

Gender 

  

Male 204 Male 195  212 Male 

Female 292   279 Female 297   

Race 

  

  

  

  

Black 131   129 Black 136   

Coloured 6   7  7   

Indian 348 Indian 328  355 Indian 

White 10   9  10   

Other 1   1  1   

Home 

Language 

  

  

  

  

  

English 367   346  375 English 

Xhosa 6   6 Xhosa 6   

Zulu 118   118  123   

Swazi 2   1  2   

Tswana 1   1  1   

Venda 1   1  1   

  Other(Student) 1   1  1   

  Other(lecturer)   Other         

 

 

3. DATA ANALYSIS MODELS 

 

A variety of data analysis models are used in the international studies conducted to date on the subject of culture-based 

performance predictors. For example, while Sheehan used multiple regression to investigate the impact of teacher student 

race congruence on vocabulary and mathematics achievement,  Stroter favours Hierarchical Liner Modeling to address the 

multi-level nature of her data (Sheehan & Marcus, 1977; Stroter, 2008). Zhang uses three different models of varying levels 

of statistical stringency on the same data set in the form of Zero-Order Correlations, multiple regression and Hierarchical 

Multiple Regression in his study on learning style congruence as a predictor of cognitive performance (Zhang, 2006). In line 

with international studies of a similar nature (such as those referred to in the foregoing), this study uses a multiple regression 

model to identify the extent to which the various independent variables (such as race, home language and gender) contribute 

to the variance of the dependent variables (improvement and post test scores). 

 

Multiple regression 
Multiple regression is an accepted and widely used statistical method that is employed to account for (predict) the variance 

in an interval dependent variable, based on linear combinations of interval, dichotomous or dummy independent variables.  

 

The model identifies which independent variables significantly contribute to the variance of the dependent variable and can 

also provide the relative predictive importance of the independent variables. In the case of this study, the dependent variable 

is improvement score – an interval scale variable. The independent variables are the dichotomous match/mismatch variables. 

Pre-test score is used as a covariate. While the analysis of an improvement (gain) score is a measure of the post-test score 

relative to the pre-test score, it does not take into account differences in pre-test scores. Clearly, a person with a low pre-test 

score has the potential to achieve a higher improvement score than one with a high pre-test score.  
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The interpretation of an analysis on a gain score can be problematic when differences in pre-test scores exist. Therefore, it is 

important to include the pre-test score as a covariate as this controls for the effect of the pre-test which co-varies with the 

dependent variable. 

 

In respect of the regression process utilised in this analysis, the following assumptions were made: 

• Independence: Keeping the classes for each course separate adequately addressed this condition. 

• Normality: Once the outliers (all subjects with an Improvement score of -40 or less) were removed, problems 

relating to normality were eliminated. Checks were made by plotting histograms of the standard residuals as well 

as measuring Skewness and Kurtosis. These measurements all fell well within the accepted interval of [-1; +1].  

• Homoscedasticity: Plots of the residuals were examined to ensure that the variance of the residuals was constant 

for all values of the independents. 

• Linearity: The rule of thumb for regression was used for this analysis to test for linearity. i.e. the standard 

deviation of the dependent must be greater than the standard deviation of the residuals. 

• Proper specification of the model: In each case, variables added to the model were checked for correlation with 

other independents. Multicollinearity (excessively high correlation) among independents was tested using the 

Tolerance and VIF tests. 

 

 

4. RESULTS 

 

The sample comprised three separate first year IS&T courses conducted in the first semester at the University of KwaZulu-

Natal relating to the topics of Databases, Networks and Spreadsheets- referred to in the analysis as Course A, Course B and 

Course C respectively. The same students were represented across all three courses and separate analyses were conducted for 

each course. 

 

Table 3 Summary of cognitive test data by race, home language and gender 

 
  Race Home Language Gender 

  Black Indian Other African English Male Female 

Course A Pre Test Score 48.40 52.79 54.12 48.06 52.94 53.19 50.62 

(Databases) Post Test Score 66.41 70.86 69.41 65.97 70.93 71.32 68.46 

 Improvement Score 18.01 18.07 15.29 17.91 17.98 18.14 17.84 

Course B Pre Test Score 51.86 67.20 66.47 51.56 67.23 65.33 61.36 

(Networks) Post Test Score 58.60 73.26 71.18 58.36 73.21 72.21 67.10 

 Improvement Score 6.74 6.07 4.71 6.80 5.98 6.87 5.73 

Course C Pre Test Score 42.72 48.93 49.44 42.54 48.99 48.82 46.20 

(Spreadsheets) Post Test Score 54.41 60.23 60.00 54.25 60.24 60.38 57.44 

 Improvement Score 11.69 11.30 10.56 11.72 11.25 11.56 11.25 

Average Pre Test Score 47.66 56.31 56.68 47.39 56.39 55.78 52.73 

(All Courses) Post Test Score 59.81 68.12 66.86 59.53 68.13 67.97 64.33 

 Improvement Score 12.15 11.81 10.19 12.14 11.74 12.19 11.61 

 

The following presents detailed race, home language and gender results per course: 

 

Course A (Databases): 

The tables below present the results obtained for Course A (Databases) in respect of student gender, race and home 

language. 
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Table 4 Course A: Sample statistics (student gender) 

 Student Gender N Mean Std. Deviation Std. Error Mean 

Pre Test Score Male 204 53.19 18.225 1.276 

Female 292 50.62 17.556 1.027 

Post Test Score Male 204 71.32 18.852 1.320 

Female 292 68.46 18.031 1.055 

Improvement Score Male 204 18.14 22.294 1.561 

Female 292 17.84 21.293 1.246 

Notes: The above scores were not significantly different for the different genders. 

 

 

Table 5 Course A: Sample statistics (student race) 

 

 

Student Race Pre Test Score Post Test Score Improvement Score 

Black Mean 48.40 66.41 18.01 

N 131 131 131 

Std. Deviation 20.146 18.525 23.285 

White Mean 55.00 76.00 21.00 

N 10 10 10 

Std. Deviation 13.540 22.706 17.288 

Indian Mean 52.79 70.86 18.07 

N 348 348 348 

Std. Deviation 17.043 17.832 21.136 

Coloured Mean 51.67 65.00 13.33 

N 6 6 6 

Std. Deviation 11.690 28.810 20.656 

Other Mean 60.00 30.00 -30.00 

N 1 1 1 

Std. Deviation    

Total Mean 51.67 69.64 17.96 

N 496 496 496 

Std. Deviation 17.861 18.408 21.688 
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Table 6 Course A: Sample statistics (student race)- grouped to exclude minor race groups 
 Student Race N Mean Std. Deviation 

Pre Test Score Black 131 48.40 20.146 

Indian 348 52.79 17.043 

Other 17 54.12 12.277 

Total 496 51.67 17.861 

Post Test Score Black 131 66.41 18.525 

Indian 348 70.86 17.832 

Other 17 69.41 26.094 

Total 496 69.64 18.408 

Improvement Score Black 131 18.01 23.285 

Indian 348 18.07 21.136 

Other 17 15.29 21.248 

Total 496 17.96 21.688 

Notes:Post-test and improvement scores were not significantly different 

 

Table 7 Course A: Sample statistics (student home language) 
Student Home Language Pre Test Score Post Test Score Improvement Score 

English Mean 52.94 70.93 17.98 

N 367 367 367 

Std. Deviation 16.907 18.294 21.097 

Zulu Mean 47.71 65.93 18.22 

N 118 118 118 

Std. Deviation 20.482 18.362 23.665 

Xhosa Mean 51.67 71.67 20.00 

N 6 6 6 

Std. Deviation 14.720 18.348 26.077 

Swazi Mean 55.00 65.00 10.00 

N 2 2 2 

Std. Deviation 21.213 21.213 .000 

Tswana Mean 60.00 80.00 20.00 

N 1 1 1 

Std. Deviation    

Venda Mean 50.00 40.00 -10.00 

N 1 1 1 

Std. Deviation    

Other Mean 40.00 50.00 10.00 

N 1 1 1 

Std. Deviation    

Total Mean 51.67 69.64 17.96 

N 496 496 496 

Std. Deviation 17.861 18.408 21.688 

 

 

 

Table 8 Course A: Sample statistics (student home language)- grouped to exclude minor race groups 

 
Student Home Language  N Mean Std. Deviation Std. Error Mean 

Pre Test Score African 129 48.06 19.964 1.758 

English 367 52.94 16.907 .883 

Post Test Score African 129 65.97 18.308 1.612 

English 367 70.93 18.294 .955 

Improvement Score African 129 17.91 23.374 2.058 

English 367 17.98 21.097 1.101 

Notes: 

• Significant differences existed between home language groups for the pre-test (p=.014) and the post-test (p=.008) 

with English speakers performing better in all cases.  

• There were no significant differences for the improvement scores. 
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Course B (Networks): 

 

The tables below present the results obtained for Course B (Networks) in respect of student gender, race and home language. 

 

 

Table 9 Course B: Sample statistics (student gender) 
 

 

Student Gender N Mean Std. Deviation Std. Error Mean 

Pre Test Score Male 195 65.33 19.878 1.423 

Female 279 61.36 19.935 1.193 

Post Test Score Male 195 72.21 17.521 1.255 

Female 279 67.10 19.577 1.172 

Improvement Score Male 195 6.87 18.940 1.356 

Female 279 5.73 19.213 1.150 

Notes: 

• Significant differences existed for males and females for the pre-test (p=0.033) and post-test (p=0.004) scores with 

males performing better in all cases.  

• There were no differences for the improvement scores. 

 

Table 10 Course B: Sample statistics (student race) 

 
Student Race Pre Test Score Post Test Score Improvement Score 

Black Mean 51.86 58.60 6.74 

N 129 129 129 

Std. Deviation 21.678 21.677 20.848 

White Mean 71.11 73.33 2.22 

N 9 9 9 

Std. Deviation 21.473 15.000 13.944 

Indian Mean 67.20 73.26 6.07 

N 328 328 328 

Std. Deviation 17.576 16.256 18.542 

Coloured Mean 60.00 68.57 8.57 

N 7 7 7 

Std. Deviation 16.330 10.690 20.354 

Other Mean 70.00 70.00 .00 

N 1 1 1 

Std. Deviation . . . 

Total Mean 63.00 69.20 6.20 

N 474 474 474 

Std. Deviation 19.987 18.908 19.089 

 

Table 11 Course B: Sample statistics (student race)- grouped to exclude minor race groups 

 
 Student 

Race 

N Mean Std. Deviation 

Pre Test Score Black 129 51.86 21.678 

Indian 328 67.20 17.576 

Other 17 66.47 19.020 

Total 474 63.00 19.987 

Post Test Score Black 129 58.60 21.677 

Indian 328 73.26 16.256 

Other 17 71.18 12.690 

Total 474 69.20 18.908 

Improvement Score Black 129 6.74 20.848 

Indian 328 6.07 18.542 

Other 17 4.71 16.247 

Total 474 6.20 19.089 

 

Notes: 

• Significant differences existed for the different races for the pre-test (p<.0005) and post-test (p<.0005) scores. For 

both pre- and post-scores, the Black scores were significantly less than the other race group scores. 

• There were no significant differences for the improvement scores. 
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Table 12 Course B: Sample statistics (student home language) 

 

Student Home Language Pre Test Score Post Test Score Improvement Score 

English Mean 67.23 73.21 5.98 

N 346 346 346 

Std. Deviation 17.639 16.092 18.393 

Zulu Mean 50.76 57.03 6.27 

N 118 118 118 

Std. Deviation 20.925 21.694 20.581 

Xhosa Mean 66.67 71.67 5.00 

N 6 6 6 

Std. Deviation 17.512 14.720 16.432 

Swazi Mean 50.00 70.00 20.00 

N 1 1 1 

Std. Deviation . . . 

Tswana Mean 90.00 80.00 -10.00 

N 1 1 1 

Std. Deviation . . . 

Venda Mean .00 70.00 70.00 

N 1 1 1 

Std. Deviation . . . 

Other Mean 70.00 90.00 20.00 

N 1 1 1 

Std. Deviation . . . 

Total Mean 63.00 69.20 6.20 

N 474 474 474 

Std. Deviation 19.987 18.908 19.089 

 

Table 13 Course B: Sample statistics (student home language)- grouped to exclude minor race groups 

Student Home Language  N Mean Std. Deviation Std. Error Mean 

Pre Test Score African 128 51.56 21.497 1.900 

English 346 67.23 17.639 .948 

Post Test Score African 128 58.36 21.582 1.908 

English 346 73.21 16.092 .865 

Improvement Score African 128 6.80 20.921 1.849 

English 346 5.98 18.393 .989 

Notes: 

• Significant differences existed between home language groups for the pre-test (p<.0005) and the post-test 

(p<.0005) with English speakers performing better in all cases. 

• There were no significant differences for the improvement scores. 

 

Course C (Spreadsheets): 

 
The tables below present the results obtained for Course C (Spreadsheets) in respect of student gender, race and home 

language. 

 

Table 14 Course C: Sample statistics (student gender) 

 Student Gender N Mean Std. Deviation Std. Error Mean 

Pre Test Score Male 212 48.82 15.998 1.099 

Female 297 46.20 16.275 .944 

Post Test Score Male 212 60.38 16.575 1.138 

Female 297 57.44 13.956 .810 

Improvement Score Male 212 11.56 18.827 1.293 

Female 297 11.25 18.088 1.050 

Notes: 

• Significant difference between male and female for the post-test score (p = 0.036). 
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Table 15 Course C: Sample statistics (student race) 

Student Race Pre Test Score Post Test Score Improvement Score 

Black Mean 42.72 54.41 11.69 

N 136 136 136 

Std. Deviation 16.396 15.385 18.199 

White Mean 51.00 64.00 13.00 

N 10 10 10 

Std. Deviation 16.633 15.776 13.375 

Indian Mean 48.93 60.23 11.30 

N 355 355 355 

Std. Deviation 15.926 14.766 18.656 

Coloured Mean 48.57 54.29 5.71 

N 7 7 7 

Std. Deviation 10.690 16.183 17.182 

Other Mean 40.00 60.00 20.00 

N 1 1 1 

Std. Deviation . . . 

Total Mean 47.29 58.66 11.38 

N 509 509 509 

Std. Deviation 16.196 15.156 18.381 

 

 

Table 16 Course C: Sample statistics (student race)- grouped to exclude minor race groups 

 Student N Mean Std. Deviation 

Pre Test Score Black 136 42.72 16.396 

Indian 355 48.93 15.926 

Other 18 49.44 13.921 

Total 509 47.29 16.196 

Post Test Score Black 136 54.41 15.385 

Indian 355 60.23 14.766 

Other 18 60.00 15.718 

Total 509 58.66 15.156 

Improvement Score Black 136 11.69 18.199 

Indian 355 11.30 18.656 

Other 18 10.56 14.742 

Total 509 11.38 18.381 

Notes: 

• Significant differences existed for different races for the pre-test (p=.001) and post-test (p=.001) scores. For both 

pre- and post-scores, the Black score was significantly less than the Indian score. 

• There were no significant differences for the improvement scores. 
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Table 17 Course C: Sample statistics (student home language) 

 
Student Home Language Pre Test Score Post Test Score Improvement Score 

English Mean 48.99 60.24 11.25 

N 375 375 375 

Std. Deviation 15.821 14.760 18.479 

Zulu Mean 41.79 53.74 11.95 

N 123 123 123 

Std. Deviation 16.448 15.063 18.137 

Xhosa Mean 51.67 65.00 13.33 

N 6 6 6 

Std. Deviation 7.528 18.708 15.055 

Swazi Mean 55.00 65.00 10.00 

N 2 2 2 

Std. Deviation 21.213 7.071 28.284 

Tswana Mean 70.00 60.00 -10.00 

N 1 1 1 

Std. Deviation . . . 

Venda Mean 30.00 60.00 30.00 

N 1 1 1 

Std. Deviation . . . 

Other Mean 40.00 20.00 -20.00 

N 1 1 1 

Std. Deviation . . . 

Total Mean 47.29 58.66 11.38 

N 509 509 509 

Std. Deviation 16.196 15.156 18.381 

 

 

Table 18 Course C: Sample statistics (student home language)- grouped to exclude minor race groups 

Student Home Language  N Mean Std. Deviation Std. Error Mean 

Pre Test Score African 134 42.54 16.346 1.412 

English 375 48.99 15.821 .817 

Post Test Score African 134 54.25 15.432 1.333 

English 375 60.24 14.760 .762 

Improvement Score African 134 11.72 18.169 1.570 

English 375 11.25 18.479 .954 

Notes: 

• Significant differences existed between home language groups for the pre-test (p<.0005) and the post-test 

(p<.0005) with English speakers performing best in all cases. 

• There were no significant differences for the improvement scores. 

 

 

5. SUMMARY OF FINDINGS 

 

In line with the findings of various international studies, the data presented herein suggests strongly that there are significant 

culture-based differences in cognitive performance among first year South African university students in the field of 

Information Systems and Technology (Calder & Ashbaugh, 2005; Dunn, et al., 1990; Sheehan & Marcus, 1977; Stockly, 

2009; Stroter, 2008; Wiggan, 2008). The following highlights some of the salient aspects of these findings related to race, 

home language and gender cognitive test performance: 

 

Pre and post-test scores: 

• The performance of Black students is shown to be poorer on average than that of Indian students in respect of raw 

test performance across all the information systems and technology courses for which the study was conducted. 

Black students scored an average of 47.66% on pre-tests, while their Indian counterparts scored 56.31% (i.e. Black 

students scored on average 8.65% lower on pre-testing than Indian students).  The scores for post-tests are similar: 

Black students scored on average 8.31% less than Indian students. 

• The results for each of the specific courses did not vary significantly and all reflected the same finding that Indian 

students scored higher marks in both pre and post testing than their Black counterparts.  
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o For Course A (Databases), race related differences in pre and post-test scores were not statistically 

significant, but Indians scored on average 4.39% higher than Black students on the pre-test and 4.45% 

higher on post-test. The results for Course B and C were statistically significant and showed a similar 

trend. For Course B (Networks), Indians scored an average of 15.14% more than Black students on the 

pre-test and 14.66% on the post-test. For Course C (Spreadsheets), Indians scored on average 6.21% 

more than Black students on pre-testing and averaged 5.82% more on the post-test. 

 

Improvement (gain) scores: 

• Interestingly, improvement (gain) scores presented a significantly different picture to the raw (pre and post-test) 

score results. Whereas the pre and post-test score results showed a clear disparity in performance levels between 

races and home languages, for example, improvement scores were not significantly different across race, home 

language or gender groupings (none of the results pertaining to improvement scores were statistically significant). 

• Black students improved by an average of 12.15% while Indian students improved by 11.81% (a statistically 

insignificant difference of 0.34%).  

• Similarly, African language speakers improved by an average of 12.14% compared with 11.74% for the English 

speaking students (a difference of only 0.4%).  

• Males out-performed females by 0.59% on average across all courses. 

 

6. DISCUSSION AND CONCLUSION 
 

The analysis of the data for this study revealed an interesting difference in the results obtained when using the post-test score 

as a dependent variable and those for improvement score as the dependent variable.  

When using post-test score as the dependent variable, each of the independent, culture-related variables (race, home 

language and gender) were indeed shown to be significant predictors of cognitive test performance. However, no statistically 

significant results were achieved when using improvement score as the dependent variable. In other words, no significant 

race, home language or gender differences in improvement score were found. On the other hand, there were significant 

differences in performance by race, home language and gender in terms of the raw pre and post-test results. For example, 

Black students scored on average 8.65% less on pre-tests than Indian students and 8.31% less on post-tests. African 

Language speaking students scored on average 8.6% less on post-tests than their Indian counterparts. In two of the three 

courses analysed, males out-performed females by a statistically significant margin.  
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