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Abstract 

Theoretical studies on pyridine, pyrimidine, pyrazine and pyridazine molecules were performed using DFT. 

Based on B3LYP with 6-31(d, p)basis sets was used to investigate the effect of different position of nitrogen 

atom on the electronic and structure properties of benzene. The optimized structure, total energies, electronic 

states, energy gaps, ionization potentials, electron affinities, chemical potential, global hardness, softness, global 

electrophilicity, dipole moment and dipole polarizability were calculated. The harmonic vibration frequencies 

calculated and compared with available experimental data. The results showed a decrease in gap energies and 

improve the electronic properties.   
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Introduction 

Aromatic compounds are important in industry and play key roles in the biochemistry of all living things [1], 

atoms and subgroups substituted on aromatic molecules are members of a class of environmental contaminants 

found in airborne particulate matter, fossil fuel combustion products, coal fly ash, cigarette smoke, and vehicular 

emissions, formed by reactions of aromatic molecules with nitrogen oxide [2].   The organic thin film are one 

type of the so called organic devices, in which they fabricated by using the organic compounds such as 

semiconductors [12]. These materials have advantages of easy fabrication, mechanical flexibility and low cost. 

There are many organic materials show useful field effect transistor performance, which can be characterized by 

their carrier mobility and on/off current ratios [13, 14].  

Many studies on cyclic oligomers have been reported both experimentally and theoretically [15, 16], in [17] the 

substituent effects of oligomers such as oligothiophene, oligopyrrole and oligofuran are discussed in terms of 

reorganization energy. Also, [18] studied the geometric and electronic properties for cynothiophene oligomers as 

a prototype of an organic conducting polymer using ab initio and DFT [19], they showed that the cynogroup 

generally reduced the band gap with variation of the substitution position. 

Benzene and its derivatives have attracted considerable interest since they have interesting applications. 

Therefore the purpose of this work is to examine the effect of  nitrogen atoms added to the ring on benzene 

molecule.  

In present work, density functional theory has been performed to study the electronic properties of the benzene 

and their sdducts molecules to determine the effects of the nitrogen atoms on the original ring and evaluation of 

their dipole polarizability and comparison with available experimental results.  

 

Computational details 

Figure 1 represents the molecules under study. All the computational studies were carried out using the density 

functional theory (DFT) methods implemented in the Gaussian 09 suite of programs [21]. The molecular 

properties of the compounds had been computed by DFT using the standard 6-31G( d, p) basis sets. In the DFT 

calculations, Lee, Yang and Parr correlation functional [22] is used together with Becke’s three 

parameters[23]exchange functional B3LYP. Conformational analysis of the molecules had been performed to 

have an idea about the lowest energy structures of the species. 

The geometry optimization was performed at the B3LYP density functional theory with the same basis sets 

[22,24]. Harmonic vibration frequencies were computed at the same level of theory. The hybrid functional 

B3LYP has shown to be highly successful for calculation the electronic properties such as ionization potentials, 

electronic states and energy gaps [25-27].The DFT partitions the electronic energy as � � �� � �� � �� �
��	 , where �� ,��  , and �� are the electronic kinetic energy, the electron nuclear attraction and the electron-

electron repulsion terms respectively. The electron correlation is taken into account in DFT via the exchange 

correlation term ��	 , which includes the exchange energy arising from the anti-symmetry of the quantum 

mechanical wave function and the dynamic correlation in the motion of individual electrons ; it makes DFT 

dominant over the conventional HF procedure [28].    

The geometry optimized structures are obtained by restricted closed-shell formalism and without any symmetry 

restriction, and the vibration analysis for each structure does not yield any imaginary frequencies, which 

indicates that the structure of each molecule corresponds to at least a local minimum on the potential energy 

surface[29]. 
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In this investigation, the more relevant electronic potential (IP), electron affinity (EA), chemical potential (µ) 

(the negative of electro-negativity (χ)), hardness (η), softness (S),electrophilic index (ω) and the electric dipole 

polarizability (⍺) were calculated. The ionization potential is calculated as the energy difference between the 

energy of the molecule derived from electron-transfer and the respective neutral molecule; IPv = Ecation- En. The 

EA was computed as the energy difference between the neutral molecule and the anion molecule: EA = En-Eanion 

[30]. The HOMO and LUMO energy was also used to estimate the IP and EA in the framework of Koopmans’ 

theorem: �� � 
����� and �� � 
�����  [31].   

    Within the framework of the density functional theory (DFT), one of the global quantities is chemical 

potential (µ), which is measures the escaping tendency of an electronic cloud, and equals the slope of the energy 

versus the number of electrons(N) curve at external potential ν(r)[32]: 

� � ���
���

ν ���
                                      �1� 

The finite difference approximation to Chemical Potential gives,  

� � 
� � 
��� � ���/2                 (2) 

     The theoretical definition of chemical hardness has been provided by the density functional theory as the 

second derivative of electronic energy with respect to the number of electrons N, for a constant external potential 

ν(r) [32]: 

" � #
$ %&'(

&)'*
ν ��� �  #

$ %&+
&)*

ν ���                       (3) 

And the finite difference approximation to chemical hardness gives, 

" � ��� 
 ��� 2⁄                                   (4)  

      For Insulator and semiconductor, hardness is half of the energy gap (����� 
 ������, and the softness is 

given as [31] : 
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      The electrophilic index is a measure of energy lowering due to maximal electron flow between donor and 

acceptor. Electrophilic index (ω) is defined as [28]: 

1 �  +'
$.                                                           (6) 

      One of the important global properties is the electric dipole polarizability, which is a measure of the linear 

response of the electron density in the presence of an infinitesimal electric field ( F ) and represents a second-

order variation in energy [32] : 

 � 
 / &'(
&23&24

0a,b = x, y, z                               (7) 

      If some of applied molecules are planar and some are not, it will be useful to report polarizability quantities 

that are invariant to the choice of coordinate system. One of them is the mean polarizability5  6is evaluated 

using the equation [28]. 

5  6� #
7 8 99 �  :: �  ;;<                                   (8) 

 

Results and discussion 

Molecular optimization geometry 

The optimized structure parameters of molecules under study calculated by DFT-B3LYP levels with the 6-31G(d, 

p) basis sets are listed in table 1. This table shows the calculated bond lengths and angles for benzene and its 

adducts. From the theoretical values obtained in this work, we can find that  the optimized bond lengths and 

angles for benzene molecule  are in good agreement with the experimental values, but for other compounds we 

have not found experimental data,  the bonds are change due to the adding nitrogen atoms in the ring and the 

theoretical calculations are belong to isolated molecules in gaseous phase.  

Total energy and electronic states 

Table 2 shows the values of the total energy and electronic states for the analyzed structures and the energy gap 

(=���� 
 =�����of the studied molecules. The total energy for the molecules as a linear function of nitrogen 

atoms number (n ) adding to the ring. The final total energy of the product is approximately the collection of 

total energy of all small molecules which build the product molecule, that means: 

�>?> � �>?>�@ABCABA� � B�>?>�� DEFG�           (9) 

It is clear that from Table 2, the total energy for pyridizine, pyrimidine and pyrizine molecules is approximately 

the same in which this refers to that the total energy is independent on the position of the nitrogen atoms in the 

ring, and it is observed that adding the nitrogen atoms in place of carbon atoms causes decreasing the HOMO 

energy [34],and energy gap decreased. Therefore, the presence of adding the nitrogen atoms decreases the 
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energy gaps improves the conductivity and also enhances the solubility of these molecules. 

The LUMO-HOMO energy gaps of all new molecules are less than that of the original ring, with decreasing 

energy gap, electrons can be easily excited from the ground state [35,36]. This effect of adding was the largest in 

pyrizine it has energy gap of(3.120eV ). The energy gap of benzene (6.79 eV )   is agreements with experiment 

value (6.89 eV). Table 2 shows also the symmetry of studied  molecules, benzene molecule is a planar with high 

D6h symmetry and have higher electronegativity, while pyrizine molecule  is a planer and have C2h symmetry 

(high symmetry), and have lower electronegativity (40.316). 

 

Some important electronic properties 

Present method used in this study has a high efficient to calculate the electronic properties for the studied 

molecules, such as ionization potentials(IP), electron affinities(EA), electro-negativity (χ), absolute hardness(η), 

absolute softness (S), electrophilic index (ω). The properties that are displayed in Table 3 for each variable are 

computed by two different ways: The first one being energy-vertical ( E-V ) is based on the differences of total 

electronic energies when an electron is added or removed in accordance with the neutral molecule. The second is 

based on the differences between the HOMO and the LUMO energies of the neutral molecule and is known as ( 

O-V ) orbital-vertical (Koopmans’ theorem).  

  The calculated properties for each variable as shown in table 3 clearly reveal that these compounds have a 

tendency to capture electrons instead of donating them. The ionization potentials for pyridene,  pyridizine, 

pyrimidine and pyrizine molecules are greater than that for the original molecule ( benzene ), but the pyrizine 

molecule has the largest value of ionization potential, this indicates that the this molecule needs high energy to 

become cation comparing with the others. The strength of an acceptor molecule is measured by its electron 

affinity (EA) which the energy released when adding one electron to LUMO. An acceptor must have a high EA, 

adding the nitrogen atoms to the ring leads to increasing the ability of the electron affinity for the molecule, EA 

for pyrizine molecule is the largest, as we see in Table 3. The calculated  value of IP, EA and energy gaps for 

benzene is a good agreement with experimental value.  

Few interesting observations have been made from the results that are shown in table 3 obtained through the 

energy-vertical and orbital-vertical methods. The electron affinity (EA) computed from the energy of the lowest 

unoccupied molecular orbital (LUMO) are higher for all studied molecules than that of the energy-vertical 

method. The ionization potential (IP) that results from the highest occupied molecular orbital is smaller for all 

studied molecules than that of the energy-vertical method. From the previous investigations, it has been found 

that for almost all the commonly used exchange-correlation functional such as B3LYP, B3PW91, Koopman’s 

theorem is not satisfied accurately [30]. The two results obtained by the calculation of electro-negativity and 

electrophilicity also agreed very well with the difference in the result. This could be the reason for the low 

hardness values obtained from the orbital-vertical method than from the method of energy-vertical. Koopman’s 

theorem neglects the relaxation effect by using the frozen-orbital approximation. However, this error is 

frequently compensated by the oppositely directed error due to the electron correlation effect, neglected in the 

Hartree-Fock (HF) method. Therefore, the Koopmans’ theorem is a crude but useful and fast approach [38].The 

behavior of electro-negativity, softness and electrophilic index for the studied molecules shows the magnitude 

large than these for the original ring, adding the nitrogen atoms give the molecule more softness. 

The molecules dipole moment represents a generalized measure of bond properties and charge densities in a 

molecule [30]. Molecule with electron accepter group due to  better charge distribution and increasing distance 

have higher dipole moment[32], from Table 4  pyridizine molecule  has higher dipole moment (4.6739 Debye) . 

The results of the calculated polarizability for molecules in table 4 showed that adding the nitrogen atoms  leads 

to change the average polarizability, all the four last molecules have large values of dipole polarizability and 

they are more reactive than the original molecules. The pyrizine and pyridine molecules have average dipole 

polarizability equal 112.316 and 93.872 a.u, respectively. they have the highest polarizability and have highest 

reactivity. This due to the ring delocalizing H electron resonance from the benzene ring [32]. 

 

IR Vibration frequencies 

The IR spectra of studied molecules are provided in figure (2). The harmonic vibration frequencies calculated for 

these molecules at B3LYP level using the 6-31(d, p) basis sets. The (C – H) stretching vibrations of aromatic 

molecules in the region (2900 – 3250) cm
-1

 which is characteristic region for ready identification of (C – H) 

stretching vibrations and particularly the region (3250 – 3100) cm
-1

 for asymmetric stretching and (3100 – 2900) 

cm
-1

 for symmetric stretching modes of vibration [30]. 

This work gives the frequency values at ( 692, 1066.3, 1528.28 and 3202.34 ) cm
-1

 for benzene which are 

consistent with experimental results of  ( 673, 1038, 1469 and 3210 ) cm
-1

. the aromatic molecules frequency has 

both in-plane (1100 – 1700) cm
-1

 and out-of-plane (below 1000 cm
-1 

) (C – H) bending vibrations, the strong 

peak computed by B3LYP/6-31G(p, d) observed at 691 cm
-1

 and weak peak at 1066 cm
-1

 are due to the bending 

of ( C - H ) bond, the peak observed at 1528 Cm
-1

 is due to the stretching of ( C- C ) bond, the peak at 3202 Cm
-1
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is due to the stretching of ( C – H ) bond. 

It is clear from fig. (2) that the IR spectra for the other molecules characters from that of benzene  by multiply 

the vibration mode due to existing of (N – N) , (C – N) bonds, (C = C) stretching and (C – H) stretching. For the 

last four molecules the stretching of ( C – N) bond has been observed at (1600 – 1720) cm
-1

, the (C – H) 

stretching stay in the region (3150 – 3360) cm
-1

, the stretching of (C – N) bond has been observed at (1310 – 

1425) cm
-1

and the stretching of (C=C) bond at the range (1505 – 1590) cm
-1

,while the bending of (N – N) bond 

appeared at (1635 – 1795)cm
-1

. The Helectron density on the aromatic ring was delocalized in the presence of 

the nitrogen atoms which reduced the strength of (C = C) bond and depending on the position of nitrogen.  

 

Conclusions 

in this study, we have used B3LYP-DFT to compute geometry optimization and electronic properties of benzene 

and its adducts by adding the nitrogen atoms in place of carbon in the ring. The calculated electronic properties 

such as ionization potential, electron affinity, electro-negativity, hardness, softness and electrophilic index by 

using two different ways: energy-vertical method and orbital-vertical method. 

The geometry optimization for benzene molecule  has been found in a good agreement with experimental data, 

while for other studied molecules it has not been found a reference data. The total energies for all di-nitrogen 

atom found not dependent on the position of the nitrogen in the ring and adding the nitrogen causes decreasing 

energy and more stability. 

The presence of the nitrogen atoms in the ring decreases the energy gap of the molecules under study,  this is one 

of the important properties obtained in this work, where a small energy gap means small excitation energies of 

manifold of the exited states.  The other electronic properties were calculated by using energy-vertical method 

are a good agreement with experimental result and better than was calculated by using orbital-vertical method, 

thus Koopman’s theorem is not satisfied accurately.  

Adding the nitrogen atoms to the ring leads to increase the average polarizability and dipole moment and cause 

to more reactive than original molecule. The vibration frequencies calculations showed a good agreement with 

experimental data for benzene,  adding the nitrogen leads to increasing the vibration modes, and highest 

stretching vibration wave numbers and its gave suitable positions for nitrogen with carbon atoms in the ring. 

pyrizine molecule is the best option for organic semiconductor because of its better LUMO – HOMO ratio, 

dipole polarizability and other electronic properties.   
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Table1: Optimized geometrical parameters of molecules, bond length R ( ), Interaxial angles  (°). 

Molecules bond length
 

Our data Expt.[1] Interaxial angles
 

Our data Expt. 

[1] 

     Benzene 

 

 

C–C  
 

1.396  
 

1.390  
 

C – C – C  
 

120  
 

120  
 

C – H  

 

1.086  

 

1.10  

 

C – C – H  

 

120  

 

120  

 

Pyridene C–C  

 

1.3825  C – C – C  

 

120.7419  

C – H  

 

1.0705  C – C – H 118.5375  

C – N 

 

1.3307  C – C – N  

 

121.1446  

Pyridizine C–C  

 

1.395  C – C – C  

 

120.8594  

C – H  

 

1.069  C – C – H 117.3555  

C – N 

 

1.316  C – C – N  

 

123.2558  

Pyrimidine C–C  

 

1.3286  C – C – C  

 

121.5052  

C – H  

 

1.0671  C – C – H 116.9717  

C – N 

 

1.3818  C – C – N  

 

124.5996  

Pyrizine 

C–C  

 

1.3809  C – C – C  

 

120.9725  

C – H  

 

1.0689  C – C – H 117.7131  

C – N 

 

1.3313  C – C – N  

 

121.3144  

 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.6 No.4, 2014 

 

58 

Table2: Total energy, electronic states and energy gap for molecules 

Structure Energy(a.u) Symmetry 

 

Electronic States(eV) Energy Gaps (eV) 

Our data  

Energy Gaps(eV) 

Expt. HOMO LUMO 

Benzene -232.27788 D6h -0.07  

 

6.72  

 

6.79 6.89  

 

Pyridene -245.31200 C2v -3.536 9.686 3.589  

Pyridizine -261.19968 C2v -2.634 10.759 3.409  

Pyrimidine -261.20619 C2v -3.057 0.560 3.124  

Pyrizine -261.19749 D2h -2.876 10.210 3.120  

 

Table 3: The electronic properties for studied molecules. 

Mol. IP (eV) EA (eV) χ (eV) η (eV) S /(eV) ω (eV) 

E-V O-V E-V O-V E-V O-V E-V O-V E-V O-V E-V O-V 

1 9.24 9.24 0.35 2.48 3.68 3.38 3.32 5.86 0.15 1.22 2.03 0.97 

2 7.75 6.28 1.58 3.90 4.66 4.45 3.08 1.52 0.162 4.24 3.53 6.95 

3 7.64 6.26 1.75 3.76 4.74 4.33 2.99 1.52 0.167 4.32 3.76 7.22 

4 7.78 6.32 1.85 4.86 4.78 4.89 3.00 1.58 0.168 4.85 3.81 7.45 

5 7.72 5.85 1.88 5.07 4.80 5.65 2.92 1.36 0.171 5.12 3.94 7.65 

 

 

Table 4:calculated dipole moment µ(debye), components and average of the dipole polarizability5  6 in ( a. u ) 

for studied molecules. 

molecules µ ⍺zz ⍺yy ⍺xx 5  6 

Benzene 

Pyridene 

Pyridizine 

Pyrimidine 

Pyrizine 

0.000 

2.3968  

4.6739 

2.5115  

    0.0000  

81.403 

61.813  

56.507 

54.449  

59.515  

81.4 

55.215  

48.965 

49.460  

46.410 

 

44.74 

14.590  

14.592 

14.802  

15.024 

 

69.181 

93.872 

90.021 

89.570 

112.316 

 

                
                                 Benzene                                pyridine                                pyrimidine 

             
                                                         Pyrazine                           pyridazine 

 

Figure 1: optimized structures for studied molecules 
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benzene 

 

               
                                                       pyridine                                      pyridizine  

 

 
                                                      pyrimidine                                        pyrizine 

 

Figure 2: The IR spectra of molecules under study, Epsilon  Intensity (Km/mol). 

 


