Tribological Properties of Some Locally Manufactured Abrasive Wheels

Adeoye O.F^{*} and Ojo P.O

Mechanical Engineering Technology Department, Rufus Giwa Polytechnic, Owo, Nigeria. * E-mail of the corresponding author: foax63@yahoo.com

Abstract

Abrasive wheels are used for smoothening, machining or in some cases, roughening another softer material through extensive rubbing. This research work is targeted to designing and fabricating of some abrasive wheels using locally available materials. Six different modules of the abrasive wheel where designed, moulded and tested. Module number five was found to manifest the best in performance and mechanical strength. **Keywords**: Abrasives, composition, Strengths, compression, deflection.

1. Introduction

Abrasive can be a wheel, disc, or cone which whether or not any other material is comprised and it consist of abrasive particles held together by material, metallic or organic bonds whether natural or artificial. Various types of abrasives are used in abrasive wheels, as appropriate to the type of work they are designed for. Silicon carbide abrasive is harder, more brittle than aluminium oxide abrasive making them particularly suitable for grinding, low tensile strength materials like cast iron, stone, non-ferrous metals and non-metallic materials. Diamond abrasive wheel was used for grinding brinks, sharpening tools and precision tools. Mixed abrasive wheels are noted for their wide range of characteristics. [2]

This work experiments for some locally available materials such as palm kernel shell, gravel, metal chips, snail shell pellets, granite and bottle pellets for the production of abrasive wheels.

2. Materials and Method

The materials for the abrasives were carefully selected. Each material was grounded to the appropriate sizes. The sizes of patterns were prepared for moulding the material. A 1.7 micron sieve was used for sieving the material. Sieved materials were measured using a sensitive weighing machine. Each module was mixed and the binder added. After proper mixing with the binder, the mixture was poured into the pattern and ramming is done for compaction [1, 4]. Both the pattern and mixed materials was dried in an oven in order to cure and then the product was separated from the pattern [5]. Tables 1A, 2A, 3A, 4A, 5A, and 6A are the measurement by weight and the percentage composition of the material for each designed module respectively. Each of the modules was tested to determine its mechanical strengths.

MODULE ONE	IN PERCENTAGE	IN GRAM
Bottle pellets as parent material	30%	300g
Gravel	25%	250g
Palm kernel shell	15%	150g
Snail shell	10%	100g
Granite	10%	100g
Metal chips	10%	100g
Total	100%	1000g
Table 1A: Measurements by percent co	omposition of module I	
MODULE TWO	IN PERCENTAGE	IN GRAM
Palm kernel shell, as parent	30%	300g
material		
Bottle pellet	15%	150g
Gravel	25%	250g
Snail shell	5%	50g
Granite	10%	100g
Matal alina	15%	150g
Metal chips	1370	10.08

Table 2A: Measurements by percent composition of module II

MODULE THREE	IN PERCENTAGE	IN GRAM	
Gravel as parent material	30%	300g	
Bottle pellet	25%	250g	
Palm kernel shell	15%	150g	
Snail shell	5%	50g	
Granite	10%	100g	
Metal chips	15%	150g	
Total	100%	1000g	
Table 3A: Measurements by percent	composition of module III		
MODULE FOUR	IN PERCENTAGE	IN GRAM	
Granite as parent material	30%	300g	
Bottle pellet	15%	150g	
Gravel	20%	200g	
Palm kernel shell	15%	150g	
Snail shell	5%	50g	
Metal chips	15%	150g	
Total	100%	1000g	
Table 4A: Measurements by percent			
MODULE FIVE	IN PERCENTAGE	IN GRAM	
Metal chips as parent material	25%	250g	
Granite	20%	200g	
Bottle pellet	20%	200g	
Gravel	20%	200g	
Palm kernel shell	10%	100g	
Snail shell	5%	50g	
Total	100%	1000g	
Table 5A: Measurements by percent			
MODULE SIX	IN PERCENTAGE	IN GRAM	
Snail shell as parent material	25%	250g	
Bottle pellet	20%	200g	
Gravel	20%	200g	
Palm kernel shell	20%	200g	
Granite	10%	100g	
Metal chips	5%	50g	
Total	100%	1000g	

Table 6A: Measurements by percent composition of module VI **Source:** Authors' field work

3. Results and Discussion

The test conducted at FIIRO in Nigeria, using compressive strength testing machine on second October in year 2013 for samples/module of circular discs compressed at 30mm/min without any pre-load is presented in tables 1B, 2B, 3B, 4B, 5B and 6B. For example for sample 5 or module 5 having wheel diameter 50.550mm the force at break; the stress at break was 4956N; 2.4694N/mm² and 14.17N-m respectively. Values of force at yield stress at yield, energy to yield, young Modulus, deflection at peak and deflection at break for sample five/module 5 were taken as 4581N, 2.28N/mm², 7.1184N-m, 54.56N/mm², 6.06mm and 6.07mm. The graphs of applied forces versus the deflection in mm of each wheel are as presented by fig 1, 2, 3, 4, 5 and 6 respectively.

Table 1B: Test Result for module 1

Serial : COMPOSITE Batch : MODULE 1 Deflection : Operator : FIIRO Test : Compressive strength Test Type : Compression Date : 02-10-13 Test Speed : 030.00mm/min Test Speed 2 : NONE Sample Type : CIRCULAR Pre-Load : OFF

Test	No. Height mm	Diameter mm	Force @ Peak N	Stress @ Peak N/mm ²	Energy to Peak N.m	Force @ Break N	Stress @ Break N/mm ²	Energy to Break N.m
1	46.210	50.550	1177.7	0.5868	3.9492	1091.7	0.5440	7.3769
Test	No. Force @ Yield N	Stress @ Yield N/mm ²	Energy to Yield N.m		Youngs Modulus N/mm²	Def. @ Peak mm	Def. @ Break mm	
1	1177.7	0.5868	3.9822		7.8802	7.3140	10.334	

Table 2B: Test Result for module 2

Serial : COMPOSITE				Test : Compressive strength	
Batch : MODULE 2				Test Type : Compression	
Deflection :				Date : 02-10-13	
Operator : FIIRO				Test Speed : 030.00mm/min	
				Test Speed 2 : NONE	
				Sample Type : CIRCULAR	
				Pre-Load : OFF	
Test No. Height Diameter	Force @	Stress	Energy	Force @ Stress Energy	

	mm	mm	Peak N	0 Peak N/mm²	to Peak N.m	Break N	Ø Break N/mm ²	to Break N.m
1	59.670	50.550	1287.4	0.6415	2.5997	957.50	0.4771	4.4908
Test No.	. Force @ Yield N	Stress @ Yield N/mm ²	Energy to Yield N.m	Mo	oungs odulus V/mm²	Def. @ Peak mm	Def. @ Break mm	
1	1287.4	0.6415	2.5997	8.	5594	6.0450	7.6290	

Table 3B: Test Result for module 3

Serial : COM	POSITE				Test : Comp	pressive	strength
Batch : MODU	LE 3				Test Type :	Compres	sion
Deflection :					Date : 02-1	10-13	
Operator : F	'IIRO				Test Speed	: 030.00)mm/min
					Test Speed	2 : NONE	5
					Sample Type	e : CIRCU	JLAR
					Pre-Load :	OFF	
Test No. Height	Diameter	Force @	Stress	Energy	Force @	Stress	Energy

1000 1101	mm	mm	Peak N	<pre>@ Peak N/mm²</pre>	to Peak N.m	Break N	<pre>@ Break N/mm²</pre>	to Break N.m
1	70.570	50.550	1233.5	0.6416	1.6649	553.00	0.2755	4.3464
Test No.	. Force @ Yield N	Stre <i>ss</i> @ Yield N/mm ²	Energy to Yield N.m	Youngs Modulus N/mm²	6	Def. Peak mm	Def. @ Break mm	
1	1233.5	0.6145	1.6649	33.105		3.9260	6.8940	

Table 4B: Test Result for module 4

Serial : COM Batch : MODU Deflection : Operator : F	LE 4				Test Type Date : 02 Test Spee Test Spee	ed : 030.0 ed 2 : NON pe : CIRC	ssion Omm/min E
Test No. Height mm		Peak	@ Peak		Break		to Break
1 66.790	50.550	1507.4	0.7511	2.5157	591.20	0.2946	5.1629
N		to Yield N.m	Youngs Modulus N/mm ² 22.424	0	Def. 9 Peak mm 4.6950	Def. @ Break mm 7.3720	

Fig. 4 Graph of Deflection for module 4

Table 5B: Test Result for module 5

Batch Defle	l : COMM : MODUU ction : tor : F	LE 5				Test Typ Date : 0 Test Spe Test Spe	ed : 030.0 ed 2 : NON ype : CIRC	ssion Omm/min E
Test No.	-	Diameter mm	Peak	@ Peak		Force @ Break N		to Break
1	45.590	50.550	4956.0	2.4694	14.170	4956.0	2.4694	14.170
Test No.	Yield N		Energy to Yield N.m 7.1184	Mc N	dulus U/mm ²		Def. @ Break nm 6.0680	

Fig. 5 Graph of Deflection for module 5

Table 6B: Test Result for module 6

Batch Defle	l : COMM : MODUL ction : tor : F:	LE 6				Test Type Date : 0 Test Spe Test Spe	ed : 030.0 ed 2 : NON ype : CIRC	ssion Omm/min E
Test No.	. Height mm	Diameter mm	Peak		to Peak	Force @ Break N		to Break
1	66.560	50.550	1421.5	0.7083	2.2842	502.40	0.2503	9.0661
Test No.	•	Stress @ Yield N/mm ² 0.7083	Energy to Yield N.m 2.2842	Mo N	dulus		Def. @ Break mm 12.736	

4. Conclusion

The research was well conducted to determine the various parameters of each of the abrasive wheels. Based on the test carried out of the samples, module 5 was found to exhibit the greatest strength and performance for chips removal, sanding, and grounding applications. Each of the wheels produced can be improved upon for better performance and they are all cheaper and cost effective.

5. References

Deogormo E.P, Block J.K and Kohser R. (1997); "Material and processes in manufacturing by practice," Hollinter National pub., India.

Mark M., John T.N etol (1987); "Chemistry man and society," 3rd Ed., Macmillan press Ltd., London.

Roidford J.D, Richardson A.B (1974); "Production Engineering Technology," USA. Cottringer T.E, Vande Merwe, etol (1995); "Materials and processes in Manufacturing by practice," India.

Chapman W.A.J (1976); "Workshop Technology part II," The English Language book Society and Edward Arnold.

Rajan T.V etol (1989); "Heat treatment principles," Hall of India Private Ltd., India.

Acknowledgements: The authors acknowledge the support of FIIRO staffs in Nigeria towards the success of this research.