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Abstract 

Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that 

contains radionuclides from 238U and 232Th decay series which are of most radio-toxicity. The reduction in 

concentration of radionuclides content from PG was based on leaching of 226Ra, 210Pb, U and 40K using different 

chemicals.The factors which affect the leaching process such as leaching reagent, concentration of the proposed 

reagent, liquid-solid ratio, contact time, temperature and multi leaching effect were optimized. Based on the 

experimental results, about 79.4%, 57.9%, 65.7% and 89.8% of U, 226Ra, 210Pb and 40K respectively, were 

successfully removed from the PG under optimum conditions ( HNO3, concentration (4M), liquid-solid ratio 

mL-gr(1-1), contact time (2h), temperature (60°C) and three leaching steps). Using this treatment of PG waste 

leads to obtain a decontaminated product that can be safely used in many industrial applications. 

Keywords: Phosphogypsum waste, Leaching process, Radioactive materials, TENORM.  

 

1. Introduction 

Phosphogypsum (PG) is a solid waste by-product generated during the production of phosphoric acid from 

phosphate rocks using the “wet acid” process [1], which currently accounts for over 90% of phosphoric acid 

production, This process is economic however it results in the generation of a large amount of PG (for every ton 

of phosphoric acid produced, about 5 tons of PG are yielded) [2]. The following chemical equation (1) expresses 

the reaction between the phosphate rocks and sulfuric acid. 

 

Ca5(PO4)3F + 5H2SO4 + 10H2O                       5CaSO4.2H2O + 3H3PO4 + HF 

Equation (1) 

The annually average of PG production in India, Turkey, Korea, China, and Syria is 6, 3, 30, 22 and 

0.380 million tons respectively [3, 4]. The generation of PG is up to 280 million tons per annum throughout the 

world [5]. However, only 15% of world PG production is recycled as building materials [6-9], agricultural 

fertilizers or soil stabilization amendments [10,11] and as set controller in the manufacture of Portland cement 

[12,13]. The remaining 85% of world PG production is disposed of without any treatment. This byproduct is 

usually dumped in large stockpiles exposed to weathering processes, occupying considerable land areas and 

causing serious environmental damage (chemical and radioactive contamination) [14-18]. 

Phosphogypsum is mainly consist of calcium sulphate dehydrate (CaSO4.2H2O), and it contains 

elevated levels of impurities, which originate from the source phosphate rock used in the phosphoric acid 

production. Among these impurities, radionuclides from 238U and 232Th decay series are of most concern due to 

their radio toxicity. Other elements, such as rare earth elements (REE) and Ba are also enriched in the 

phosphogypsum [19]. 

The USEPA has classified PG as a ‘‘Technologically Enhanced Naturally Occurring Radioactive 

Material’’ (TENORM), as it typically contains trace amounts of uranium, thorium, and daughter products from 

both the actinides decay chains (i.e., radium and radon) [20]. 

In Syria, phosphoric acid has been produced for a long time. This has led to the production of tons of 

phosphogypsum, which are currently placed in a large plastic lined storage pit built in 1995 near the factory in 

Homs (180 km N of Damascus); disposing of phosphogypsum outside this pit is currently prohibited to avoid 

environmental pollution. Phosphogypsum is transferred from the factory and pumped into the pit through pipes 

by mixing with water. The water is pumped back to the factory for re-use after filtration. However, the amount 

of phosphogypsum is increasing with time  [4]. 

The treatment of phosphogypsum was discussed by many resesrchers using different leaching solutions. 

M. Lysandrou studied the effect of the matrix composition (main constituents) on the concentration and chemical 
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behavior of uranium in phosphogypsum stack solutions and leachates has been investigated [21]. A.V. Valkov 

tried to recover REE from PG using sulfuric acid [22]. Treatment of PG with distilled water, sulfuric acid and 

selective extractants (salts solutions), has been studied by M.S. Al-Masri  [4]. E. M. El Afifi applied a physical 

(based on the particle size separation) and chemical treatment (based on leaching solutions) on PG [23]. 

The present study aims to purify the PG, and to decrease its radionuclides. The proposed tratment  

minimizes the environmental pollution of PG during storage, transportation and usage. 

 

2. EXPERIMENTAL 

2.1.  Apparatus 

The different naturally occurring radionuclides present in PG samples were identified and the concentrations of 

the radioactivity levels were detected and determined using γ-ray spectrometer equipped with  Detector type: N-

type model GCD - 60 230  S/N: 1479-09, manufactured by BRUKER company. The relative efficiency 60%, 

resolution at 1332.4 keV is 2 keV and resolution at 122 keV is 0.89 keV. The system are calibrated by using 

diluted CRM solution (QCY48) and QCYB 40 provided by AEA Technology, UK, and each sample counted at 

list for 12 hours. 

shaker model LSB-030S manufactured by LabTech company with maximum shaking speed 190 rpm 

was used to shack the samples during the leaching processes. 

 

2.2. Reagents and materials 

All chemical materials used in this work were produced by BDH Company in analytical grade. The solutions 

were prepared with distilled water. 

 

2.3. Samples Preparation 

Samples of fresh PG waste were taken from an industrial facility for production of chemicals and fertilizers in 

Homs at February 2015. The PG waste samples were packed in plastic bags. Then the samples were dried in an 

electric furnace at 105°C for at least 4 h to constant weight. The PG waste samples were pulverized, 

homogenized and sieved into particles sizes ranged between (0.25 - 0.01mm) using an automatic vibratory 

screen. The concentrations of radionuclides in phosphogypsum are listed in tabel 1. 

Tabel 1: Activity concentration for U, 226Ra, 137Cs, 40K, 210Pb in PG sample. 

sample 
Activity concentration [Bq/Kg dry PG] 

U 226Ra 137Cs 40K 210Pb 

PG 620±8 507±6 BDL 230±7 509±8 

BDL: Below Detection Limit  

 

3. Results and discussion 

3.1. Treatment Studies: 
In this work, treatment process for PG was carried out based on leaching the dry PG (500 gr) using different 

leaching reagent. The different parameters including the concentration of the proposed reagent, liquid-solid ratio, 

contact time, temperature and leaching steps were investigated to evaluate their  affects on radionuclides 

leachability.  

3.1.1. Effect of proposed reagent: 

Many reagents, including distilled water, acids (nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid, 

acetic acid), and alkaline (sodium hydroxide, potassium hydroxide and ammonium hydroxide), were examined 

to study their effects on leachability of radionuclides.  

Exactly 500 gr of dried PG was divided into 4 arlenmire (250 mL) with 125 gr for each one, then 500 

mL (1M concentration) of reagent was added (125 mL for each arlenmire), the solid-liquid ratio was 1-1, and the 

samples placed in the shaker at 50 °C for contact time 1h. The results of leachability of radionuclides (%) are 

tabulated in table 2. the effect of proposed reagent on the leaching process are presented in figure (1). The best 

leachability, achieved with HNO3, was 29.6%, 14.2%, 18.9% and 35.3% for U, 226Ra, 210Pb and 40K respectively. 
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Table 2: Effect of proposed reagent on leachability of radionuclides. 

Reagent  
leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

HNO3 29.6 14.2 18.9 35.3 

H2SO4 19.5 13.4 17.6 29.1 

HCl 17.3 12.3 11.3 26.8 

H3PO4 19.3 10.7 15.1 2.7 

CH3COOH 13.9 7.3 13.8 16.3 

H2O 7.8 3.6 5 9.2 

NaOH 14.9 10.1 14.4 18 

KOH 13.9 8.5 12.6 15.3 

NH4OH 8.6 6.9 10.5 12.4 

 

 
Figure (1): Effect of reagent type on leachability of radionuclides from PG. 

3.1.2. Effect HNO3 concentration: 

Using nitric acid, 5 samples with different concentrations ranged between (0.5 – 10M) were prepared and treated 

under the same conditions. The achieved results are placed in table 3. Figure (2) illustrates the effect of HNO3 

concentration on the leachability of radionuclides (%). The best leachability, using 4M HNO3, was 45.4%, 

22.8%, 26.6% and 51.3% for U, 226Ra, 210Pb and 40 K respectively. 

Table 3: Effect of HNO3 concentration on leachability of radionuclides. 

HNO3 Concentration 

[M] 

leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

1 29.6 14.2 48.9 35.3 

2 36.2 16.7 21.3 42.4 

4 45.4 22.8 26.6 51.3 

8 45 19.4 23.5 49.8 

10 44.8 19 22.5 51 
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Figure (2): Effect of HNO3 concentration on leachability of radionuclides from PG. 

3.1.3. Effect of liquid -solid ratio: 

Using nitric acid (4M), 3 samples with liquid-solid ratio ranged between (0.5:1 – 2:1) (L:S mL/gr) were prepared 

and treated under the same conditions. The obtained results are placed in table 4. Figure (3) exhibits the effect of 

liquid-solid ratio (mL/gr) on leachability of radionuclides (%). The best leachability, based on liquid-solid ratio 

1:1 mL:gr, was 45.4%, 22.8%, 26.6% and 51.3% for U, 226Ra, 210Pb and 40 K respectively. 

Table 4: Effect Liquid-solid ratio (mL/gr) on leachability of radionuclides. 

Liquid-solid ratio 

[mL/gr] 

leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

0.5 35.3 13.3 16.3 40.5 

1 45.4 22.8 26.6 51.3 

2 39.9 17.2 20.8 45 

 
Figure (3): Effect of liquid-solid ratio on leachability of radionuclides from PG. 

3.1.4. Effect of contact time: 

The Effect of contact time was studied at (0.5, 1, 2, 4) h, for PG samples treated with HNO3(4M), liquid-solid 

ratio 1:1 (mL:gr) at 50°C temperature. Table 5 shows the achieved results. The effects of contact time on 

leachability of radionuclides (%) are presented in figure (4). The best leachability was 49.7%, 27.9%, 33.3%  for 

U, 226Ra and 210Pb respectively at contact time (2h), and 51.3% for 40 K at (4h) contact time.  
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Table 5: Effect of contact time on leachability of radionuclides. 

Contact Time [h] 
leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

0.5 39.3 13.3 21 44.4 

1 45.4 22.8 27.9 51.3 

2 49.7 27.9 33.3 60.1 

4 48.6 27.2 32.3 63 

6 49.2 27.7 33.1 59.3 

 
Figure (4): Effect of contact time on leachability of radionuclides from PG. 

3.1.5. Effect of temperature: 

The effect of temperature was studied in the range between (30-70) °C, for PG samples treated with HNO3 (4M), 

liquid-solid ratio 1:1 (mL:gr) for contact time 2h. The obtained results are placed in table 6. Figure (5) 

demonstrates the effect of temperature on leachability of radionuclides (%). The best leachability was 50.6%, 

29.7%, 34.6% and 62.2% for U, 226Ra, 210Pb and 40 K respectively at 60°C. 

Table 6: Effect of temperature on leachability of radionuclides. 

Temperature [°C] 
leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

30 45.5 25.1 31.1 50.4 

40 46.5 26.5 32.9 55.1 

50 49.7 27.9 33.3 60.1 

60 50.6 29.7 34.6 62.2 

70 50.6 29 34.5 61.3 

 
Figure (5): Effect of temperature on leachability of radionuclides from PG. 
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3.1.6. Effect of  Successive leaching processes: 

The effect of successive leaching processes was studied to reach the best leachability of radionuclides. The 

achieved results are placed in table 7. Figure (6) illustrates the effect of successive leaching processes on 

leachability of radionuclides (%). The best leachability was 79.4%, 57.9%, 65.7% and 89.8% for U, 226Ra, 210Pb 

and 40 K respectively at three leaching steps. 

Table 7: Effect of Successive leaching processes on leachability of radionuclides. 

Step process  
leachability of radionuclides [%] 

U 226Ra 210Pb 40K 

1 50.6 29.7 34.6 62.2 

2 76.9 54.1 62.3 85.6 

3 79.4 57.9 65.7 89.8 

 
Figure (6): Effect of Successive leaching processes on leachability of radionuclides from PG. 

 

4. Conclusions 

A successful leaching procedure of phosphogypsum, a byproduct from the wet process phosphoric acid, has been 

developed in the present work. This was possible through leaching of radionuclides by using acids and basis. The 

corresponding relevant factors were studied and the conclusions can be summarized as follows: 

- The best achieved leachability of U, 226Ra, 210Pb and 40 K from PG was 79.4%, 57.9%, 65.7% and 

89.8% respectively. 

- The optimum treatment of PG were performed using nitric acid as reagent with concentration 4M, 

liquid-solid ratio 1-1 (mL-gr), contact time 2h and temperature 60°C. 

- The decontaminated product can be safely used in many industrial applications to prepare low cost 

products. 
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