Synthesis and Spectral Study of 2-furaldehyde thiourea Ligand and Their Complexes with Some Transition Metal (II)

Abeer al Sous
Joumaa Merza
Department of Chemistry, Faculty of Science, Albaath University, Syria

Abstract

The synthesis and characterisation of Ni(II), Cu(II) of 2-furaldehyde thiourea (FAT) are reported. Elemental analysis, molar conductance and spectral (IR, UV and 1H NMR) measurements have been used to characterise the complexes. In addition, the structure of the complex [Cu(FAT)₂]Cl₂ has been determined by X-ray diffraction methods. In Cu(II) and Ni(II) complexes, the metal ion is coordinated through the sulfur atom and the azomethine nitrogen atom.

Keywords: thiourea, Furfural, 2-furaldehyde thiourea; metal complexes,

1-Introduction

Thiourea, their derivatives, as well as their transition metal complexes have aroused considerable interest in the areas of chemistry and biology. These compounds present a wide variety of biological activity such as antitumoral [1,8], fungicidal [9,10], bactericidal [11] or antiviral [12,13]. They have been used for metals analyses [14], for device applications relative to telecommunications, optical computing, storage and information processing [15,16].

As part of our continuous research work about synthesis and biological activity, mainly with thiourea and semicarbazones deriving from furaldehyde and their metal complexes [17–21], we describe in this work a new series of transition metal complexes obtained from 2-furaldehyde thiourea FAT as ligand and the chlorides of Ni(II), Cu(II).

All structures are determined on the basis of elemental analyses and spectroscopic techniques. In addition, the crystal structure of the copper complex [Cu(2FAT)₂] and is described.

2.Experimental

2-1- materials & tolls

- Melting points were determined by using a micro-melting point apparatus without any corrections.
- Infrared spectra pattern FT-IR-410 produce Jasco – Japan. reported relative in KBr stretch bonds in cm⁻¹.
- Spectrum NMR proton and carbon device 400 MHz model Bruker by Switzerland company.
- A spectral analysis of metals on the principle of optical spark electric version of the company Oxford Instruments in the Department of Physics - Faculty of Science - University of the expedition.
- All chemical materials from Sigma Aldrich.

2-2-Preparation of the ligand (FAT):

The 2-furaldehyde thiourea was synthesised as previously described [11] by refluxing 2-furaldehyde and thiourea (1:1 molar ratio) in absolute ethanol in the presence of pure acetic acid. The mixture was refluxed for 12 h and then cooled, filtered and recrystallised from a mixture of ethanol (75% V/V) and water. Yellow microcrystalline products are obtained. (yield 45%, melting point = 154-155 °C).

2-3-General Synthesis of metal Complexes;

2.3.1. Bis(2-furaldehydethiourea)nickel (II) [Ni(FAT)₂]Cl₂:

The hexahydrated nickel chloride, NiCl₂. 6H₂O (2.5 * 10⁻³ mol, 0.59 g), was dissolved in distilled water. An ethanolic solution of FTSC (5 * 10⁻³ mol; 0.85 g, 10mL) was added slowly while stirring. The mixture was refluxed for 6 h. After cooling at room temperature, a green precipitate appeared. It was filtered, washed with small amounts of absolute ethanol and finally dried in vacuum over silicagel. All the compounds were washed and dried in the same way. (yield 25%, melting point = 235 °C).

\[
\text{2 FAT} + \text{NiCl}_2 \rightarrow [\text{Ni(FAT)}_2 \text{Cl}_2]
\]
2.3.2. Bis(2-furaldehydethiourea)copper (II) [Cu(FAT)₂]Cl₂:
When 2 * 10⁻³ g of complex [Cu (FAT)₂]Cl₂ was dissolved in ethanol (20 mL), a dark-green crystalline product of formula [Cu(FAT)₂]Cl₂ was isolated after several days at room temperature. (yield 20%, melting point = 210 °C).

![Scheme 2: Reaction of metal complex:](image)

Table 1: show Some properties of the synthesized of 2-furaldehyde thiourea and metal complex

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Formulas</th>
<th>Color</th>
<th>m.p/°C</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT(L)</td>
<td>C₆H₆N₂O₂S</td>
<td>yellow</td>
<td>154-155</td>
<td>45</td>
</tr>
<tr>
<td>[Ni(FAT)₂]Cl₂</td>
<td>C₁₂H₁₂N₄O₂S₂NiCl₂</td>
<td>green</td>
<td>235-dec</td>
<td>25</td>
</tr>
<tr>
<td>[Cu(FAT)₂]Cl₂</td>
<td>C₁₂H₁₂N₄O₂S₂CuCl₂</td>
<td>green</td>
<td>210-dec</td>
<td>20</td>
</tr>
</tbody>
</table>

3. Results and Discussion and Discussion

3-1- IR spectra of the (APH) ligand and their complexes:
The infrared spectra for the present compounds taken in the range 400-4000 cm⁻¹ help to indicate regions of absorption vibrations. The main stretching modes are for ν(C=N), ν(C=C). The IR data of the spectra of ligands (FAT) and their complexes are presented in Table 2. The IR spectra of the complexes were compared with those of the free ligands in order to determine the coordination sites that may be involved in chelation.

Spectrum of the FAT ligand shows a sharp band at (1600cm⁻¹) due to ν(C=N) azomethine group which has shifted to higher frequency about (50cm⁻¹) in the complexes indicating its participation in chelation through azomethine nitrogen. The height of band is due to the reduction of electron density in the azomethine link.

Table 2. Characteristic infrared absorption frequencies (cm⁻¹) of the ligand and complexes.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>ν(NH)</th>
<th>ν(C=N)</th>
<th>ν(C=S)</th>
<th>ν(C-H)SP₂</th>
<th>ν(C-H)SP³</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT</td>
<td>3300s</td>
<td>1600s</td>
<td>1100m</td>
<td>3194w</td>
<td>2925w</td>
</tr>
<tr>
<td>[Ni(FAT)₂]Cl₂</td>
<td>3412s</td>
<td>1650s</td>
<td>1050m</td>
<td>3069w</td>
<td>2930w</td>
</tr>
<tr>
<td>[Cu(FAT)₂]Cl₂</td>
<td>3400s</td>
<td>1667s</td>
<td>1010m</td>
<td>3126w</td>
<td>3008w</td>
</tr>
</tbody>
</table>

![Figure 1: IR spectrum of ligand (FAT)](image)
3.2. Electronic spectral data:
The data of the electronic spectra of the ligand and its complexes are given in Table 3. The spectrum of Schiff base (FAT) presented two bands in the UV interval at 235nm and 290nm, assigned to \(\pi \to \pi^* \) and \(n \to \pi^* \) transitions respectively.

The electronic spectra of the complexes in methanol solution has three bands at (220, 300, 356)nm These bands may be assigned to the charge transitions (LMCT) of the form \(n \rightarrow \pi^* \) for azomethine group (C=N). The position of these bands suggests an octahedral environment to Ni\(^{II}\), Cu\(^{II}\).
Figure 6: UV absorption spectrum of [Cu(FAT)$_2$]Cl$_2$

Table 3: Magnetic moments, electronic bands and ligand field parameters of FAT and its metal complexes[16]

<table>
<thead>
<tr>
<th>compound</th>
<th>$\pi \rightarrow \pi^*$ (nm)</th>
<th>$n \rightarrow \pi^*$ (nm)</th>
<th>L\rightarrowM (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT</td>
<td>235</td>
<td>290</td>
<td>---</td>
</tr>
<tr>
<td>Ni(FAT)$_2$Cl$_2$</td>
<td>220</td>
<td>300</td>
<td>.356</td>
</tr>
<tr>
<td>Cu(FAT)$_2$Cl$_2$</td>
<td>225</td>
<td>260</td>
<td>305</td>
</tr>
</tbody>
</table>

Scheme 1: Suggested structures for the FAT complexes

3.3.1H-NMR spectroscopic measurements:
(1H-NMR) spectra of the ligand FAT.
The (1H-NMR) spectroscopic measurement of FAT are given in Table 4.

Table 4. The (1H-NMR) spectroscopic measurement of FAT.

<table>
<thead>
<tr>
<th>J [Hz]</th>
<th>chemical shift [PPM]</th>
<th>proton number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3.336</td>
<td>(1H,S)</td>
</tr>
<tr>
<td>5</td>
<td>8.005</td>
<td>(1H,d)</td>
</tr>
<tr>
<td>5</td>
<td>6.525</td>
<td>(1H,t)</td>
</tr>
<tr>
<td>5</td>
<td>7.699</td>
<td>(1H,d)</td>
</tr>
<tr>
<td>5</td>
<td>8.772</td>
<td>(1H,S)</td>
</tr>
<tr>
<td>5</td>
<td>7.002</td>
<td>(2H,S) 8 (NH$_2$)</td>
</tr>
</tbody>
</table>
3.4. Electronic microscope spectroscopic measurements:
Electronic microscope spectrum of FAT and complex [Cu(FAT)_2]Cl_2.

Acknowledgment
The authors would like to express their thanks and appreciation to Albaath for supporting this research.

References

