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Abstract 
Fe doped tin oxide transparent conducting powder were prepared by solid state reaction method. Structural 

properties of the samples were investigated as a function of various Fe-doping levels (x=0.00-0.01-0.03-0.05-

0.06). The results of x-ray diffraction have shown that the samples are polycrystalline structure in tetragonal 

phase with preferential orientations along the (110) for all samples The relative intensities, distance between 

crystalline planes (d), crystallite size (D), dislocation density (ẟ) and lattice parameters (a), (c) were determined. 

Infrared Spectroscopy have been studied by Infrared Spectrometer Device. 
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1. Introduction 
Transparent conducting oxides (TCOs) are semiconductors that are produced from a combination of metal and 

oxygen such as: ZnO, In2O3, SnO2. The studying of TCOs  is very important because of their special properties 

that is used in technology applications [1]. 

Tin oxide (SnO2) is considered as one of the most important member of the TCOs for its unique electrical 

and optical properties because it has low electrical resistivity, high optical transparency in visible region, high 

optical reflectance in infrared region and chemical inertness. So, SnO2 is used in solar cells, sensor gas, display 

devices and in other important applications [2]. 

SnO2 is an n-type semiconductor with wide band gap energy (Eg = 3.5-4 eV) [3]. SnO2 has tetragonal 

structure belonging to the P42/mnm space group. The lattice parameters are a = b = 4.7382 and c = 3.1871 A [4]. 

Its unit cell contains two tin and four oxygen atoms as is shown in figure 1. The tin atom is at the center of six 

oxygen atoms placed at the corners of a regular octahedron. Every oxygen atom is surrounded by three tin atoms 

at the corners of an equilateral triangle [5,6]. 

 
Fig. 1: Unit cell of the crystal structure of SnO2. Large circles indicate oxygen atoms and the small circles 

indicate tin atoms. 

 

2 .Experimental Method 
Sn1-xFexO2 powders (x = 0.00.0.01,0.03, 0.05, 0.06) were prepared by a solid state reaction method. were 

accurately weighed in required proportions and were mixed and ground thoroughly using an Agate mortar and 

pestle to convert to very fine powders. 

The grinding of the mixtures was carried out for 3 hours for all the powder samples. The ground powder 

samples were firing at 700°C for 3 hours. 
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3 .Results and discussions 
3.1 Structural properties 

The X-ray diffraction patterns of undoped and Fe doped SnO2 powders prepared with various Fe concentration 0 

wt%, 1 wt%, 3 wt%, 5 wt% and 6 wt% are shown in Fig. 2. 

The XRD reveals that all samples are having polycrystalline nature with tetragonal structure and peaks 

correspond to (110) , (101) , (200) , (111) , (210) , (211) , (220) , (002) , (310) , (112) , (301) ,  (202) and (321)  

planes. The preferred orientation is (110) for all samples.We noticed disappearance of these orientations 

(111) ,(210) , (301) in all doped samples. 

 

 

 
Fig. 2: XRD results of pure SnO2, 1 wt% Fe doped SnO2, 3 wt% Fe doped SnO2, 5 wt% Fe doped SnO2, 6 wt% 

Fe doped SnO2. 
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Table (1) shows results of structural values of undoped SnO2 sample. 

Table (1) 

samples 2θ 

(deg) 
)hkl( d 

(A°) 
Rel. 
int. 
[%] 

β 

(deg) 
D 

(nm) 
Average 
D(nm) 

δ Lattice 
const. 

1015line/m2 a(Å) c(Å) 

SnO2 

26.62 (110) 3.348 100 1.392 6.128  
 

11.877 

 

26.628 
 

4.733 3.185 

33.99 (101) 2.637 87 1.391 6.240 25.680 

37.95 (200) 2.370 25 0.886 9.908 10.187 

38.96 (111) 2.311 7 0.440 20.012 2.497 

42.62 (210) 2.121 4 0.510 17.471 3.276 

51.87 (211) 1.762 58 1.265 7.297 18.783 

pure 54.75 (220) 1.676 58 0.506 18.473 2.930 

57.87 (002) 1.593 11 1.012 9.372 11.385 

61.99 (310) 1.497 14 1.341 7.221 19.180 

64.84 (112) 1.437 17 1.898 5.180 37.261 

65.96 (301) 1.416 15 0.632 15.656 4.080 

71.25 (202) 1.323 7 1.645 6.207 25.955 

78.30 (321) 1.221 10 0.424 25.240 1.570 

 

Table (2) shows results of structural values of Fe doped SnO2 samples (x=0.01-0.03). 

Table (2) 

samples 2θ 

(deg) 
)hkl( d (A°) Rel. 

int. 
[%] 

β 

(deg) 
D 

(nm) 
Average 
D(nm) 

δ Lattice const. 
1015line/m2 a(Å) c(Å) 

SnO2:Fe 

26.50 (110) 3.362 100 1.375 6.202 

7.230 

25.994 

4.755 3.179 

34.01 (101) 2.635 89 1.300 6.677 22.427 

37.88 (200) 2.375 26 1.500 5.851 29.213 

51.88 (211) 1.762 53 1.620 5.698 30.803 

(1 wt%) 54.38 (220) 1.687 20 1.120 8.332 14.406 

57.99 (002) 1.590 11 1.300 7.300 18.766 

61.75 (310) 1.502 18 1.000 9.671 10.693 

64.70 (112) 1.440 15 1.750 5.614 31.726 

71.25 (202) 1.323 5 1.050 9.724 10.575 

(3 wt% ) 

26.50 (110) 3.362 100 1.720 4.958 

7.446 

40.675 

4.755 3.181 

33.98 (101) 2.637 80 1.500 5.787 29.863 

37.75 (200) 2.382 29 1.500 5.849 29.235 

51.75 (211) 1.766 57 1.700 5.427 33.956 

54.37 (220) 1.687 20 1.000 9.331 11.485 

57.90 (002) 1.592 13 1.000 9.486 11.114 

61.60 (310) 1.505 18 1.370 7.053 20.100 

65.12 (112) 1.432 22 1.750 5.627 31.579 

71.05 (202) 1.326 10 0.950 10.735 8.678 

78.50 (321) 1.218 11 1.050 10.207 9.599 
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Table (3) shows results of structural values of Fe doped SnO2 samples (x=0.05-0.06). 

Table (3) 

samples 
2θ 

(deg) 
)hkl( d (A°) 

Rel. 
int. 
[%] 

β 

(deg) 
D (nm) 

Average 
D(nm) 

δ Lattice const. 

1015line/m2 a(Å) c(Å) 

(5 wt% ) 

26.52 (110) 3.360 100 1.500 5.686 

7.004 

30.932 

4.751 3.176 

33.88 (101) 2.645 84 1.370 6.334 24.925 

37.86 (200) 2.376 29 1.250 7.021 20.289 

51.88 (211) 1.762 54 1.420 6.500 23.666 

54.24 (220) 1.691 19 1.250 7.461 17.965 

58.06 (002) 1.588 12 1.120 8.476 13.920 

62.06 (310) 1.495 15 1.750 5.535 32.640 

65.36 (112) 1.427 17 1.750 5.635 31.494 

71.74 (202) 1.315 7 1.000 10.242 9.533 

78.54 (321) 1.217 8 1.500 7.147 19.579 

(6 wt% ) 

26.54 (110) 3.358 100 1.120 7.615 

8.074 

17.244 

4.748 3.184 

33.88 (101) 2.645 87 1.170 7.417 18.179 

37.98 (200) 2.368 27 1.250 7.023 20.274 

51.86 (211) 1.762 55 1.250 7.384 18.341 

54.56 (220) 1.681 20 1.500 6.226 25.796 

57.90 (002) 1.592 11 1.620 5.855 29.167 

62.02 (310) 1.496 18 1.250 7.747 16.660 

64.76 (112) 1.439 20 1.500 6.552 23.293 

71.34 (202) 1.322 9 0.720 14.189 4.967 

78.70 (321) 1.215 10 1.000 10.732 8.682 

The relative intensities of undoped and Fe doped SnO2 powders are calculated. The distance between crystalline 

planes values (d) are calculated by using following relation: 

                                                                    2d.sinθ = nλ        (1) 

Where d is distance between crystalline planes (A), θ is the Bragg angle, λ is the wavelength of X-rays 

(λ=1.54056 A). 

The crystallite size is calculated from Scherrer’s equation [7]: 

          (2)  

Where, D is the crystallite size, λ is the wavelength of X-ray, ẞ is full width at half maximum (FWHM) intensity 

in radians and θ is Braggs’s angle. 

The dislocation density is defined as the length of dislocation lines per unit volume and calculated by following 

equation [2]: 

                 (3) 

The lattice constants a and c for tetragonal phase structure are determined by the relation [8]: 

     (4) 

Where d and (hkl) are distance between crystalline planes and Miller indices, respectively. 

The calculated lattice constants a, c values are given in table 1,2,3. It was seen that a, c and c/a match well with 

JCPDS data ( a=b= 4.737 A and c= 3.185 A). 

The change in peak intensities is basically due to the replacement of Sn4+ ions with Fe3+ ions in the lattice of the 

SnO2. This process leads to the movement of Sn4+ ions in interstitial sites. 

 

Figure 3 represents variation of the average grain size with different concentrations of Fe doped SnO2 powdres. 

We observed from tables 1,2,3 that 6 wt% Fe doped SnO2 is the closest value to undoped sample. 
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Fig. 3: variation of the average crystallite size with different concentrations of Fe doped SnO2 powders. 

 

4 .FT/IR analyses: 
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Fig. 4: FTIR analysis of pure and Fe doped SnO2 powder :(a) pure (b) 1 wt% Fe doped SnO2, (c) 3 wt% Fe 

doped SnO2, (d) 5 wt% Fe doped SnO2, (e) 6 wt% Fe doped SnO2 

FTIR is a technique used to obtain information regarding chemical bonding and functional groups in a 

material. In the transmission mode, it is quite useful to predict the presence of certain functional groups which 

are adsorbed at certain frequencies; thus, it reveals the structure of the material. The band positions and numbers 

of absorption peaks depend on the crystalline structure, chemical composition, and also on morphology [9]. To 

investigate chemical groups on the surface of sintered samples, an FTIR analysis was carried out at room 

temperature over the wave number range of 400– 4000 cm-1. There are several bands appearing in the wave 

number range 400–4000 cm-1. The broad absorption band at 3423 cm-1, the peaks at 2977 cm-1, and 1630 cm-1 

are assigned to the vibration of hydroxyl group due to the absorbed/adsorbed water and show a stretching 

vibrational mode of O–H group [10]. Absorption peaks observed around 2380 cm-1 belong to the stretching 

vibrations of C–H bonds that could be due to the adsorption and interaction of atmospheric carbon dioxide with 

water during the firing process [11]. The bands observed in the range of 970–700 cm-1 are due to the vibration of 

Sn=O and Sn–O surface cation oxygen bonds [10]. The very strong absorption bands observed in the range of 

420–700 cm-1 are attributed to the Sn–O antisymmetric vibrations. In that region, the peak at 686 cm-1 are 

assigned to Sn–O–Sn vibrations, respectively [34]. The bands exhibited in the low wave number region 430–620 

cm-1 are attributed to the Sn–O stretching vibrations [13]. The Fe doping shifts the positions of the absorption 

bands. It has been previously reported that changes observed in the shape, width, and positions of FTIR peaks 

are attributed to the variation in the local defects, grain size and shape of the samples [14]. In all samples, the 

vibrations associated to C–H and O–H bonds are seen. This implies that the surface is highly active and adsorbed 

these molecules. 

 

5. Conclusion 
This paper presents a study of structural properties of Fe doped SnO2 powders prepared by solid state reaction 

method. X-ray diffraction patterns confirm that the samples have polycrystalline nature with tetragonal structure 

and show presence (110)  ،  (101)  ،  (200)  ، (111)  ، (210)  ، (211)  ،  (220)  ،  (002)  ، (310)  ، (112)  ، (301)  ،  (202) and (321) 

planes in pure tin oxide sample. The all samples have preferred orientation along (110) plane. The average of 

crystallite size is within the range [11.877-7.004 nm] for all samples. It was defined that the lattice constants a, c 

for all the samples, were almost identical with JCPDS values, and the ratio c/a remained constant with increasing 

Fe dopant concentration. FTIR analysis revealed that the Fe doping manifests itself by a shift in Sn–O absorption 

peaks positions. 
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