The Influence of Fe , Sb doping on the Structural Properties of SnO₂ Powder. Comparative Study

Ahmad Khoudro¹ Samia Haj Najeeb^{2*} Abeer Najjar^{3*}

1. Professor, Department of Physics, Faculty of science, Tishreen University, Syria

2. MSc Student, Department of Physics, Faculty of science, Tishreen University, Syria

3. MSc Degrees, Department of Physics, Faculty of science, Tishreen University, Syria

Abstract

Fe, Sb doped tin oxide transparent conducting powder were prepared by solid state reaction method. Structural properties of the samples were investigated as a function of various Fe, Sb doping levels (x=0.00-0.01-0.06). The results of x-ray diffraction have shown that the samples are polycrystalline structure in tetragonal phase with preferential orientations along the (110) for all samples. The relative intensities, distance between crystalline planes (d), crystallite size (D), dislocation density (δ) and lattice parameters (a), (c).

Keywords: powder, Iron and Antimony doped Tin Oxide, solid state reaction, Structural properties.

DOI: 10.7176/CMR/12-4-01 **Publication date:** April 30th 2020

Introduction

In recent years, there has been considerable interest in metal oxides because of their many industrial pplications, especially transparent conducting oxides (TCO). Tin oxide belongs to a transparent conductive oxide (TCO) family which are the most studied [1]. Transparent conducting oxides are semiconductors produced from a combination of metal and Oxygen. The study of SnO2 transparent conducting oxide thin films are important due to its unique attractive properties like high optical transmittance, uniformity, nontoxicity, good electrical, low resistivity, chemical inertness, stability to heat treatment, mechanical hardness, piezoelectric behavior, and its low cost. So, SnO2 is used in solar cells, sensor gas, display devices and in other important applications [2-3].

Tin Oxide is an n-type semiconductor with wide band gap energy (Eg = 3.5-4 eV) [4]. Tin Oxide has a tetragonal structure. Its unit cell contains two Tin and four Oxygen atoms as is shown in Figure 1. The Tin atom is at the center of six Oxygen atoms placed at the corners of a regular octahedron. Every Oxygen atom is surrounded by three Tin atoms at the corners of an equilateral triangle [5, 6].

Figure 1. Unit cell of crystalline structure of SnO2. big circles represent Oxygen atoms and small circles represent Tin atoms (from [7]).

The structure of this material in its bulk form is tetragonal with lattice parameters of $a = b = 4.737 \text{ A}^{\circ}$ and $c = 3.186 \text{ }^{\circ}\text{A}$.

2. Experimental Procedure

 $Sn_{1-x}Fe_xO_2$ powders (x = 0.00. 0.01, 0.06) were prepared by a solid state reaction method. Were accurately weighed in required proportions and were mixed and ground thoroughly using an Agate mortar and pestle to convert to very fine powders.

The grinding of the mixtures was carried out for 3 hours for all the powder samples. The ground powder samples were firing at 700°C for 3 hours.

Results and discussions

Structural properties

The X-ray diffraction patterns of undoped and Fe , Sb doped SnO_2 powders prepared with Fe and Sb concentration 0 wt%, 1 wt% and 6 wt% are shown in Figure (1). The XRD reveals that all samples are having polycrystalline nature with tetragonal structure which belongs to the space group P42/mnm (number136) and peaks correspond to (110), (101), (200), (111), (210), (211), (220), (002), (310), (112), (301), (202) and (321) planes.

No alien phases have been observed confirming that SnO_2 with tetragonal cassiterite structure is the only crystalline phase appearing in both undoped and Fe , Sb doped SnO_2 .

The preferred orientation is (110) for all samples , but for Sb doped SnO_2 powders at 6 wt% doping the preferred orientation change to (101) plane .

We noticed disappearance of these orientations (111),(210), (301) in Fe doped SnO₂ samples, and (200), (220), (112) in Sb doped SnO₂ samples.

The change in peak intensities is basically due to the replacement of Sn^{4+} ions with Fe^{3+} or Sb^{5+} ions in the lattice of the SnO2. This process leads to the movement of Sn^{4+} ions in interstitial sites , and fact that the ionic radius of tin Sn^{4+} equal to (0.071nm) is greater than the ionic radius of Fe^{3+} (0.055nm), and Sb^{5+} (0.062nm) [8,9].

Fig (1): XRD results of pure SnO₂, 1 wt% Sb doped SnO₂, 6wt% Sb doped SnO₂, 1 wt% Fe doped SnO₂, 6 wt% Fe doped SnO₂.

Table (1) shows results of structural values of undoped SnO_2 sample, Fe doped SnO_2 samples and Sb doped SnO_2 samples (x=0.01-0.06).

samples	20) ի ել(d (Å)	$\frac{1}{\mathbf{D}} = \frac{1}{\mathbf{\Delta} \mathbf{ver}_{2} \mathbf{\sigma}_{2}} = \frac{1}{\mathbf{\lambda}}$		δ	Average	Lattice const	
sampics	(deg)		u (A)	(nm)	D(nm)	10 ¹⁵ line/m ²	δ10 ¹⁵ line/		
	(ueg)			(mm)	D(IIII)	10 1110/111	m ²	a(A)	U(A)
	26.62	(110)	3 348	6.128		26.628			
	33.99	(110)	2 637	6 240		25.680			
	37.95	(200)	2.037	9.908		10 187			
	38.96	(111)	2.370	20.012		2 497			
	42.62	(210)	2.311	17 471		3 276			
SnOa	51.87	(210)	1 762	7 297		18 783			
pure	54.75	(211)	1.702	18 473		2 930			
pure	57.87	(220)	1 593	9 372		11 385			
	61.99	(310)	1 497	7 221		19 180			
	64.84	(112)	1 437	5 180	11.877	37 261	14.570	4.733	3.185
	65.96	(301)	1 416	15 656		4 080			
	71.25	(202)	1 323	6 207		25.955			
	78.30	(321)	1.323	25 240		1 570			
	26.50	(110)	3 362	6 202		25 994			
	34.01	(110)	2.635	6.677		22.427			
	37.88	(200)	2.375	5 851		29 213			
	51.88	(200)	1 762	5.698		30.803			
	54 38	(220)	1.687	8 332		14 406			
	57.99	(002)	1 590	7 300		18 766			
SnO ₂ :Fe (1wt%)	61.75	(310)	1.502	9.671	7.230	10.693	21.622	4.755	3.179
	64.70	(112)	1.440	5.614		31.726			
	71.25	(202)	1.323	9.724		10.575			
	26.54	(110)	3.358	7.615		17.244			
	33.88	(101)	2.645	7.417		18.179			
	37.98	(200)	2.368	7.023		20.274			
	51.86	(211)	1.762	7.384		18.341]		
	54.56	(220)	1.681	6.226		25.796]		
/ /	57.90	(002)	1.592	5.855		29.167			
SnO_2 :Fe (6wt%)	62.02	(310)	1.496	7.747	8.074	16.660	18.260	4.748	3.184
	64.76	(112)	1.439	6.552		23.293			
	71.34	(202)	1.322	14.189		4.967			
	78.70	(321)	1.215	10.732		8.682			
	26.62	(110)	3.345	7.414		18.191			
	33.89	(101)	2.642	5.982		27.944			
	38.15	(111)	2.357	4.367	5.971	52.415			
	42.51	(210)	2.124	10.857		8.483			
$S_{\rm H}O_{\rm s}S_{\rm h}^{\rm h}(1-40/)$	51.98	(211)	1.757	6.195		26.054	24.124	4 72 1	2 1 (1
$SIIO_2:SD(1W170)$	58.32	(002)	1.580	5.135		37.909	54.124	4./31	5.101
	62.23	(310)	1.490	5.414		34.111			
	65.36	(301)	1.426	4.073		60.264			
	71.86	(202)	1.312	5.254		36.213			
	78.25	(321)	1.220	5.021		39.659			
	26.25	(110)	3.392	5.605		31.828			
	33.88	(101)	2.643	4.956		40.706			
	52.02	(111)	2.364	4.718		44.919			
	50 50	(211)	1./50	4./14		44.995			
	38.30	(002)	1.3/3	3.8/2		29.001			
SnO2:Sb (6wt%)	65 15	(310)	1.499	4.498	5.186	49.414	38.356	4,797	3,150
	70.95	(301)	1.430	5.90/	0.100	20.081		, , , ,	2.120
	78.15	(202)	1.320	1 750		<i>J</i> 1.940			
1	10.13	1 (321)	1.222	H./JU		44.310	1	1	

The distance between crystalline planes values (d) are calculated by using following relation:

2c

$$l.\sin\theta = n\lambda \qquad (1)$$

Where d is distance between crystalline planes (A), θ is the Bragg angle, λ is the wavelength of X-rays (λ =1.54056 Å).

The crystallite size is calculated from Scherrer's equation [10]:

$$D = \frac{0.94\lambda}{\beta \cos \theta} \qquad (2)$$

Where, D is the crystallite size, λ is the wavelength of X-ray, β is full width at half maximum (FWHM) intensity in radians and θ is Braggs's angle.

The dislocation density is defined as the length of dislocation lines per unit volume and calculated by following equation [11]:

$$\delta = \frac{1}{n^2} \tag{3}$$

The lattice constants a and c for tetragonal phase structure are determined by the relation [12]:

$$\frac{1}{a^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2} \quad (4)$$

Where d and (hkl) are distance between crystalline planes and Miller indices, respectively. The calculated lattice constants a, c values are given in table (1). It was seen that a, c and c/a match well with JCPDS card (5-467) data (a=b=4.737 Å and c=3.185 Å).

Figure (2) shows the variation of the average crystallite size as a function of Sb, Fe concentration.

The average crystallite size of pure SnO_2 is about 11.877nm and decrease in order to 1, 6wt% of Fe doped powders to 7.230nm, 8.074nm, respectively, while in order to 1, 6wt% of Sb doped powders decrease to 5.971nm, 5.186nm, respectively.

We note that the greatest value of the average crystallite size is for the pure SnO_2 , and then decreases for the doped samples, while we notice that the lowest value is for Sb doped powders at 6wt% concentration.

Figure (2) represents variation of the average grain size with concentrations (0wt%, 1wt%, 6wt%) of Sb or Fe doped SnO₂ powdres.

Figure (3) shows the variation of the average dislocation density as a function of Sb, Fe concentration

The average dislocation density is about 14.570×10^{15} line/m² for pure SnO₂ and increase in order to 1, 6wt% of Fe doped powders to (21.622, 18.260)×10¹⁵ line/m², respectively, and then its value increase more in order to 1, 6wt% of Sb doped powders to (34.124, 38.356) ×10¹⁵ line/m², respectively.

Where we note that the lowest value of the average dislocation density is for pure SnO_2 , and then increases for doped samples and the greatest value is for Sb doped powders at 6wt% concentration.

Figure (3) represents variation of the average dislocation density with concentrations (0wt%,1wt%,6wt%) of Sb or Fe doped SnO2 powdres.

We notice from Figures 1 and 2 that the Fe doped SnO_2 powder with 6wt% concentration is better compared with the other doped samples because it has a greater average grain size and less dislocation density of in its crystal lattice.

5. Conclusion

This paper presents a study of structural properties of Sb and Fe doped SnO_2 powders prepared by solid state reaction method. X-ray diffraction patterns confirm that the samples have polycrystalline nature with tetragonal structure and show presence (110) (301) (202) and (321) planes in pure tin oxide sample. The preferred orientation is (110) for all samples , but for Sb doped SnO_2 powders at 6 wt% doping the preferred orientation change to (101) plane .We noticed disappearance of these orientations (111) ,(210) , (301) in Fe doped SnO_2 samples , and (200) , (220) , (112) in Sb doped SnO_2 samples. The average of crystallite size is within the range [11.877- 5.186 nm] for all samples. It was defined that the lattice constants a, c for all the samples, were almost identical with JCPDS values, and the ratio c/a remained constant with increasing Sb and Fe dopant concentration.

References

- [1] M. BENHALILIBA, C. E. BENOUIS, Y. S. OCAK, F. YAKUPHANOGLU (2012), "Nanostructured Al Doped SnO2 Films Grown onto ITO Substrate via Spray Pyrolysis Route", *Journal of Nano- and Electronic Physics*, Vol. 4, No. 1, pp. 1-3.
- [2] S. S. ROY, J. PODDER (2010), "Synthesis and optical characterization of pure and Cu doped SnO2 thin films deposited by spray pyrolysis", *Journal of Optoelectronics and Advanced Materials*, Vol. 12, No. 7, pp. 1479-1484.
- [3] TURGUT G., KESKENLER E. F., Aydin S., SONMEZ E., DOGAN S., DUZGUN B., ERTUGRUL M. (2013), "Effect of Nb Doping on Structural, Electrical and Optical Properties of Spray Deposited SnO2 Thin Films", *Super lattices and Microstructures*, 56, pp. 107-116.
- [4] GANDHI T., BABU R. & RAMAMURTHI K. (2013)"Structural, Morphological, Electrical and Optical Studies of Cr Doped SnO2 Thin Films Deposited by The Spray Pyrolysis Technique", *Materials Science in Semiconductor Processing*, 16, pp. 427-479.
- [5] JARZEBSKI Z. & MARTON J. (1976) "Physical Properties of SnO2 Materials", *Journal of the Electrochemical Society*, pp. 199-205.
- [6] KHANAA V. & MOHANTA K. (2013) "Synthesis and Structural Characterization of SnO2 Thin Films Prepared by Spray Pyrolysis Technique", *International Journal of Advanced Research*, 1 (7), pp. 666-669.
- [7] RAUL DIAZ DELGADO, "Tin Oxide Gas Sensors: An Electrochemical Approach", Ph. D Thesis, Universitat De Barcelona, 2002.
- [8] M. Kuppan, S. Kaleemulla, N. Madhusudhana Rao, N. Sai Krishna, M. Rigana Begam .D. Sreekantha Reddy. (2014) "Physical Properties of Sn1-xFexO2 Powders Using Solid State Reaction", J Supercond Nov Magn, 27, 1315–1321.
- [9] Sushant Gupta , B.C. Yadav , Praphat K.Dwivedi and B.Das . (2012) 'Structural/microstructural , optical

and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis'', cond-mat.mtrl-sci.

- [10] Mariappan R., Ponnuswamy V. & Suresh P. (2012) "Effect Of Doping Concentration On The Structural And Optical Properties Of Pure And Tin Doped Zinc Oxide Thin Films By Nebulizer Spray Pyrolysis (NSP) Technique", *Superlattices and Microstructures*, 52, 500-513.
- [11] Turgut G., Keskenler E. F., Aydin S.; Sonmez E., Dogan S., Duzgun B. & Ertugrul M. (2013), "Effect Of Nb Doping On Structural, Electrical And Optical Properties Of Spray Deposited SnO2 Thin Films", *Super lattices and Microstructures*, 56, 107-116.
- [12] Gurakar S., Serin T & Serin N. (2014) "Electrical And Microstructural Properties Of (Cu, Al, In)-Doped SnO2 Films Deposited By Spray Pyrolysis", *Advanced Materials Letters*, 5(6), 309-314.