www.iiste.org

Studying Effect of Eu Doping on the Structural Properties and Infrared Spectroscopy of Aluminum Oxide powders by Solid State Reaction Method

Abd almajed krawe^{1*} Ahmad Khoudro² Talalkhalas³

1.MSc Student, Department of Physics, Faculty of science, Tishreen University, Syria 2.Professor, Department of Physics, Faculty of science, Tishreen University, Syria

3. Assistant Professor, Department of Physics, Faculty of science, Tishreen University, Syria

Abstract

Eu doped Aluminum oxide transparent conducting powder were preparedbysolid state reactionmethod. Structural properties of the samples were investigated as a function of various Eu-dopinglevels (x=0.00-0.0012-0.0016-0.002-0.003). The results of x-ray diffraction haveshown that the samples are polycrystalline structure in tetragonal phase with preferential orientationsalong the (400) for all samples The relative intensities, distance between crystalline planes (d),crystallite size (D) and lattice parameters (a), (c) were determined. Infrared Spectroscopyhave been studied by Infrared Spectrometer Device.

Keywords: powder, Eu doped Aluminum Oxide, solid state reaction, Structural properties, Infrared Spectroscopy.

DOI: 10.7176/CMR/12-4-02 **Publication date:** April 30th 2020

1. Introduction

Transparent conducting oxides (TCOs) are semiconductors that are produced from a combination of metal andoxygen such as: ZnO, In₂O₃, SnO₂. The studying of TCOs is very important because of their specialproperties that is used in technology applications [1].

Aluminum oxide (Al_2O_3) is considered as one of the most important member of the TCOs for its uniqueelectrical and optical properties because it has low electrical resistivity, high optical transparency in visibleregion, high optical reflectance in infrared region and chemical inertness. So, Al_2O_3 is used in solar cells, sensorgas, display devices and in other important applications [2].

 Al_2O_3 is an p-type semiconductor with wide band gap energy (Eg = 3.5-4 eV) [3]. Al_2O_3 has tetragonalstructure belonging to the P42/mnm space group. The lattice parameters are a = b = 2.184 and c = 3.184 A [4]. Its unit cell contains two Aluminum and three oxygen atoms as is shown in figure 1. The Aluminum atom is at the center of sixoxygen atoms placed at the corners of a regular octahedron. Every oxygen atom is surrounded by four Aluminum atomsat the corners of an equilateral triangle [5,6].

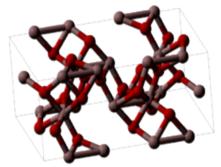
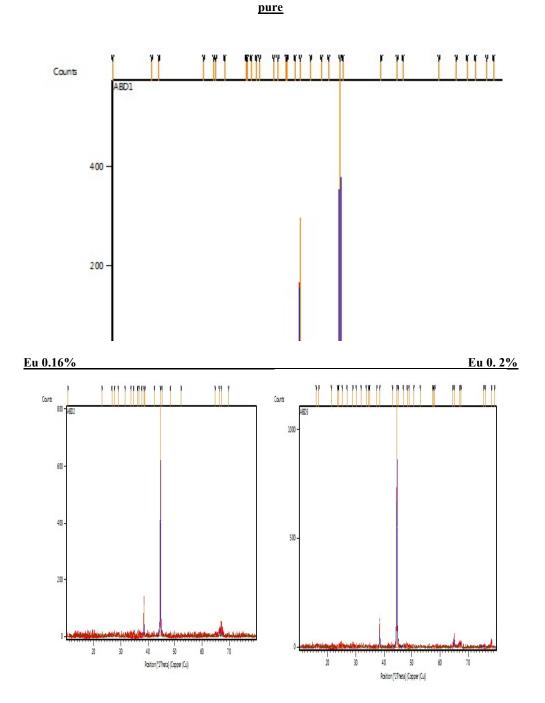


Fig. 1: Unit cell of the crystal structure of Al_2O_3 Large circles indicate oxygen atoms and the small circles indicate tin atoms.

2 .Experimental Method

 $Al_{1-x}Au_xO_3$ powders (x = 0.00.0.012,0.016, 0.002, 0.003) were prepared by solid state reaction method. were accurately weighed in required proportions and were mixed and ground thoroughly using an Agate mortar and pestle to convert to very fine powders.


The grinding of the mixtures was carried out for 3 hours for all the powder samples. The groundpowder samples werefiring at 700°C for 3 hours.

3.Results and discussions

3.1Structural properties

The X-ray diffraction patterns of undoped and Au doped Al_2O_3 powders prepared with various Au concentration 0 wt%, 0.12 wt%, 0.16 wt%, 0.2wt% and 0.3wt% are shown in Fig. 2.

The XRD reveals that all samples are having polycrystalline nature with tetragonal structureand peaks correspond to (105), (305), (400), (440), (4.0.12), (113), (314), (116), planes. The preferred orientation is (400) forall samples. We noticed disappearance of these orientations (501), (518) in all doped samples.

www.iiste.org

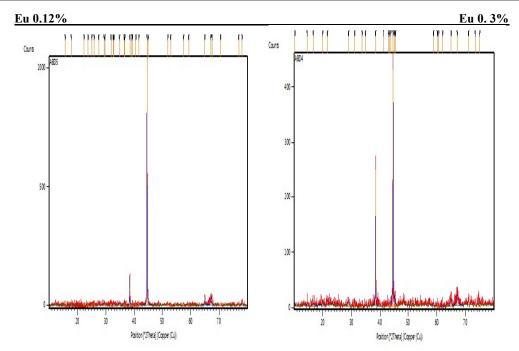


Fig. 2: XRD results of pure. Al_2O_3 , 0.12 wt% Eu doped Al_2O_3 , 0.16 wt% Eu doped. Al_2O_3 , 0.2wt% Eu doped . Al_2O_3 , 0.3 wt% Eu doped . Al_2O_3 .

Table (1) shows results of structural values of undoped. Al_2O_3 sample. Table (1)

العينات	20	(hkl)	d	الشدات	β	D	متوسط	ثوابت الشبكة	
المدروسة	(deg)		(Å)	النسبية Rel. int.	(deg)	(nm)	D(nm)		c(Å)
	(ucg)		()	[%]	(ucg)	()		a(Å)	
(نقي)	23.93	(114)	3.717	8	1.12	7.577	1.184	2.184	3.184
	38.52	(305)	2.336	72	1.17	7.516			
	44.71	(400)	2.026	100	1.25	7.180			
]	73.12	(501)	1.294	9	1.25	8.266			
	76.63	(518)	1.243	10	1.50	7.052			

Table (2) shows results of structural values of Au doped Al_2O_3 samples (x=0.012).

العينات	20	(hkl)	d	الشدات النسبية	β	D	متوسط D(nm)	بت الشبكة	ثوا
المدروسة	(deg)		(Å)	Rel. int. [%]	(deg)	(nm)		a(Å)	c(Å)
(0.12wt%)	22.36	(113)	3.975	6	0.34	24.888	18.65	4.748	3.184
	38.47	(314)	2.339	18	0.23	38.226			
	44.60	(400)	2.031	100	0.20	44.860	1		
	65.09	(440)	1.433	8	0.28	35.165	7		
	67.52	(4.0.12)	1.387	10	0.23	43.406			

Table (3) shows results of structural values of Au doped Al_2O_3 samples (x=0.016).

				Table	(3)				
العينات	20	(hkl)	d	الشدات النسبية	β	D	متوسط D(nm)	بت الشبكة	ثوا
المدروسة	(deg)		(Å)	Rel. int. [%]	(deg)	(nm)		a(Å)	c(Å)
(0.16wt%)	23.14	(105)	3.843	6	1.12	7.566	3.68	4.748	3.184
	38.87	(305)	2.316	28	1.17	7.524			
	44.73	(400)	2.025	100	1.25	7.181			
	66.31	(440)	1.409	7	1.25	7.931			
	67.07	(4.0.12)	1.395	10	1.50	6.638			

Table (4) shows results of structural values of Au doped Al_2O_3 samples (x=0.002).

العينات	20	20	(hkl)	d	الشدات النسبية	β	D	متوسط D(nm)	ثوابت الشبكة	
المدروسة	(deg)		(Å)	Rel. int. [%]	(deg)	(nm)		a(Å)	c(Å)	
(0.2wt%)	25.27	(105)	3.523	4	1.12	7.596	3.68		3.184	
	38.52	(305)	2.336	16	1.17	7.516		4.748		
	44.72	(400)	2.026	100	1.25	7.181				
	65.07	(440)	1.433	8	1.25	7.876				
	67.45	(4.0.12)	1.388	6	1.50	6.653	7			

Table (5) shows results of structural values of Au doped Al_2O_3 samples (x=0.003).

العينات	20	(hkl)	d	الشدات النسبية	β	D	متوسط D(nm)		ثوابت الشبكة	
المدروسة	(deg)		(Å)		(deg)	(nm)	D(IIII)	a(Å)	c(Å)	
(0.3wt%)	28.05	(116)	3.180	8	1.12	7.640	3.68) a(Å)	3.184	
	38.51	(314)	2.337	84	1.17	7.515				
	44.74	(400)	2.025	100	1.25	7.181				
	64.99	(440)	1.434	10	1.25	7.873				
	67.13	(4012)	1.394	14	1.50	6.641				

The relative intensities of undoped and Au doped Al_2O_3 powders are calculated. The distance between crystalline planes values (d) are calculated by using following relation:

 $2d.\sin\theta = n\lambda$ (1)

Where d is distance between crystalline planes (A), θ is the Braggangle, λ is the wavelength of X-rays (λ =1.54056 A).

The crystallite size is calculated from Scherrer's equation [7]:

$$D = \frac{0.94\lambda}{\beta \cos \theta}$$
 (2)

Where, D is the crystallite size, λ is the wavelength of X-ray, β is full width at half maximum (FWHM) intensityin radians and θ is Braggs's angle.

The lattice constants a and c for tetragonal phase structure are determined by the relation [8]:

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2} \quad (3)$$

Where d and (hkl) are distance between crystalline planes and Miller indices, respectively.

The calculated lattice constants a, c values are given in table 1,2,3. It was seen that a, c and c/a match well with JCPDS data(a=b=2.184 A and c=3.184 A).

The change in peak intensities is basically due to the replacement of AL^{3+} ions with Au^{2+} ions in the lattice of the Al_2O_3 . This process leads to the movement of AL^{3+} ions in interstitial sites.

5. Conclusion

This paper presents a study of structural properties of Au doped Al_2O_3 powdersprepared by solid state reaction method. X-ray diffraction patterns confirm that the samples have polycrystallinenature with tetragonal structure and show presence (105), (305), (400), (440), (4.0.12), (113), (314), (116) planes in pure tin oxide sample. The allsamples have preferred orientation along (400) plane. The average of crystallite size is within the range [11.877-7.004 nm] for all samples. It was defined that the lattice constants a, c for all the samples, werealmost

identical with JCPDS values, and the ratio c/a remained constant with increasing Fe dopantconcentration.FTIR analysis revealed that the Fe doping manifests itself by a shift in Al_2O_3 absorption peaks positions.

REFERANCE:

- [1] Sakhta A.R. et al (2016), "Studying Effect of Mg Doping on the Structural Properties of Tin Oxide Thin Films Deposited by the Spray Pyrolysis Technique", *Chemistry and Materials Research*, 8, 12-18.
- [2] Turgut G., Keskenler E. F., Aydin S.; Sonmez E., Dogan S., Duzgun B. & Ertugrul M. (2013), "Effect OfNb Doping On Structural, Electrical And Optical Properties Of Spray Deposited SnO2 Thin Films", *Superlattices and Microstructures*, 56, 107-116.
- [3] Gandhi T., Babu R. & Ramamurthi K. (2013) "Structural, Morphological, Electrical and Optical Studies OfCr Doped SnO2 Thin Films Deposited By The Spray Pyrolysis Technique", *Materials Science in SemiconductorProcessing*, 16, 427-479.
- [4] -Vadivel S. & Rajarajan G. (2015) "Effect Of Mg Doping On Structural, Optical And Photocatalytic ActivityOf SnO2 Nanostructure Thin Films", *Journal of Materials Science*, 6, 730-738.
- [5] Jarzebski Z. & Marton J. (1976) "Physical Properties of SnO2 Materials", *Journal of the ElectrochemicalSociety*, 199-205.
- [6] Khanaa V. & Mohanta K. (2013) "Synthesis and Structural Characterization of SnO2 Thin Films Preparedby Spray Pyrolysis Technique", *International Journal of Advanced Research*, 1(7), 666-669.
- [7] Mariappan R., Ponnuswamy V. & Suresh P. (2012) "Effect Of Doping Concentration On The StructuralAnd Optical Properties Of Pure And Tin Doped Zinc Oxide Thin Films By Nebulizer Spray Pyrolysis (NSP)Technique", *Superlattices and Microstructures*, 52, 500-513.
- [8] Gurakar S., Serin T & Serin N. (2014) "Electrical And Microstructural Properties Of (Cu, Al, In)-DopedSnO2 Films Deposited By Spray Pyrolysis", Advanced Materials Letters, 5(6), 309-314.
- [9]- Ashokkumar.M,et al, (2014) ," $ZnO_{.96-x}Cu_{0.04}Fe_xO(0 \le x \le 0.04)$ alloys Optical and structural studies), *Superlattices and Microstructures*, 69, 53-64.
- [10]- Faisal.M, et al, (2015), "SnO₂ doped ZnO nanostructures for highly efficient photocatalyst", Journal of Molecular catalysis A: chemical, 39, 19-25.
- [11]- Gnanam.S, Rajendran.V, (2010)," Preparation of Cd-doped SnO₂ nanoparticles by sol-gel route and their optical properties", *Journal of Sol-Gel Science and Technology*, 56, 128–133.
- [12] Sharma A., et al. ,(2011), "Magnetic Properties of Fe and Ni Doped SnO₂Nanoparticles" Nanomaterials and Nanotechnology, 1, 29-33.
- [13] Mohamed S.H., et al, (2012), "SnO₂ dendrites-nanowires for optoelectronic and gas sensing applications", *Journal of Alloys and Compoundsvol*, 510, 119-124.
- [14] Srinivas.K, (2011), "Structural, electronic and magnetic properties of Sn_{0.95}Ni_{0.05}O₂ nanorods", *Nanoscale*, 3, 642-653.