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Abstract 
Sample preparation is one of the crucial steps in any chemical analysis because most samples are not ready 
to introduce directly into analytical instruments. This step is very important to eliminate interferences, isolate and 
preconcentration of analytes of interest from the matrix and makes them more suitable for separation and detection. 
The extraction of analytes from aqueous matrices can be traditional and nontraditional techniques. Miniaturized 
techniques are simple, solventless or solvent-reduced techniques allowing the extraction and concentration in a 
single step on a micro scale approach. Stir Bar Sorptive Extraction (SBSE) is a relatively new solventless sample 
preparation method for the extraction and concentration of organic compounds from aqueous matrices of 
environmental, food and biological samples. In SBSE, a stir bar coated with Polydimethylsiloxane (PDMS) phase 
is added to a vial containing the sample. The sample is then stirred until analytes partition equilibrium time reached 
with sorbent. The extracts can be introduced quantitatively into the analytical system by thermal or liquid 
desorption. The efficiency of extraction of SBSE in terms of the amount extracted and the equilibrium is affected 
by extraction time, stirring speed, temperature of the sample, pH, salting and sample volume. The most important 
limitation of SBSE is the only commercial availability of PDMS coating material exists at present. Besides, due 
to the non-polar character of PDMS, SBSE technique is mainly applied to extract non-polar and weakly polar 
compounds but failed in extraction of strongly polar compounds. 
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1. Introduction 
Sample preparation is a process required for the transformation of the analytes of interest from sample matrix into 
a form more suitable for introduction into the analytical instrument (Baltussen, 2000). It is very important to extract, 
isolate, and concentrate the analytes of interest from complex matrices into a suitable solvent. Thus, it has a direct 
impact on accuracy, precision, quantification limits and the rate-determining step of the analytical methods, 
especially when trace analysis is the main purpose (Feilden, 2011).  

The extraction of analytes from aqueous matrices can be traditional and nontraditional techniques (Jochmann, 
2006). The most common traditional and the most widely used technique is liquid-liquid extraction (LLE). 
However, it is tedious, time-consuming, difficult to automate and environmentally unfriendly due to large amounts 
of organic solvents are required. Solid-phase extraction (SPE) was introduced as an alternative extraction method. 
Comparing to LLE, this method reduces high solvent consumption. The major drawbacks of SPE are the large 
sample volumes requirement and limited enrichment factor (Ochiai et al., 2008). 

In order to achieve adequate detection limits, it is often necessary to either perform concentration to a small 
volume or use large volume injection. For this reason, miniaturized methods (microextraction approaches), which 
are simple, solventless or solvent-reduced techniques allowing the extraction and concentration in a single step on 
a micro scale approach were developed. After Lord and Pawliszyn, microextraction is defined as a technique where 
the volume of the extraction phase is very small in relation to the sample volume (Jochmann, 2006). Solid Phase 
Microextraction (SPME) and Stir Bar Sorptive Extraction (SBSE) are typical examples of miniaturization in 
sample preparation techniques (Lokhnauth, 2005). SPME is the most prominent and widely used solventless 
microextraction technique for organic compounds in aqueous samples.  However, the applicability of SPMS is 
occasionally limited by the small amount of coating material that is present on the fiber (Jochmann, 2006). SBSE 
was developed to overcome the limited extraction capacity of SPME fibers (Tan and Chai, 2011). 

SBSE is a relatively new solventless sample preparation method for the extraction and concentration of 
organic compounds from aqueous matrices (Lokhnauth, 2005). In SBSE, a stir bar coated with 
Polydimethylsiloxane (PDMS) phase is added to a vial containing the sample. The sample is then stirred until 
analytes partition equilibrium time reached with sorbent. After the extraction, the analytes can be introduced 
quantitatively into the analytical system by thermal or liquid desorption (Kassem, 2011). SBSE is widely applied 
in analysis of trace organic compounds in aqueous matrices of environmental, food and biological samples. 
However, its important limitation is only commercial availability of PDMS coating material exists at present (Tan 
and Chai, 2011). Besides, due to the non-polar character of PDMS, SBSE technique is mainly applied to extract 
non-polar and weakly polar compounds but failed in the extraction of strongly polar compounds (Huang et al., 
2009). 
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The objectives of this review were to address the working principles and instrumental set-up of SBSE 
technique, to compare SBSE with other analytical technique particularly SPME and to address its application for 
analysis of organic compounds in environmental, biological and food aqueous samples. 

 
2. Working Principle 
2.1 Polydimethylsiloxane (PDMS) Coated Stir Bars 
PDMS coated stir bars are only commercially available materials used for SBSE method under the trade name 
Twister™ from Gerstel GmbH (Mülheim an der Ruhr, Germany) (Baltussen, 2000; Kole et al., 2011). PDMS stir 
bars (TwisterTM) are commercially available from Gerstle in two configurations, both coated a with 1 mm layer of 
PDMS: 10 mm L x 3.2 mm o.d and 40 mm L x 3.2 mm o.d (Lokhnauth, 2005). Typically, the 10 mm stir bars are 
used for 1-50 mL sample volumes, and the 40 mm stir bars are used for sample volumes up to 250 mL sample 
volumes (Baltussen, 2000). These stir bars have three essential parts as shown in Figure 1. The first and innermost 
part is a magnetic stirring rod, which is necessary for transferring the rotating movement of a stirring plate to the 
sample liquid. The second part of the stir bar is a thin glass jacket that covers the magnetic stirring rod. The third 
and outermost part is the layer of PDMS sorbent into which the analytes extraction occurs. The glass layer is 
essential in the construction of a high quality stir bar. It effectively prevents decomposition of the PDMS layer, 
catalysed by the metal of the magnetic rod (Baltussen, 2000; Lokhnauth, 2005; David et al., 2003).  

 
Figure 1. Schematic representation of a PDMS coated stir bar for SBSE application (Mitra, 2003). 

Stir bars are used in two application modes for extraction. The first one is the direct immersion of the PDMS 
stir bar into the sample, and the other one is analyte extraction from headspace above the sample as shown in 
Figure 2 a and b, respectively (Jochmann, 2006). 
 
2.2 Extraction Procedure 
The stir bar coated with PDMS phase is directly added to a vial containing the sample as shown in Figure 2 a 
(Kassem, 2011), or special device to hold the stir bar is available from headspace above the sample as shown in 
Figure 2 b (Kole et al., 2011). Then, it is stirred until analytes partition equilibrium time reached with sorbent.  A 
magnetic stirrer is used to set the stir bar in rotation, and this enhances the mass transport in the system and thus 
increases the extraction rate (Pettersson, 2004). As shown in Figure 2 b, headspace bars consist of a glass rod of 
ca. 5 cm length with PDMS tubing over the last cm. These rods are mounted in the screw caps of headspace vials 
(Jochmann, 2006).  

As the name suggests, SBSE is based on sorptive extraction, and is by nature an equilibrium technique (Kole 
et al., 2011). The amount of analyte extracted from the aqueous phase is controlled by the partitioning coefficient 

of solutes between the polymer coating and sample matrices ( WPDMSK / ) for direct immersion. The headspace 

extraction is dependent on the distribution of the analytes between the liquid and gaseous headspace, and on the 
respective PDMS/gas partition coefficients (Tredoux, 2008) and the phase ratio between polymer coating and 
sample volume (β) (Lanuza, 2010). 
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Figure 2. Schematic Diagram of SBSE setup for a) direct immersion (Tan and Chai, 2011) and b) headspace 
(Jochmann, 2006) 
 

The distribution coefficient between PDMS and water ( WPDMSK / ) is defined as the ratio between the 

concentrations of a solute in PDMS phase ( PDMSC ) over the concentration in water ( WC ) at equilibrium (Kassem, 

2011).  
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Recent studies have correlated this partition coefficient with the octanol-water partition coefficients ( WOK / ) 

which gives a good estimation on the ability of the coating to extract an analyte (Kole et al., 2011; David et al., 
2003). 

If the approximation is made, WPDMSK /  is proportional to the WOK / , it can be stated that (Lokhnauth, 2005):  

 WOPDMS KK /    =  
W

PDMS
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m   ……………………………………………………………..3 

The theoretical recovery or extraction efficiency can therefore be calculated based on the distribution constant of 

the analyte and a known phase ratio, which is expressed as the ratio of the extracted amount of solute ( PDMSm ) 

over the total amount of solute originally present in the water ( PDMSWO mmm      PDMSOW mmm  ). 

And equation (3) can be re-arranged as (David et al., 2003):  

 
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Equation (4) can be re-arranged in such a way as to determine the extraction efficiency or recovery from the water 
samples as follows:    
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Using above equation (6), analysts can calculate the extraction efficiencies for a solute with known partition 

coefficient and a given phase ratio. It is also clear that the extraction efficiency increases with increasing WPDMSK / . 

Since WPDMSK / is similar to the WOK / , extraction efficiency on PDMS, in general, decreases with increasing 

polarity. Besides, WPDMSK / factor and phase ratio (β) also are important. The higher PDMS amount and the lower 

β value results higher extraction efficiency (Kassem, 2011). 

 Figure 3 illustrates the recovery of extraction as a function of the


WOK / .  At 


WOK /  = 1 the recovery is 50%. At 

low 


WOK / the value of recovery is approximately equal to the 


WOK / while at 


WOK / value higher than 5 

extractions is essentially quantitative (Baltussen, 2000; Tredoux, 2008). The theoretical recoveries can be 
calculated for a given sample volume, selected stir-bar dimensions and a solute using the KowWIN software 

program (Syracuse Research Corp., Syracuse, New York, USA), which is based upon a log WOK / calculator 

(Kassem, 2011). 

 

Figure 3.   Recovery as a function of the ratio of octanol-water partition coefficient and phase ratio (


WOK / ) 

(Baltussen, 2000) 
 
2.3 Optimization of the Parameters that Affect SBSE Efficiency 
The efficiency of extraction of SBSE in terms of the amount extracted and the equilibrium is affected by extraction 
time, stirring speed, temperature of the sample, pH, salting and sample volume. These factors can be optimized 
individually or one can use a design of experiments approach (Kole et al., 2011). 
2.3.1 Extraction Time 
The length of extraction time is necessary to reach equilibrium in SBSE. The extraction time profile is obtained 
by first preparing samples and extracting them for progressively longer period of time and then determines the 
response for each point time (Lokhnauth, 2005). The extraction time is controlled kinetically; determined by 
sample volume, stirring speed and stir bar dimensions.  Optimization of extraction time for a given application is 
normally accomplished by measuring the analyte recovery as a function of the extraction time. Equilibrium 
condition is reached when no additional recovery is observed when the extraction time is increased further (David 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.13 No.1, 2021 

 

5 

et al., 2003). Non-equilibrium conditions can also be used in SBSE when the equilibrium time is excessively long 
and sensitivity of the technique is not of greatest concern (Lokhnauth, 2005). Comparing to non-equilibrium 
methods, equilibrium methods tend to be simpler, less expensive and more selective (Mitra, 2003). 
2.3.2 Stirring Rate 
Digitally controlled stirrers are ideal for SBSE, since it is important that all extractions are performed at the setting. 
During method development, rotation speed studies can be done by carrying out the extraction at various stirring 
speeds to determine the optimum extraction rate. During stirring, the stir bar should not be moving erratically, but 
in a stable circular motion to achieve efficient contact and allow rapid mass transfer of analyte into the PDMS. 
Extraction is efficient when fast rotational speeds are applied with the equilibration time increasingly decrease as 
the revolutions per minute (rpm) of the stir bar increases (Lokhnauth, 2005). 
2.3.3 Temperature 
Increasing the temperature of the sample, during SBSE, could potentially reduce the equilibrium time by increasing 
the diffusion coefficients of the analytes. However, increasing the temperature can lower the analyte partition 
coefficient thereby reducing the amount of analyte transferred from the sample to the stir bar coating. The optimum 
extraction temperature should be determined experimentally, which is usually accomplished by constructing a 
temperature profile for the extracted analytes. The optimization of the temperature is used to achieve the desired 
sensitivity in the shortest possible time (Lokhnauth, 2005). 
2.3.4 pH 
The pH of the sample is an important factor in SBSE when the analytes of interests are polar compounds, acids, 
or bases. In SBSE, there is only the nonpolar PDMS coating commercially available, and therefore, it is more 
important to reduce the polarity of analytes by making pH adjustments. For these types of analytes, changing the 
pH of the sample matrix determines whether the species exist as an associated or dissociated moiety, and there by 
offering method selectivity in terms of whether or not the analyte gets extracted. For example, in the PDMS coating, 
as the pH is lowered, more acidic analyte is present in neutral forms making it more likely to partition into the 
coating, resulting in higher sensitivity (Lokhnauth, 2005). 
2.3.5 Salting Effect 
Increasing salt concentrations of a sample matrix can increase or decrease the amount of analyte extracted by the 
stir bar. Due to nonpolarity of PDMS, generally, it is important to first convert the charged analytes into neutral 
forms. The solubilities of many organic compounds in an aqueous solution decrease in the presence of excess salt. 
Hence, increase the partition coefficient of analytes between the sample matrix and coating is to add salt to the 
matrix (Lokhnauth, 2005). 
2.3.6 Sample Volume 
The distribution constant determines minimum sample volume that should be used in an SBSE method. It can be 
determined experimentally. Typically, 10-50 mL sample volumes are used for the 10 mm stir bars, and up to 250 
mL sample volumes are used for the 40 mm stir bars (Lokhnauth, 2005). 
 
2.4 Rinse and Dry of PDMS Coated Stir Bar 
After an extraction has been carried out, the stir bar device is manually removed from the sample container using 
cleaned magnetic tweezers, slightly rinsed with distilled water to remove undesired sample components and finally 
dried by wiping it with a lint free tissue as shown in Figure 4 (Pettersson, 2004; Lanuza, 2010). Gentle rinsing 
would not cause any analyte loss; because, the sorbed analytes of interest present in the PDMS phase (Tan and 
Chai, 2011; David et al., 2003). 

 
Figure 4.  Rinse and drying of PDMS coated stir bar after removing from the sample (Margoum et al., 2008) 

 
2.5 Desorption Step 
Finally, the analytes must be desorbed either thermally using a designated desorption unit or by extraction with a 
suitable solvent (Pettersson, 2004). For volatile compounds, the stir bar is introduced in an empty glass thermal 
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desorption tube, and then it is placed into a Gerstel Thermal Desorption System (TDS) or Thermal Desorption 
Unit (TDU) where the analytes are thermally desorbed  (Baltussen, 2000).  Then it can be on-line transferred to 
Gas Chromatography (GC) column or GC–Mass Spectrometry (MS) system for further analysis (Corderoet al., 
2009). The desorption conditions such as desorption temperature, desorption time and flow rate of the carrier gas 
are usually optimized during method optimization. The optimum temperature for desorption of analytes from the 
stir bar is analyte dependent. Depending on the concentration and volatility of the analytes, desorption can be 
achieved between 150 oC and 300 oC in 5 to 15 min under a 10-50 mL/min gas flow. Higher flow rates are more 
desirable for effective desorption, especially if the analytes or interest are less volatile. To ensure that complete 
desorption is occurring, carryover studies can be performed by redesorbing the stir bar after the initial run (David 
et al., 2003).  

Alternatively, less volatile, non-volatile or thermally unstable analytes can removed from the stir bars using 
solvent desorption and injected into a LC or LC-MS (Feilden, 2011). When performing LD, factors such as type 
of solvent, desorption time, stirring speed and temperature must be optimized to obtain the required sensitivity 
(Kole et al., 2011). Solubility factors are important in solvent selection because the analyte should preferentially 
partition from the stir bar coating into the solvent. The most widely used are polar solvents, mainly acetonitrile 
and less used are methanol, acetone, and ethyl acetate, in which PDMS is not soluble (Corderoet al., 2009). 
Increasing temperature and stirring rate can significantly improve the desorption efficiency (Lokhnauth, 2005).   

After either thermal desorption or LD, the stir bars can be reused. To reuse, the stir bars must be cleaned with 
suitable solvent mixture for some minutes at specified temperature with magnetic stirring. This step should be 
repeated at least three times with fresh portions of the solvent mixture. After drying with a lint-free tissue, stir bar 
must be kept in a vial for the next analysis (Lanuza, 2010). Typically, the lifetime of a single stir bar is 
approximately 20 to 50 extractions, depending on the matrix (Tan and Chai, 2011).  
 
3. Instrumentation 
3.1 For Thermally Desorbing Compounds 
The instrumental set-up consists of a Gerstel TDS, a temperature programmable Cooled Injection System (CIS), a 
gas chromatograph /or, detector and readout system as shown in Figure 5 (Hoffmann and Bremer, 1994).  In this 
technique, after extraction, the stir bar is removed from the sample, placed in a glass thermal desorption tube 
(Lanuza, 2010) and then inserted into the TDS which is cooled down to subambient temperatures in order to 
prevent premature desorption (Hoffmann and Bremer, 1994). TDS uses a programmed temperature vaporizer 
(PTV) injector which is operated as a cytotrap for cryogenic refocusing of the thermally desorbed analytes (David 
et al., 2003). After purging the air out of the system, the tube is heated to the desired temperature, while the carrier 
gas flowing through the tube transfer’s the volatiles in split or splitless mode into the pre-cooled CIS, where they 
are cryofocused (Hoffmann and Bremer, 1994). Liquid nitrogen is used for cooling where temperatures as low as 
-15 oC are used (David et al., 2003). After desorption is finished, the CIS is heated to the desired temperature to 
allow split or splitless transfer of the trapped compounds to GC–MS system for further analysis. 

 
Figure 5. Schematic representation of the SBSE instrumental set-up for thermally desorbing compounds 
(Skogerson et al., 2011) 
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3.2 For Solvent Desorbing Compounds 
For thermally labile or high molecular weight compounds, the combination of SBSE and LC or LC-MS instrument 
is useful. Liquid desorption of the extracted analytes is accomplished by placing the stir bar in a vial or an insert 
containing a small amount of organic solvent, which is suitable for the target analytes.  Following sonication (Kole 
et al., 2011) or magnetic stirring, where the stir bar is used to stir the solvent (Lanuza, 2010), a portion of the 
solvent is transferred to the LC system. Detection can be accomplished by means detectors such as fluorescence 
or ultraviolet (UV) or by MS (Stopforth, 2007). The instrumental set-up for solvent desorbing compounds is given 
in Figure 6. 

 
Figure 6. Schematic representation of the SBSE liquid desorption and LC-detector instrumental set-up (Feilden, 
2011; Margoum et al., 2008) 
 
5. Comparison of SBSE and SPME 
Although SPMS is a simple and rapid technique for sample preparation, the applicability of SPMS is occasionally 
limited by the small amount of coating material that is present on the fiber. In SPMS, the maximum volume of 
PDMS coated on the fiber is 0.5 µL, thereby limiting the enrichment power of the technique and resulting in low 
extraction efficiencies. In 1999, Baltussen and co-workers introduced SBSE to enhance the low extraction 
efficiencies of compounds analysed by SPME (Lokhnauth, 2005; Lanuza, 2010). It is based on the same principles 
as SPME, because both techniques are based on equilibrium processes but a much larger PDMS polymer is coated 
on a stir bar (David et al., 2003). In the SBSE technique, 55-219 µL PDMS coatings have been used (Lokhnauth, 
2005), which is about 100-300 times more than that of in SPME (Pettersson, 2004).  This result an increased 
sensitivity factor of 100 to 1000 compared to SPMS (Lokhnauth, 2005).  Since a larger volume of sorbent has been 
used, a greater amount of analyte will be extracted and a higher extraction efficiency (Lanuza, 2010). However, 
since larger volumes of PDMS are used in SBSE than in SPME, more time is required to reach equilibrium because 
more analyte mass will be transferred to the PDMS sorbent phase  (Mitra, 2003) and the desorption process is 
slower than that for a SPME fiber, and thus desorption combined with cold trapping and re-concentration is 
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required (David et al., 2003). 
As mentioned above, the maximum volume of stationary phase coated onto an SPME fiber is ca. 0.5 μL. This 

implies that for a sample volume of 10 mL, the phase ratio equals 2 ×104 and therefore quantitative extraction can 

only be obtained for compounds with a WOK / higher than 105 (Tredoux, 2008). Since only a very limited number 

of compounds exhibit such high WOK / values, quantitative extraction unlikely occur in SPME. In SBSE on other 

hand, the situation is much more favorable to achieve quantitative extraction. A stir bar coated with 100 µL of  

PDMS, used to extract 10 mL sample of water exhibits a β of 100, which implies that analytes with a WOK / in 

excess of 500 can be extracted quantitatively by SBSE. This ensures a significant increasing of sensitivity for those 

analytes with a WOK / below 105 (Lokhnauth, 2005). Figure 7 shows that the theoretical recovery of analytes in 

SBSE and SPME from 10 mL water sample as a function of WOK / .   

 
Figure 7. Theoretical recovery of SBSE and SPME as a function of WOK /  of analytes (Tredoux, 2008) 

 
6.  Advantages and Limitations of SBSE 
The main advantages of SBSE derive from the fact that this technique is simple to apply; solvent-free extraction 
technique provides quantitative analysis with extremely low detection limits (sub ppb) or highly sensitive, has 
excellent bar-to-bar reproducibility and is inexpensive, every bar can be re-used many times and repeatable 
(Corderoet al., 2009). 

On the other hand, it has also some limitations or drawbacks. One of the drawbacks is related to the fact that 
the coated stir bar cannot be directly desorbed in a simple split/splitless injection port of a GC. Hence first the 
analyte has to be introduced in a TDU, which adds an additional step to the overall analytical method (Tan and 
Chai, 2011). For less volatile compounds, the twister can be solvent back-extracted and injected into an LC or LC-
MS, but the efficiency of this step is typically far less than the thermal desorption approach (Feilden, 2011).  Also 
to be kept in mind is that the high sensitivity SBSE offers may not always be an advantage when extracting 
compounds present in higher concentrations as this often results in column overload. Furthermore, SBSE requires 
thermal desorption instrumentation, and as yet cannot be fully automated (Tredoux, 2008) because the tray 
transfers each desorption tube to the TDU by mechanical means (Stopforth, 2007) and removing the stir bar from 
the sample and drying the stir bar are performed manually, which can introduce errors. Automation of these steps 
is possible but this increases the cost and complexity of the hardware involved (Tan and Chai, 2011). Therefore, 
the cost of full instrumentation is high (Lanuza, 2010). The extraction procedure also is time-consuming 
(Pettersson, 2004). 

However, the most important limitations of SBSE are related to the coating of stir bars. The non- polar PDMS 
is at present the only polymer commercially available as a coating for stir-bars (Tan and Chai, 2011).   Because of 
the non-polar character of PDMS, SBSE is mainly applied to extract non-polar and weakly polar compounds, and 
fails in the extraction of strongly polar compounds (Huang et al., 2009).  It only can be applied to medium-high 
volatility and medium-high thermally stabile analytes if a thermal desorption is to be employed, and  only a few 
solvents compatible with PDMS can be adopted for analyte liquid desorption, sampling times are long when larger 
volumes of PDMS are used (Corderoet al., 2009). 
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7. Applications of SBSE 
SBSE has been successfully applied in environmental, food and biological samples (Lokhnauth, 2005).  
 
7.1 Environmental Analysis 
SBSE has been applied successfully in environmental analysis such as water and soil. This application includes 
volatile aromatics, halogenated solvents, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticide, 
acidic pharmaceuticals and organophosphorus pesticides and insecticides (Farajzadeh et al., 2010). Semi-
automated stir bar sorptive extraction in combination with HPLC-fluorescence detection is used for the 
determination of PAHs in water (Hauser et al., 2002). 
 
7.2 Food Analysis 
Another successful application area of SBSE is the determination of minor food ingredients and food contaminants. 
This technique has been used to extract analytes from non-alcoholic and alcoholic beverages, dairy products, 
flavour and offflavour compounds in different food matrices (David et al., 2003). It has also a great application in 
determination of organic compounds in fruits and vegetables samples (Lokhnauth, 2005). The combination of 
SBSE-GC-MS with chemometrics is used for the analysis of a variety of volatile compounds in a red wine sample. 
This method is characterized by high sensitivity due to the large amount of sorptive phase used for SBSE, 
repeatability and robustness (Tredoux, 2008).  
 
7.3 Biological Fluids Analysis 
SBSE can also be applied to the determination of organic compounds in biological fluids (David et al., 2003). 
Various substances have been extracted from serum, plasma or urine.  Analytes that have been successfully 
extracted from these matrices include phenols, steroids, fatty acids and drugs of abuse. The determination of 
polynuclear aromatic hydrocarbons in urine and the polychlorinated biphenyls in sperm are other applications of 
SBSE (Lokhnauth, 2005). SBSE technique has many practical advantages, including a small sample volume (1 
mL) requirement, simplicity of extraction, solvent-free and high sensitivity (Kawaguchi et al., 2008).  
 
8. Conclusion 
Stir bar sorptive extraction is a solventless extraction and concentration technique that can be used successfully to 
determine low traces of organic compounds in aqueous matrices, including water samples, biological fluids and 
food samples. Due to the high amount of PDMS coated on the stir bar, high sensitivity can be attained for the pre-
concentration of a wide range of compounds. As well-known limitation of this technique is the fact that only one 
sorbent (PDMS) is commercially available until this review was written. This limits the application of SBSE 
technique to the analysis of non-polar and some intermediate polarity compounds. Considering its applications in 
environmental analysis, biological analysis and food analysis, if it is joined with developments of new sorbents, 
interfaces, and analytical approaches, it can be concluded that SBSE certainly will occupy an important role as a 
major sample preparation micro technique in the near future. 
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