
Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.14 No.3, 2022 

 

18 

Batch-to-Batch Iterative Learning Control of a Fed-Batch 
Fermentation Process  

 
Nwamaka Linda Okoli 1*      Franklin Okoro 2 
1. University of Newcastle, United Kingdom 

2. CleanScript Group, Nigeria 
* E-mail of the corresponding author: f.okoro@cleanscriptgroup.com 

 
Abstract 
In this work, Iterative Learning Control on a fed-batch fermentation process using linearised models has been 
studied. The repetitive nature of batch processes enables ILC to obtain information from a previous batch in order 
to improve the performance of the current batch such that the product quality converges asymptotically to the 
desired trajectory The basic batch to batch ILC law presents the control action of a current batch as a summation 
of the control action from the previous batch and the deviation of the output trajectory from the desired reference 
trajectory incorporation with a learning rate. In a bid to address the issue of the process non-linearity, the control 
policy and the output trajectory were linearised around their respective nominal trajectories. The linearised models 
were then identified using Multi Linear Regression (MLR), Principal Component Analysis (PCR) and Partial Least 
Squares (PLS). In order to curb the effects of plant-model mismatches and process variations, the linearised models 
were reidentified after each batch operation. This was done by selecting the immediate previous batch as the 
nominal batch and then adding the recently obtained process data into the historical data batch on completion of 
the current batch run. The weighting matrices in the objective function were carefully selected taking into 
consideration that they have a major influence on the robust performance of the process. In using PLS and PCR 
models the issue of process collinearity was effectively addressed. The proposed batch to batch ILC strategy was 
applied to a simulated fed-batch fermentation process for the production of secreted protein. The results of the 
optimal control policy were comparable to that obtained in using full mechanistic model. ILC, a simple but yet an 
effective optimal control strategy has demonstrated to be a viable option in complex processes such as batch 
processes where mechanistic models are difficult to develop.      
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1. Introduction 
In a batch process, the fermentation process is carried out with the addition of substrate or removal of the products 
during the course of the process. However, oxygen, an antifoam agent, and acid or base is added to control the ph. 
On completion of the batch run, the products are taken out and the reactor is cleaned out for another run. Fed-batch 
fermentation is an extension of the batch process. It involves the injection of nutrients into the bioreactor during 
fermentation in which the product(s) remain in the bioreactor till the batch run ends (Yamanè and Shimizu, 1984). 
In a fed-batch process the medium is supplemented with nutrients that are depleted or that may be needed for the 
terminal stages of the culture. Following that there is no withdrawal of liquid, the volume of the reactor increases 
till the final batch time. The difference between fed-batch and batch operation is that in the former feed is 
continuously supplied. An obvious advantage of fed-batch operation is that nutrient levels are continuously varied 
to achieve favorable growth conditions without significant risk of culture contamination (Henson, 2006). Over the 
years, fed batch process has been preferred over the normal batch process in the manufacturing industry. 
Production of by-product is a major threat in any production process. Fed batch fermentation limits the production 
of bye products by controlling the growth limitation of substrate. 

Due to the ever-increasing market competition and need for high value-added products, there is a growing 
need to develop optimal control strategies in the manufacturing industry. Lot of researchers have made efforts to 
come up with different optimal control strategies each with its success and limits. In order to come up with a good 
optimal strategy, the dynamics of the process involved have to be well understood. According to Van Impe and 
Bastin (1995), the design of high-performance model-based control algorithms for batch processes is limited by 
two major problems. Firstly, due to the complexity of these processes, their kinetics are poorly understood 
nonlinear functions coupled with the parameters that are generally time-varying. Secondly, there is a limitation of 
reliable online sensors suitable for real-time monitoring of the process variables. This calls for an adequate optimal 
solution. Attempts have been made in the use of mechanistic models to describe these processes. However due to 
their complex nature developing mechanistic models can be time consuming, costly and at the end can turn up 
being unrealistic. A lot of researchers have deemed it wise to resort to data-based methods to solve this growing 
need. Data based methods are empirical methods that develops a relationship between the measured inputs to the 
outputs that describe the process response to changes in inputs (Cinar et al, 2003). An important objective of batch 
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processes lies in improving the performance of the process from batch to batch. Due to the repetitive nature of 
these processes, information from the previous batches can provide an insight on how to improve subsequent 
batches. Most learning control strategies utilize this set of information. Iterative learning control is one of such 
promising methods. 

Iterative Learning Control (ILC) is an optimal control strategy that tries to address the problem of transient 
response performance for systems that operate in a repetitive manner. (Moore, 2006). It adjusts the process feed 
rate based on the errors observed from past operation. (Moore, 2006). ILC overcomes the shortcomings posed by 
the need for a complete and accurate knowledge on the process model before a desired product quality is achieved. 
Utilizing the information on the control policy and error on the previous batch, it iteratively updates the input from 
trial to trial till the desired reference trajectory is achieved. In order to avoid plant model mismatches and unknown 
disturbances, the basic approach to ILC is to linearise the process around a fixed nominal control trajectory. 
However significant batch to batch variation could lead to the optimal control strategy becoming prone to error 
and failing in its principal objective of achieving the desired trajectory. To overcome this limitation, the linearised 
models are preferably updated after each batch operation. In doing this, the non-linear behaviour of processes such 
as fermentation is fully addressed. 

ILC has relatively become well established in the area of optimal control. ILC is a form of an intelligent 
control which overcomes the shortcomings of traditional controller design. Its application is mostly found in 
complex systems which operate in a repetitive manner. With issues of non-linearity and complexity mostly 
associated with batch processes, ILC has become a good optimal control option for most batch related industries 
due to its ability to address these issues. In this study, the specific objectives included to: develop an ILC strategy 
for a fed batch bioreactor for the production of secreted protein to address model-plant mismatches and unknown 
plant disturbances, generate and compare the performance of different linearised models used in developing the 
batch to batch ILC strategy (the model parameters were generated using Multiple Linear Regression (MLR), Partial 
Least Square (PLS) and Principal Component Regression (PCR)), and to compare batch to batch ILC performance 
based on fixed and updated model parameters, control policy and product quality.  
 
2. ILC Algorithm 
Arimoto et al. (1984) was the first to formulate a basic ILC algorithm. This is represented in Figure 1. 

 
Figure 1: Standard iterative learning control Strategy (Moore, 2006) 

From Figure 1, the learning controller uses the memory stored up as the control policy for the current trial 
𝑢௞(𝑡) and the memory of the error, 𝑒௞(𝑡) which is the difference between the current trial’s output 𝑦௞(𝑡) and the 
desired trajectory, 𝑦ௗ(𝑡)  to update the next control policy for the next trial 𝑢௞ାଵ(𝑡) . 𝑢௞ାଵ(𝑡)  becomes a 
summation of control profile and the process tracking error from the immediate previous trial. This process is 
continued iteratively until 𝑦௞  converges to the desired reference trajectory. Therefore, an ILC algorithm operates 
in such a mode that the input is made better from trial to trial till the process output reaches the desired trajectory. 
From Figure 1, a typical ILC algorithm can be deduced as;  
𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + 𝐿𝑒௞(𝑡)                                                (2.1) 
𝑒௞(𝑡) = 𝑟(𝑡) − 𝑦௞(𝑡)                                                 (2.2) 
Where 𝐿 is the learning rate. 
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Besides the general algorithm above, so many researchers have suggested different forms of basic algorithm. Some 
do not require prior knowledge of the plant model while some need a mathematical representation of the plant 
(Cai, 2009). These algorithms are summarised by Cai (2009) and is shown in Table 1. 
Table 1: Basic ILC Algorithms in Equations 

Algorithm Equations 
D-type ILC  𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + 𝐿�̇�௞(𝑡) 
P-type ILC  𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + 𝐿𝑒௞(𝑡) 
PID-type ILC  𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + 𝐾௣𝑒௞(𝑡) + 𝐾௜ ∫ 𝑒௞(𝑡)𝑑𝑡 + 𝐾ௗ �̇�௞(𝑡) 
Higher order ILC  𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + ∑ 𝛽௡(𝑡)𝑒௟(𝑡)ே

௡ୀ଴  
Phase lead ILC  𝑢௞ାଵ(𝑡) = 𝑢௞(𝑡) + 𝐿𝑒௞(𝑡 + 𝜏), 𝜏 ∈ ℤ 
Forgetting factors  𝑢௞ାଵ(𝑡) = 𝛽[𝑢௞(𝑡) + 𝐿𝑒௞(𝑡)] 

 
Nonlinear Representations of Batch Processes 
Batch processes are usually non-linear. In order to address this issue, a mathematical representation of batch 
process non-linearity is given as reviewed by (Xiong and Zhang, 2003). Consider a batch process with a fixed 
batch run length (𝑡௙) and 𝑁 sampling intervals  

where  𝑁 = 𝑡௙/ℎ 

ℎ= sampling time 
The variables of the product quality which are the outputs is represented as 𝑦 ∈ 𝑅௡ 𝑤𝑖𝑡ℎ 𝑛 ≥ 1. This can be 
obtained off-line by analyzing the samples taken during the batch run. The manipulated variable is represented as 
𝑢 ∈ 𝑅௠ 𝑤𝑖𝑡ℎ 𝑚 = 1. This can be measured at each sampling time on-line. The product quality is defined as; 
𝑌௞ = [𝑦௞

்(1), 𝑦௞
்(2), … . . 𝑦௞

்(𝑁)]்                                         (2.3) 
The control trajectories can be defined as; 
𝑈௞ = [𝑢௞

்(0), 𝑢௞
்(1), … . . 𝑢௞

்(𝑁 − 1)]்                                         (2.4) 
Where 𝑘=batch index 
The desired reference trajectories of product quality are defined as; 
𝑌ௗ = [𝑦ௗ

்(1), 𝑦ௗ
்(2), … . . 𝑦ௗ

்(𝑁)]்                                            (2.5) 
In as much as a batch operation is modelled with a dynamic model, it would be much easier to consider a static 
function relating the control sequence to the product quality sequences over the whole batch duration (Lee et al, 
1999). In consideration of the casualty, a product variable 𝑦௞(𝑡), at time 𝑡, is a nonlinear function of all control 
actions up to time 𝑡, 
 𝑈௞(𝑡) = [𝑢௞(0), 𝑢௞(1), … . . 𝑢௞(𝑁 − 1)]் that is; 

𝑦௞(𝑡) = 𝑓௧൫𝑈௞(𝑡)൯ + 𝑣௞(𝑡),   𝑡 = 1, 2, … . , 𝑁; 𝑦௞(0) = 𝑦଴                        (2.6) 

Where 𝑓௧(∗) is the nonlinear function between 𝑈௞(𝑡) and 𝑦௞(𝑡) 
𝑣௞(𝑡) is the measurement noise at time 𝑡 
Equation (2.6) can be rewritten in matrix form as; 
𝑌௞ = 𝐹(𝑈௞) + 𝑣௞                                                        (2.7) 
Where 𝐹(∗) is the nonlinear function relating  𝑈௞(𝑡) to 𝑦௞(𝑡) at different sampling times. 
𝑣௞ , is a vector of measurement noises represented as [𝑣௞(0), 𝑣௞(1), … . . 𝑣௞(𝑁 − 1)]் 
 
Linearisation of nonlinear batch process model 
This is done by linearising the non-linear model around some nominal trajectories. Nominal trajectories can be 
chosen as the mean profile of all the past control trajectories and its corresponding output trajectories, best batch 
data which is reidentified after every batch run, or immediate previous batch data which is updated after every 
batch run (Jewaratham, 2013).  
Let the nominal control trajectory be defined as; 
𝑈௞ = [[𝑢௦(0), 𝑢௦(1), … . . 𝑢௦(𝑁 − 1)]்  ]                                         (2.8) 
The corresponding product quality trajectory can be defined as; 
𝑌௞ = [𝑦௦

்(1), 𝑦௦
்(2), … . . 𝑦௦

்(𝑁)]்                                         (2.9) 
Where the subscript 𝑠 denotes the nominal batch and 𝑦௦(0) = 𝑦଴ 
Linearizing the nonlinear batch process model described by eqn. 2.7 with respect to 𝑈௦  around the nominal 
trajectories (𝑈௦ , 𝑌௦ ), the following equation is obtained; 

 𝑌ௗ = 𝑌௦ +
డி(௎ೖ)

డ௎ೖ
|௎ೞ

(𝑈௞ − 𝑈௦) + 𝑤௞ + 𝑣௞                          (2.10) 
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Where 𝑤௞  is a matrix of model errors due to linearization and is represented as;  
[𝑤௞

்(1), 𝑤௞
்(2), … . . 𝑤௞

்(𝑁)]் 
𝑣௞ represents the effects of noise and unmeasured disturbances. 
The model parameter, 𝐺௦ is represented as; 

𝐺௦ =
డி(௎ೖ)

డ௎ೖ
|௎ೞ

                                                 (2.11) 

It should be noted that 𝐺௦ is known as linear time varying because it varies with 𝑈௦ which is updated from batch 
to batch. 
The structure of 𝐺௦ is restricted to the following lower-block-triangular form because of the causality 

𝐺௦ = ൦

𝑔ଵ଴ 0 … 0
𝑔ଶ଴ 𝑔ଶଵ … 0

⋮ ⋮ ⋱ ⋮
𝑔ே଴ 𝑔ேଵ … 𝑔ேேି

൪                               (2.12) 

Where 𝑔௜௝ ∈ 𝑅௠  
 
Linear Time-Varying Perturbation Models 
The perturbation variable of the control and product quality variables are defined as: 
𝑈ഥ௞ = 𝑈௞ − 𝑈௦                                              (2.13) 
The perturbation variable of the product quality variables is defined as; 
𝑌ത௞ = 𝑌௞ − 𝑌௦                                                           (2.14) 
 The linearized time-varying perturbation model is then obtained from eqn. 2.10 as; 
𝑌ത௞ = 𝐺௦𝑈ഥ௞ + 𝑑௞                                                           (2.15) 
Where 𝑑௞, the model disturbance sequence is defined as; 
𝑑௞ = 𝑤௞ + 𝑣௞                                                             (2.16) 
This is bounded by small positive constant 𝐵ௗ such that 
𝑑௞ < 𝐵ௗ                                                              (2.17) 
 
Optimal Iterative Learning Control of Batch Processes 
Offsets usually occur in batch processes as a result of modelling errors and unmeasured disturbances. This is 
because of the process nonlinearity and linearization of perturbation model around the nominal operation 
trajectories (Xiong and Zhang, 2003). Corrections can be made to the predictions of the perturbation model by 
addition of the model prediction residuals of previous batch runs (Xiong and Zhang, 2003).   
The prediction of the perturbation model is defined as; 

𝑌෡௞ = 𝐺෠௦𝑈ഥ௞                                   (2.18) 
The absolute model prediction is given as; 

𝑌෠௞ = 𝑌௦ + 𝑌෡௞ = 𝑌௦ + 𝐺෠௦𝑈ഥ௞                                 (2.19) 
On completion of the kth batch run, prediction errors between off-line-measured or analysed product qualities and 
their model predictions can be calculated as; 

𝜀௞ = 𝑌௦ − 𝑌෠௞ = 𝑌ത௞ − 𝑌෡௞                                 (2.20) 
The modified prediction of the perturbation model in the (k + 1)th batch run is obtained in on the basis of the 
prediction errors of the kth batch run as; 

𝑌෩௞ାଵ = 𝑌෡௞ାଵ + 𝜀௞                                                (2.21) 
Defining the absolute modified model prediction; 

𝑌෨௞ାଵ = 𝑌෠௞ାଵ + 𝜀௞ = 𝑌௦ + 𝑌෡௞ାଵ + 𝜀௞                                (2.22) 
The modified prediction error becomes; 

𝜀௞̃ାଵ = 𝑌௞ାଵ − 𝑌෨௞ାଵ = 𝑌ത௞ାଵ − 𝑌෩௞ାଵ                               (2.23) 
From equations 2.19 and 2.20; 
𝜀௞̃ାଵ = 𝜀௞ାଵ − 𝜀௞                                 (2.24) 
It is assumed that that the prediction error of the perturbation model is bounded by a certain small positive constant 
𝐵௠ such that 
|𝜀௞| < 𝐵௠                                 (2.25) 

 𝐵௠ is a measure used to represent the deviation of 𝑌෡௞  from 𝑌ത௞ or 𝑌෠௞ from 𝑌௞. The modified prediction error is 
bounded by 2𝐵௠; 
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|𝜀௞̃| < |𝜀௞| + |𝜀௞ିଵ| < 2𝐵௠                              (2.26) 
The structure of the modified prediction based optimal ILC is shown in figure 2; 

 
Figure 2: Modified Prediction-based optimal ILC (Xiong and Zhang, 2003) 
Figure 2 gives a summary of the optimal ILC for batch-to-batch process. The control trajectory 𝑈௞  is implemented 
at the kth batch run. On the completion of the batch run, the product qualities 𝑌௞ is obtained by off-line analysis 
of samples taken during the batch run. The model prediction errors 𝑒௞  are then evaluated and used to correct the 

model predictions for the next batch (Xiong and Zhang, 2003). Based on the modified predictions 𝑌෩௞ାଵ, a new 
control policy 𝑈௞ାଵfor the next batch is calculated using the ILC law. At the next batch, this procedure is repeated 
until the desired trajectory is attained. 
The tracking errors of the process and of the perturbation model, are defined respectively as; 
𝑒௞ = 𝑌ௗ − 𝑌௞ = 𝑌തௗ − 𝑌ത௞                                     (2.27) 

�̂�௞ = 𝑌ௗ − 𝑌෠௞ = 𝑌തௗ − 𝑌෡௞                                    (2.28) 
Where 𝑌തௗ is the deviated desired trajectory and defined as; 
𝑌തௗ = 𝑌ௗ − 𝑌௦                                       (2.29) 
The tracking error of the modified prediction of the perturbation model is defined as; 

�̃�௞ = 𝑌ௗ − 𝑌෨௞ = 𝑌തௗ − 𝑌෩௞                                     (2.30) 
From eqns. 2.18, 2.27, and 2.30, the following relationships among the three tracking errors can be obtained; 
𝜀௞ = �̂�௞ − 𝑒௞                                       (2.31) 
�̃�௞ = �̂�௞ − 𝜀௞ିଵ                                       (2.32) 
From eqns. 2.18 and 2.28, an iterative relationship for �̂�௞along the batch index k can be obtained as; 
�̂�௞ାଵ = �̂�௞ − 𝐺෠௦∆𝑈ഥ௞ାଵ                        (2.33) 
Where ∆𝑈ഥ௞ାଵ is defined as; 
∆𝑈ഥ௞ାଵ = 𝑈ഥ௞ାଵ − 𝑈ഥ௞                          (2.34) 
From eqn. 2.10 
∆𝑈ഥ௞ାଵ = 𝑈ഥ௞ାଵ − 𝑈ഥ௞ = 𝑈௞ାଵ − 𝑈௞                        (2.35) 
 Substituting of eqns. 2.29 and 2.31 into eqn. 2.32; 
�̃�௞ାଵ = �̂�௞ାଵ − (�̂�௞ − 𝑒௞) = 𝑒௞ − 𝐺෠௦∆𝑈ഥ௞ାଵ                     (2.36) 
Eqn. 2.31 can be rewritten as; 
𝑒௞ = �̂�௞ − 𝜀௞                           (2.37) 
From eqns. 2.31 and 2.33, an iterative relationship for 𝑒௞ along the batch index k can also be obtained as 
𝑒௞ାଵ = 𝑒௞ − 𝐺෠௦∆𝑈ഥ௞ାଵ − 𝜀௞̃ାଵ                        (2.38) 
Given the error transition model in the form of eqns. 2.36 and 2.38, the objective of ILC is to design a learning 
algorithm such that the product qualities follow the specific desired reference trajectories by manipulating the 
control policy. According to Lee et al (2007) the learning algorithm is expected to have the following property;  
lim

௞→ஶ
||𝑒௞||ଶ

ொ
= min

௎
||𝑒||ଶ

ொ
                        (2.39) 

By the certainty-equivalence principle (Lee et al.,1997), solving the following quadratic objective function using 
the modified prediction errors upon completion of the kth batch run to update the input trajectory for the (k + 1)th 
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batch run is considered; 

𝐽௞ାଵ = min
∆௎ೖశభ

ଵ

ଶ
[�̃�௞ାଵ + 𝑄�̃� 

்
௞ାଵ + ∆𝑈ഥ௞ାଵ 𝑅∆𝑈ഥ 

்
௞ାଵ]                      (2.40) 

where 𝑄 and 𝑅 are positive-definitive matrices. 𝑄 is the weighting for product quality control errors while 𝑅 is 
the weighting for control action. It can be noticed that the objective function, eqn. 2.40, has a penalty term on the 
input change ∆𝑈ഥ௞ାଵ between two adjacent batch runs, and the algorithm has an integral action with respect to the 
batch index 𝑘. Careful consideration should be made when selecting the weighting matrices 𝑄 and 𝑅. A larger 
weight on the input change will lead to more conservative adjustments and slower convergence. For the sake of 
simplicity, 𝑄 and 𝑅 are selected in this study as 𝑄 = 𝜆௤𝐼ே and 𝑅 = 𝜆௥𝐼ே. By finding the partial derivative of the 

quadratic objective function, equation 2.40 with respect to the input change ∆𝑈ഥ௞ାଵ  and performing 
straightforward manipulations, the following ILC law is obtained; 
∆𝑈ഥ௞ାଵ = 𝐾෡𝑒௞                             (2.41) 
Where 𝐾෡ is known as the learning rate 
𝐾෡ = [𝐺෠௦ 𝑄𝐺෠ 

்
௦ + 𝑅]ିଵ𝐺෠௦ 𝑄 

்                              (2.42) 
From eqns. 2.35 and 2.41, the ILC law for the control trajectory is written as 
𝑈௞ାଵ = 𝑈௞ + 𝐾෡𝑒௞                              (2.43)  
 
3. Simulation of Fed batch Reactor 
The process considered in this work is the fed batch reactor for the production of secreted protein. The process’ 
dynamic models presented here are adapted from work done by Park and Ramirez (1988) on optimal production 
of secreted protein. Baker’s yeast was used as the host organism. The state variables in the fed batch reactor are 
described by the following differential equations: 

�̇�ெ = 𝐴(𝑆)(𝑃் − 𝑃ெ)
௤

௏
𝑃ெ                                               (3.1) 

�̇�் = 𝐵(𝑆) −
௤

௏
𝑃்                                                 (3.2) 

�̇� = 𝐶(𝑆)𝑋 −
௤

௩
𝑋                                                              (3.3) 

�̇� = −𝑌𝐶(𝑆)𝑋 +
௤

௩
(𝑚 − 𝑆)                                                 (3.4) 

�̇� = 𝑞                                                                (3.5) 
Where  

𝐴(𝑆) = 𝜙(𝜇௫) =
ସ.଻ହ஼(ௌ)

଴.ଵଶା஼(ௌ)
                                                (3.6) 

𝐵(𝑆) = 𝑓௣(𝑆) =
ௌ௘షఱೄ

଴.ଵାௌ
                                                   (3.7) 

𝐶(𝑆) = 𝜇௫(𝑆) =
ଶଵ.଼଻ௌ

(ௌା଴.ସ)(ௌା଺ଶ.ହ)
                                                (3.8) 

The state variables are defined as the following; 
𝑃ெ = Amount of secreted protein on a unit culture volume basis 
𝑃் =  Total amount of protein on a unit culture volume basis 
𝑋 = Culture cell density, 𝑔/𝑙 
𝑆 = Culture glucose concentration, 𝑔/𝑙 
𝑉 = Culture Volume, 𝑙  
Other parameters include; 
𝑞 = Feed flow rate, 𝑙/ℎ. This is the control variable which is the rate at which glucose is fed to the reactor. 
𝑚 = Glucose concentration of the feed stream, 𝑔/𝑙 
𝑌 = Yield of glucose (g)/cell mass (g) 
𝜙 = Protein secretion rate 
𝑓௣ = Protein expression rate 

 𝜇௫ = Specific growth rate of the host cell 
 The process initial conditions are set as; 
𝑃ெ(𝑡଴) = 0, 𝑃்(𝑡଴) = 0, 𝑋(𝑡଴) = 1.0 𝑔/𝑙,  𝑆(𝑡଴) = 5.0 𝑔/𝑙,  𝑉(𝑡଴) = 1𝐿,  𝑚 = 20 𝑔/𝑙 , 𝑌 = 7.3, 𝑡௙ =

15ℎ 
In this work, glucose is chosen as the substrate. The process input and output are the feed rate and the amount 

of secreted protein respectively. From equations 3.1 to 3.4 the ratio 
௤

௏
 represents the dilution rate, that is, dilution 

of each of the state variable as the feed is added during operation. It is important that this ratio remains less than 
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the specific growth rate of the cells in order to avoid washout of cells from the bioreactor. As can be seen in 
equations 3.6, 3.7 and 3.8, the different rates are all functions of the substrate. Aiba et al. (1968) on their study of 
the kinetics of product inhibition in alcohol fermentation discovered that the specific growth rate of cells is 
significantly reduced by ethanol accumulation. However, in order to avoid additional complexity, the effect of this 
accumulation is not considered in this work since it does not change the control strategy for the optimization 
problem (Park and Ramirez, 1988). 

The objective in this study is to maximize the secreted protein at the final batch time by manipulating the feed 
rate known as the control policy. Thus, the performance index is formulated as: 
 𝑄 = 𝑃ெ(𝑡௙)𝑉(𝑡௙) 
The feed rate is bounded by; 
 0 𝐿/ℎ ≤ 𝑞 ≤ 10𝐿/ℎ 

For the purpose of this work, the batch time was divided into 10 equal stages with a constant feed rate at each 
stage after which there was only one output at the end of each batch run. The baseline control policy used for this 
work was gotten from that reported by Xiong and Zhang (2003) in comparison to the control policy from the 
mechanistic model from Park and Ramirez, (1988) and that from augmented recurrent neural network. This is 
shown in Figure 3. 

 
Figure 3: Fed batch reactor Control Policy. (Xiong and Zhang, 2003) 
The control policy on dotted lines represents that from mechanistic model while the control policy on solid lines 
represents that from neural networks. It can be seen from this figure that both profiles are quite close. Therefore, 
the combination of these two is used as a guideline in selecting the baseline control profile in this study. This is 
given as;  
𝑞 = [0.3, 0.3, 0.5, 0.8, 1.9, 2.5, 0.1, 1.2, 1.1, 1.5] 
With the initial conditions, the simulation of the fed batch reactor was performed using MATLAB software where 
ODE45 function was implemented to solve the differential equations. After simulation with the baseline control 
policy the corresponding amount of secreted protein evaluated is 20g. Random perturbations are added to the 
baseline policy to generate the rest of the control policies for other batches. ILC algorithm parameters are obtained 
using the data from this simulation. Profiles of the state variables after simulation with the control profile is shown 
in figures 4 to 7. 
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Figure 4: Cell Density 

 
Figure 5: Glucose Concentration 

 
Figure 6: Amount of secreted protein, 𝑷𝑴𝑽   
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Figure 7: Total amount of protein, 𝑷𝑻𝑽   

From these figures, it is observed that at the beginning of the fermentation process, the substrate shows an 
increase after the initial condition of 5g/l. However, it can be noticed that increase in the substrate above its initial 
condition does not show any significant change in the cell growth. This is because the initial condition 5g/l is 
chosen such that it supports the maximum growth rate of cells. As the batch time progresses the glucose gradually 
gets consumed. At this stage it is being utilized for the cell growth. This stage is important because it is in the cells 
that the secretion and expression of protein occur. However, formation of protein does not occur at this stage due 
to catabolic repression. As the glucose consumption increases, the cell growth increases exponentially. At the 
depletion of the substrate which is at a very low concentration of glucose, the formation of secreted and total 
protein is formed building up to 25 g and 27g respectively while the cell growth remains stationary at about 2.7g/l 
till the end of batch time. 

Developing mechanistic model for processes such as fed batch processes are usually difficult. However, Park 
and Ramirez (1988) successfully developed such models for the secretion of protein in fed batch reactors. The 
kinetic model for protein secretion in a fed batch reactor was given here. The initial conditions for the process 
were also outlined and plots of the various state variables were shown to understand the mechanism of the 
fermentation process. Subsequently, the plots will be compared to those obtained after the application of the ILC 
algorithm to the simulated model. Successful works done using this reactor model show that the set of differential 
equations defining the process is reliable.    
 
4. Methodology 
Linearised Model Building 
In order to build the ILC models, 30 historical batch runs were selected for this work. These batch runs initially 
consist of the input which is the feed rate. Each batch length is divided in 10 equal intervals and at each interval 
the feed rate is maintained at a constant value. Thus, each batch is regarded as a control profile or policy. The 
baseline control policy was gotten based on that reported by Xiong and Zhang (2003) as shown in section 3. The 
rest of the batches were then generated by adding random perturbation to the initial control policy. The batch time, 
𝑡௙ as earlier mentioned is taken as 15ℎ and the sampling time as 0.10ℎ therefore each feed rate in a batch is 

introduced at the specified sample time for a duration of 15ℎ. The desired performance index, 𝑃ெ(𝑡௙)𝑉(𝑡௙) is set 

as 27𝑔. This is set slightly higher than that achievable in a normal batch run in order to demonstrate the ability of 
ILC in achieving the maximum amount of product obtainable. 
The procedure for the model building is outlined as follows; 

 The data is divided into 20 sets of training data and 10 sets of testing data. The control profiles are 
represented in MATLAB as; 

U=[u(1),u(2)………., u(30)]; 
 The output Y which is mass of the secreted protein is obtained at the end of each batch run and is 

represented as; 
Y=[y(1),y(2)………., y(30)]; 
It is noted that a single output is expected from each batch run so the model is in form of a multiple input- single 
output (MISO) model. 

 The nominal input and output trajectories are then defined as last batch in the historical database, both 
for testing and training data  
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 For the perturbation variables, the nonlinear function is linearized around 𝑈௞   and its corresponding 
output set of data 𝑌௞ is generated. This is done by subtracting their respective nominal trajectories from 
the corresponding historical batches. 

 The model parameters are then estimated using MLR, PCR and PLS. It is to be noted that the models 
relate the input to the output. Thus, they are of the form; 

𝑌 = 𝜃ଵ𝑥ଵ + 𝜃ଶ𝑥ଶ + ⋯ + 𝜃ே𝑥ே 
Where 𝜃 is the model parameters and 𝑁, the no of stages = 10 
Once the model parameters are evaluated, the batch-to-batch ILC is applied to the process. This is outlined as 
follows; 

 The weighting matrix 𝑄 𝑎𝑛𝑑 𝑅 = 𝜆𝐼 are selected. 𝐼 is a 10 × 10 identity matrix. The value of 𝑅 is 
selected based on that which converges faster to the desired trajectory.  

 The control action also known as the learning rate is calculated using equation 2.42  
 The tracking error for the current batch is calculated using equation 2.38. The control policy for the 

next batch is then estimated using equation 2.43. This is followed by generating the next batch of 
output data.  

 This previous step is repeated till the last batch.  
For the updated models the model parameters, control profiles, 𝑋 and output, 𝑌 are re- estimated after each batch. 
This is done as follows; 

 For kth batch, the nominal trajectory is selected as the control profile and product quality of the 
immediate previous batch. 

 As in the previous procedure, the perturbation variable is obtained by linearizing the nonlinear function 
around 𝑈௞   and its corresponding output set of data 𝑌௞. 

 The model parameters are estimated. 
 On completion of the current batch run, the new set of input, 𝑈௞    and output, 𝑌௞ are added to the initial 

historical set of data. The updated historical batch set becomes; 

C௞
௨ = [ C௞ିଵ

௨்   𝑈௞] 

C௞
௬ = [ C௞ିଵ

௬்    𝑌௞] 

Where C௞ିଵ
௨்  is the previous historical set of data for the control profile and C௞ିଵ

௬்  is the corresponding 
historical set of data for the product quality. 

 𝐾 is set as 𝐾 = 𝐾 + 1 and step 1 is returned to. 
The above algorithm summarises the two cases that will be considered in this work; fixed and updating models. 
 
Selection of Weighting Matrices 
The reason behind adding the weighting matrices is to provide the best performance for the process while ensuring 
robustness to the system’s uncertainties (Bristow, 2008). In this work 𝑄 is chosen as 1 and 𝑅 is manipulated in 
such a way that a fast convergence is achieved and yet not compromising the stability of the system. One way of 
tuning the 𝑅 is starting with a value and then increasing it while observing the response of the process to any sign 
of instability. In this work, values of 100𝐼 and 120𝐼 are selected for trial and the one finally used for this work is 
chosen based on the overall ILC performance. The first 15 batches are used. 
The results of the selected values on ILC based on MLR, PCR and PLS are shown in figures 8, 9 and 10. 

 
Figure 8: Different R values for ILC with MLR 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.14 No.3, 2022 

 

28 

 
Figure 9: Different R values for ILC with PCR 

 
Figure 10: Different R values for ILC with PLS 

In all the three figures, it can be seen that R=100𝐼 gives the fastest and most stable performance amongst the 
tested R values. Therefore, the weighting matrix R for this work is chosen as 100𝐼 
 
5. Results and Discussion 
Batch to Batch ILC Performance based on Fixed and Updated MLR, PCR and PLS Model 
The simulation is run for 30 batches for the regression models and a disturbance is introduced at the 18th batch to 
study the behaviour or performance of ILC on such condition. The glucose concentration of the feed, 𝑚  is 
manipulated in this case. It is moved 5% above its normal operating condition and it is expected in such condition 
that the product quality declines. The plots of each ILC performance based on each regression method both for 
fixed and updated model parameters are shown in the subsequent figures. 

The plot of the control policy is shown in figure 11. It can be seen that the control policy during different 
batch stages is highly correlated. 
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Figure 11: Plot of Historical batches of Control Policy 
 
ILC Performance based on MLR Model 
Firstly, the performance of the ILC without the addition of disturbance is considered. Figure 12 shows the plot of 
product quality against number of batches.  

 
Figure 12: ILC Performance based on MLR Model without Disturbance 

It can be seen from this plot that for the fixed MLR model parameters, the performance index makes an 
attempt to track the reference point for the first three batches. From the 4th batch, at 23g, the mass of secreted 
protein drastically moves downwards from batch to batch up to 10g. A decrease in the product is majorly caused 
by a decrease in the feed rate. A very low feed rate could lead to low cell growth rate and subsequently, to a poor 
product yield which is caused by an increased substrate concentration. However, with the updated model 
parameters, there is a significant improvement in the batch-to-batch performance of the ILC. The secreted protein 
moves from 20g and converges to the desired reference trajectory at about the 11th batch. In updating the model 
parameters after each batch run, the process is able to cope with unknown variation. Figure 13 shows the effect of 
disturbance on the performance of ILC. The reason behind this is to demonstrate the ability of ILC to overcome 
variations caused by unknown disturbances. 
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Figure 13: ILC Performance based on MLR Model with Disturbance 

When the disturbance is introduced at the 18th batch, the product quickly moves away asymptotically in an 
opposite direction from the desired trajectory. However, from the 20th batch it approximately converges back to 
the desired trajectory. This is the case for the updated model but for the fixed model, the ILC performance is 
already deteriorated from the 4th batch. Thus, there is no better improvement in an attempt to track the desired 
product quality by updating the model parameters. The bad performance shown with the fixed model explains the 
inability of the MRL model to handle the issue of collinearity in the process. This is also reflected in the plot of 
the tracking error shown in figure 14. This is an alternative plot to the plots showing the evolution of product since 
it is the difference between the desired trajectory and the product. The tracking error fails to converge to zero for 
the fixed model but for the updated model the tracking error converges to the desired reference before and shortly 
after the introduction of disturbance. 

 
Figure 14: Evolution of Tracking Error for MLR Model 
 
ILC Performance based on PCR Model 
For PCR model, the number of principal components kept was determined through cross validation. The sum of 
squared error (SSE) using for both the training and testing data are evaluated and that which gives the lowest SSE 
the testing data is selected. 10 number of principal components were tried. Figure 15 shows the amount of variance 
explained in each principal component.  
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Figure 15: Variation explained by the number of principal components  

It can be seen from this figure that the first four principal components can explain over 75% of the variation. 
Going further to determine the principal component with the minimum SSE on testing data, the SSE is plotted 
against the number of principal components. This is shown in figure 16. 

 
Figure 16: Sum of Squared Error of PCR model  

It can be seen from this figure that that the principal component which gave the least sum of squares error on 
the testing data is 2 thus the number of principal components used is 2. In the case of the updated model, the 
number of principal components captured from batch to batch is shown in figure 17. It can be seen from this figure 
that the number of latent variables across each batch varies. 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.14 No.3, 2022 

 

32 

 
Figure 17: Numbers of Principal Components kept in the updated PCR model 

Figure 18 shows the ILC performance of performance index against the number of batches without the 
presence of disturbance. 

 
Figure 18: ILC Performance based on PCR Model without Disturbance 

Unlike the ILC performance based on fixed MLR model, it can be seen in this figure that for the fixed model, 
the product quality was able to converge to the desired trajectory at the 12th batch. However, the updated model 
gave a better performance. It can be noticed that both start off at same pace for first batch but from the 2nd batch, 
the updated model moves faster than that of the fixed model. At the 3rd batch the product quality is at 25.8g and 
26.2g for the fixed and updated model respectively. The fixed and updated models reach the desired convergence 
at the 11th and 8th batch respectively. The difference at the batch of convergence between these models might seem 
insignificant but what happens in the presence of disturbance gives a very distinct performance. Figure 19 shows 
the same performance but with introduction of disturbance. At the 18th batch, the disturbance is introduced. The 
product moves away from the desired trajectory at the 19th batch. For the updated model, the product quality 
increases from the 20th batch till it converges to the desired trajectory at the 25th batch. For the fixed model the 
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product quality fails to converge to the desired trajectory. This highlights the inability of fixed model to thrive in 
the presence of disturbances  

 
Figure 19: ILC Performance based on PCR Model with Disturbance 

The tracking error plot is shown in figure 20. The tracking error from the updated model successfully 
converges to zero before and after disturbance as can be seen in the figure while that of the fixed model acts 
otherwise as it fails to converge in the presence of disturbance. 

 
Figure 20: Evolution of Tracking Error for PCR model 
 
ILC Performance based on PLS Model 
For the fixed PLS model, the number of latent variables kept was determined through cross validation. Similarly, 
to PCR, 10 number of latent variables were tried. The Sum of Squared Error is plotted against the number of latent 
variables. This is shown in figure 21. From the figure, the one which gave the least sum of squares error on the 
testing data is 2 thus the number of latent variables used is 2.  
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Figure 21: Sum of Squared Error of PLS model  
For the updated model parameters, the number of latent variables kept was again determined through cross 

validation. The ones which gave the least sum of squares error on the testing data for each batch was kept. A bar 
plot of this is shown in figure 22. It can be seen from this figure that the number of latent variables across each 
batch varies. 

 
Figure 22: Numbers of Principal Components kept in the updated PCR models 

Figure 23 shows the plot of performance index against the number of batches without disturbance.  
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Figure 23: ILC Performance based on PLS Model without Disturbance 

Similar to that in PCR, it can be seen in this figure that for the fixed model, the product was able to converge 
to the desired trajectory at about the 14th batch. However, the updated model gave a better performance. It can be 
noticed that both start off at same pace for the first two batches but from the 3rd batch, the updated model moves 
faster than that of the fixed model to the desired trajectory. The fixed and updated models reach the desired 
convergence at the 14th and 9th batch respectively.  

Figure 24 shows the plot of performance index against the number of batches with disturbance. 

 
Figure 24: ILC Performance based on PCR Model with Disturbance 

At the introduction of a disturbance at the 18th batch, the product moves away from the desired trajectory but 
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from the 18th batch the product moves from batch by batch to the desired trajectory at the 26th batch for the updated 
model. However, the performance index based on fixed model fails to converged to the desired trajectory. The 
tracking error plot is also shown in figure 25  

Figure 25: Evolution of Tracking Error for PLS Model 
From this figure, it can be seen that the tracking error successfully converges to zero before and disturbance 

for the updated model. However, that of the fixed model acts otherwise as it fails to converge in the presence of 
disturbance. 

 
Comparison of ILC Performance based on MLR, PCR and PLS Models 
For the fixed model parameters, a comparative plot is shown in figure 26  

Figure 26: ILC Performance based on Fixed MLR, PCR and PLS Models 
It can be seen from this figure that ILC based on all three regression models fail to reach the target after the 

introduction of disturbance. However, PLS and PCR gave a better performance as the product in each case was 
able to converge to the desired reference trajectory before the presence of a disturbance. It can also be seen from 
the figure that PLS model gives the best performance. A comparative plot is also shown for the updated models in 
figure 27. 
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Figure 27: ILC Performance based on updated MLR, PCR and PLS Models 
From this figure, the performance index based on the three models converged to the desired trajectory before 

disturbance with PLS giving the best performance followed by PCR and lastly MLR. However, at the introduction 
of disturbance at the 18th batch, ILC based on MLR model fails in achieving its objective of reaching the desired 
trajectory while PLS and PCR acts on the contrary. MLR is not ideal for process data with high collinearity. PLS 
and PCR models overcome this problem as can be seen in both figures. They are highly recommended when 
dealing with problem such as high data correlation.  

Generally, it is obvious from these two plots that batch to batch updated ILC offers a better performance. By 
updating the model parameters, control policy and output after each batch the issue of the plant model mismatches 
and unknown disturbance is overcome. 

 
Feed rate Profiles of Updated Model for Batch-to-Batch ILC 
As earlier stated, the control variable in this work is the feed rate. This is manipulated by the controller such that 
the maximum amount of secreted protein is obtained. In other words, it is the pivot of the control mechanism. A 
brief look into the feed rates changes would give a clearer comprehension on ILC batch to batch performance 
shown in the previous figures.  Since the ILC based on updated models gives a better performance, further analysis 
of its control profile for each of the regression methods is carried out. This analysis is based on changes in feed 
rate with and without the introduction of disturbance. Therefore, the first 17 batches are considered as without 
disturbance. 
 
Control profile under Partial Least Squares model 
After the use of PLS method, the feed rates for each batch against the batch time is plotted and shown in figure 
28. It can be seen from this figure that as the batch time increases, the feed rate exponentially increases across each 
batch. However, at about a batch time of 9h, the feed rate drops significantly then increases to 1.5l/h for the rest 
of the batch time. A further look into the control profile with the introduction of disturbance is illustrated in figure 
29. From this figure, it can be seen that the pattern remains the same. Better still, there is no significant difference 
between the feed rates from batch to batch. This is because the product quality quickly returns to tracking the 
desired trajectory after disturbance is introduced. This further shows that ILC based on PLS method is a good one. 
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Figure 28: Control Profile based on PLS without Disturbance 

 
Figure 29: Control Profile based on PLS with disturbance 
 
Control profile under Principal Component Regression Model 
On applying PCR method, the feed rates for each batch against the batch time is plotted and shown in figure 30. 
This is similar to that seen in PLS. Figure 31 shows the control profile after disturbance is introduced. This also 
gives same pattern as that shown for PLS. However, those of PLS lie closer to each other. 
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Figure 30: Control Profile based on PCR without Disturbance 

 
Figure 31: Control Profile based on PCR with disturbance 
 
Control profile under Multiple Linear Regression Model 
On applying MLR method, the feed rates for each batch against the batch time is plotted and shown in figure 32. 
From this figure, the control profile gives a somewhat different pattern compared to its counterparts. It maintains 
the same trend up till a batch time of 14h. From this batch time, some of the batches move in a descending manner 
as opposed to the normal trend. This depicts the inability of MLR to fully handle the process collinearity. It 
becomes worse with the introduction of disturbance. This is shown in figure 33. It can be seen in this figure that 
all the batches give an opposite trend from a batch time of 14h. 
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Figure 32: Control Profile based on MLR without Disturbance 

 
Figure 33: Control Profile based on MLR with Disturbance 

With the introduction of disturbance, it was seen that control profiles of PCR and PLS reserve their pattern 
after the introduction of disturbance unlike that of MLR. It is clear and evident that the performance of ILC based 
on updated PLS and PCR models are preferred options than that of MLR.  

 
Comparison of State Variables before and after Optimal ILC 
At the end of the fed batch fermentation process, it is expected that the maximum amount of secreted protein is 
obtained by determining the optimal control profiles. Figures 34a and 34b give a comparison of the state variable 
before and after optimization. Taking a closer look at figures 34a and b, it is seen that at the time when glucose 
diminishes the cell growth remains constant throughout the remaining batch time. It is also at this point that the 
product formation begins. It can be noticed that after optimization, the time at which the substrate diminishes 
reduces enabling a higher production of secreted and total protein before the end of batch time. This can be seen 
in figures 34c and 34d. The secreted and total protein is recorded at 20g and 26.5g before optimal control. However, 
after optimal ILC secreted and total protein is recorded at 27g and 33g. 
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b) 
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Figure 34: Profiles of State Variables  

Figure 35 shows the optimal control profile based on PLS model. This follows the same trend with that in 
literature (Xiong and Zhang, 2003) obtained from mechanistic model and neural networks. A bit difference is 
observed in the maximum product quality obtained in using ILC and the mechanistic model because of the 
approximation of baseline control policy used in this work. It is worth noting that in using ILC for the case study 
a maximum product quality is obtained without violating the constraint placed on the feed rate profile. 

 
Figure 35: Optimal Control Profile 

From the results above, it can be seen that the weighting matrices are important parameters in the overall 
performance of the controller. Therefore, careful selection of weighting matrices is considered in this work. In the 
light of that, batch to batch ILC performance using different values of R were compared and R was chosen as 100I 
while Q was set to 1. Amongst the three linear models, ILC based on PLS model gave the best performance 
followed by PCR. Optimal ILC based on MLR model gave unsatisfactory performance especially in the case of 
fixed model parameters. This can be explained by the high correlation of process data existing between batch 
stages. The general performance of batch-to-batch ILC using updated models gives an indication that the issue 
associated with model mismatches and unknown disturbances can be overcome. It is worth noting that the optimal 
control policy obtained from the updated model has been shown to be quite close to that obtained in using 
mechanistic model shown in section 3. This goes further to prove that ILC can be used as a simple alternative 
when mechanistic models become difficult to develop 
 
6. Conclusion 
In this work batch to batch Iterative Learning Control on fed batch fermentation process using linearised models 
has been considered. ILC uses the information from a previous of a batch process to improve the product quality 
from batch to batch.  The tracking error and control input from the previous batch are used in generating the input 
for the current batch. This forms the basis for the optimal ILC law. The tracking error under the optimal ILC law 
is expected to converge to zero as it moves from batch to batch. In order to eliminate the non-linearity in the 
process, deviation of the input and output trajectories from their nominal trajectories were established and using 

d) 
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these perturbed variables, the linear models’ parameters were then obtained using Multi Linear Regression (MLR), 
Principal Component Regression (PCR) and Partial Least Squares (PLS) method. In addressing the issues of model 
mismatches and unknown disturbances, the control policy was updated from batch to batch by using the previous 
batch as the reference batch. In addressing the issue of process collinearity between control policies at different 
stages in a batch, PLS and PCR were used to identify the linearised models.  

The application of the proposed optimal ILC to a simulated fed batch reactor for the production of secreted 
protein gave satisfactory results based on tracking the desired trajectory and convergence of tracking error to zero. 
This gives an indication that ILC technique, a simple but yet an effective optimal control strategy can be used in 
eliminating the problems of plant model mismatches and process variations thus achieving optimal control in batch 
processes. 
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