# Isolation and Characterization of Triterpenes from Petroleum Ether and Ethyl acetate Extracts of Stem Bark of *Parinari curatellifolia* Planch Ex. Benth (*Chrysobalanaceae*)

Halilu, M.E<sup>\*1</sup>., October, N<sup>2</sup>., Balogun, M<sup>2,4</sup>., Musa K.Y<sup>3</sup> and Abubakar, M.S<sup>3</sup> <sup>1\*</sup> Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria. <sup>2</sup> Department of Chemistry, University of Pretoria, South Africa. <sup>3</sup>Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria. <sup>4</sup>Polymer and Composites, Materials Sciences and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa. \*E-mail of the corresponding author: emshelia2002@yahoo.com

### Abstract

*Parinari curatellifolia* (Chrysobalanaceae) is a plant used in Nigerian folk medicine for cancer treatment. Through series column chromatography, betulin (lup-20(29)-en-3β,28-diol) and betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid) have been isolated from petroleum ether and ethyl acetate extracts of the stem bark of *Parinari curatellifolia* respectively. The compounds were characterized on the basis of 1D-NMR (<sup>1</sup>HNMR, <sup>13</sup>CNMR and DEPT-45, 90 and 135), 2D-NMR (HSQC, HMBC, <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>1</sup>H NOESY), MS and IR spectroscopic studies. These two compounds are reported for the first time as constituents in *Parinari curatellifolia*.

Key words: Parinari curatellifolia, Chrysobalanaceae, Betulin, Betulinic acid and Triterpene

### 1. Introduction

Biologically active compounds isolated from plants have played an enormous roles in the development of new drugs. These compounds are synthesised by plants during their normal metabolic activities and sometimes they are synthesised when the plant needs to adapt to a particular change within its environment. These compounds have complex diverse chemical structures and they are often referred to as secondary metabolites. The terpenes are an example of a class of plant secondary metabolite. Researches have shown that they play an important role in exerting various physiological actions in humans and other animals (Mohammad, 2006; David, 2001). Terpenes have been used as drugs and a notable example is artemisinin. Artemisinin is a diterpene and artemisinin-based drugs are used today as first-line treatment against malaria (Christen and Veuthey, 2001). Another good example that demonstrates the clinical use of terpenes is taxol, a diterpenoid which is a potent anticancer agent. The volatile oils which have been used extensively in aromatherapy are composed mainly of terpenes.

*Parinari curatellifolia* (Planch ex. Benth) Chrysobalanaceae, is aplant used in Hausa traditional medicine in Northern Nigeria for treatment of cancer and different parts of the plant is used to remedy ailments and several other diseases. It is locally called '*Ruura*'. A hot infusion of the bark of the plant is used in the treatment of pneumonia and a leaf decoction is either orally administered or soaked in bathwater as a fever remedy. The crushed or pulped leaves are consumed to dress fractures and dislocations, and it is also used as an antiseptic to treat wounds, sores and cuts. After being stripped, the twigs can be used as chewing sticks for dental hygiene (Sidi *et al.*, 2006; Hines and Eckman, 1993; Orwa *et al.*, 2009). Teeth are also washed with the root infusion for toothache (Sidi *et al.*, 2006). The root and bark are used in the treatment of several diseases and snake bites. The plant is also used in the treatment of diabetes (Ogbonnia *et al.*, 2009).

The isolation and characterization of  $\beta$ -sitosterol, stigmast-4-en-3-one and stigmasterol from petroleum ether extract of the stem bark of *Parinari curatellifolia* (Planch ex. Benth) Chrysobalanaceae have been reported in the first part of this research (Halilu *et al.*, 2013). The present paper, reports the isolation and characterization of two triterpenes from *Parinari curatellifolia*.

### 2. Materials and Methods

#### 2.1 Collection and Identification of Plant Material

The leaves, flowers, fruits and root bark of the plant were collected from Zaria, Kaduna State, Nigeria, in September, 2011 and transported to the Herbarium Unit, Department of Biological Sciences, Faculty of Science, Ahmadu Bello University, Zaria, Nigeria for identification. Voucher number 903 was assigned to the herbarium specimen.

### 2.2 Drying and Preservation of Plant Material

The stem bark of the plant was shed dried for one week and repeatedly weighed until a constant weight. It was powdered using mortar and pestle. The powder was stored in an air-tight plastic container until required for use.

### 2.3 Extraction - Serial Exhaustive Extraction

The powdered stem bark was extracted serially with petroleum ether and ethyl acetate. The plant material (3 kg) was extracted (defatted) with 8 L of petroleum ether with the aid of a soxhlet extractor. The mark was allowed to dry and then extracted with 6 L of ethyl acetate. The extracts were filtered and concentrated at reduced pressure on a rotary evaporator.

#### 2.4 Chromatographic Materials and Reagents

The materials and the reagents/ solvents used were all of analytical grade and were obtained from Merck Chemical Company Germany and Sigma-Aldrich. They include: Petroleum ether (Sigma-Aldrich-St. Louis, MO, USA), Chloroform (Sigma-Aldrich-St. Louis, MO, USA), Ethyl acetate (Merck-Germany), Hexane (Merck-Germany), TLC silica gel pre-coated plates (Merck-Germany), Silica gel-60 for column (0.063-0.200 mm; 70-230 mesh) (Merck-Germany), Phosphomolybdic acid (PMA) (Sigma-Aldrich-St. Louis, MO, USA), Anisaldehyde (Sigma-Aldrich-St. Louis, MO, USA), Sulfuric acid (Sigma-Aldrich-St. Louis, MO, USA).

#### 2.5 Equipment / Reagents for Structure Elucidation

GC-MS Agilent Technologies 6890N, USA, Perkin Elmer Spectrum RX FT-IR System, Germany, NMR Top spin 300 MHz and 400 MHz Bruker-Germany, melting point apparatus (Gallencamp, USA)., deuterated chloroform (CDCl<sub>3</sub>), Merck- Germany, dichloromethane, Merck- Germany and deuterated dimethylsulfoxide (DMSO-d<sub>6</sub>), Merck Germany.

#### 2.6 Thin layer Chromatography

A mixture of chloroform / ethyl acetate (4:1) was used to determine the separation profile of the petroleum ether fraction. A mixture of ethyl acetate / hexane (4:1) was used to determine the separation profile of the petroleum ether fraction. The extracts were dissolved and spotted on pre-coated silica gel TLC plates. The plates were ran in specified solvent systems at different times. To develop, the plates were sprayed with 5%  $H_2SO_4$  or phosphomolybdic acid (PMA) solution and heated in an oven for 5 minutes at 105 °C or heat gun.

### 2.7 Isolation Procedure - Column Chromatography

A petroleum ether slurry of silica-gel powder (200 g) was packed in a glass column (30 x 35 cm). The extract (5 g) in a fine powdered form was loaded onto the column and allowed to stabilize for 2 hours before elution commenced. The column was eluted in gradient profile. The elution began with petroleum ether 100% and chloroform was added gradiently from 0 to 100%. The elution continued with the addition of methanol from 0 to 100%. Several fractions (10 ml each) were collected and monitored by TLC (chloroform 100%) and sprayed with 5% sulfuric acid. Similar fractions were pooled and concentrated *in vacuo*. One major compound was obtained and designated as  $C_4$ . Further purification of the compound was carried out by repeating column chromatography. Another compound,  $C_5$ , was isolated from the ethyl acetate extract using similar procedure a iterated in he section above (Section 2.7). The ethyl acetate 4 g was loaded onto a column packed with 150 g of silica gel in hexane. The elution began with hexane 100% and ethyl acetate / Hexane 4:1) and stained with phosphomolybdic acid (PMA) solution. Similar fractions were pooled and concentrated *in vacuo* to give rise to the major compound,  $C_5$  Further purification of the compound was carried out by repeating column chromatography.

### 2.8 GC – MS Sample Preparation/Analysis

The isolated compounds were weighed (1 mg) and dissolved in 200  $\mu$ L of dichloromethane in a glass vial and then injected into the GC - MS for analysis.

#### 2.9 NMR Sample Preparation/Analysis

The isolated compounds were weighed (10-25 mg) and dissolved in 0.5 ml of deuterated solvents (methanol, chloroform and dimethylsufoxide) and then subjected to 1D and 2D NMR analyses.

### 2.10 IR Sample Preparation/Analysis

The pure compounds were weighed (3 mg) and mixed with 5 mg of KBr and then ground to a very fine powder. The powder was compressed under high pressure using a press to produce pellets of the compounds to be analyzed. The pellets were then analysed.

#### 2.11 Melting Point Determination/ Sample Preparation

Approximately 3 mg of the solid samples were loaded into separate capillary tubes and the melting points determined on an electronic melting point apparatus. The melting points were taken as a range of the beginning and total melting temperatures.

### 3. Results

### 3.1 Extraction of Plant Material

The powdered stem bark of *P. curatellifolia* was serially extracted with petroleum ether and ethyl acetate. The masses of the extracts and the percentage yields are presented in Table 1.

3.2 Column Chromatography of Petroleum Ether and Ethyl acetate Extracts

Two compounds were isolated by column chromatography of the petroleum ether and ethyl aceatate extracts of *P. curatellifolia*. Their masses and physical appearances are presented in Table 2.

### 3.3 Mass Spectrometry of Compound C<sub>4</sub>

The molecular ion  $[M]^+$  and other fragment ions were obtained by electron impact mass spectroscopy (EIMS). The mass spectrum showed the molecular ion at M/Z 442, with characteristic peaks of other fragment ions at M/Z 424, 393, 205 and 189. The M/Z 424, can be attributed to a loss in mass of 18 probably due to dehydration (H<sub>2</sub>0 = 18). The M/Z 393, is associated with loss in mass of 31 which is an equivalent mass to (CH<sub>2</sub>OH), M/Z 189 and 234 may be as result of retro-Diels Alders fragmentation occurring in the molecule. The ion with the highest relative abundance is M/Z 85 which is the base peak. Several other fragment ions are also seen in Figure 1.

#### 3.4 Proton Nuclear Magnetic Resonance Spectroscopy (<sup>1</sup>HNMR) of Compound $C_4$

Characteristic signals in the <sup>1</sup>HNMR of compound <sub>4</sub> included  $\delta_{\rm H}$  (ppm) 4.70 (1H, br.s) 4.58 (1H, dd, J=11.1, Hz), 1.60 (1H, br,s) and 1.28 (1H, br.s). The spectrum also showed signals between  $\delta_{\rm H}$  (ppm) 0.73, 0.80, 0.95, 0.96, 1.60 and 1.62 which are the characteristics of methyl (CH<sub>3</sub>) protons. Other signals due to methylene (CH<sub>2</sub>) protons are also seen as presented in Table 3.

### 3.5 $^{13}C$ NMR Spectrum of Compound C<sub>4</sub>

Several signals were observed in the spectrum. They included  $\delta_c$  (ppm) 150.2 and 109.6 which are due to alkene, The signal at 78.9 is due to carbon holding the aliphatic OH group. Other signals were observed between the range of 10 to 55 which are characteristic of the methyl (CH<sub>3</sub>),the methylene (CH<sub>2</sub>) and the methine (CH) carbons (Table 3).

### 3.6 Infra Red (IR) Spectroscopy of Compound $C_4$

The IR spectra of compound  $C_1$  showed  $v_{max}$  (KBr): 3421.08 cm<sup>-1</sup> (aliphatic OH), 2941.4 cm<sup>-1</sup> (CH<sub>3</sub> bending), 2868.89 cm<sup>-1</sup> (CH<sub>2</sub> stretching), 1688.58 cm<sup>-1</sup> (OH stretching), 1453.17 cm<sup>-1</sup>(C=C stretching), 1374.90 cm<sup>-1</sup> (isopropyl).

### 3.7 Suggested Structure of Compound $C_4$

From the the MS, NMR and IR data which compared well with available literature, the suggested structure of compound  $C_1$  is betulin (lup-20(29)-en-3 $\beta$ ,28-diol) (Figure 2).

### 3.8 Structure Determination of Compound C<sub>5</sub>

Compound C<sub>5</sub> was subjected to NMR and IR spectroscopy for characterization.

3.9 Proton Nuclear Magnetic Resonance Spectroscopy (<sup>1</sup>HNMR) of Compound  $C_5$ 

Prominent signals observed in the proton NMR spectra include  $\delta_H$  (ppm) 12.02 (1H, br.s), which is characteristic of the hydrogen of the hydroxyl group of an carboxylic acid (COOH),  $\delta_H$  (ppm) 4.67 (1H,s) and 4.54 (1H,s), which are the singlet hydrogens characteristic of alkene. Several clusters of signals occurred between the range of  $\delta_H$  (ppm) 0.8 to 1.1, which are characteristic of methyl hydrogens (CH<sub>3</sub>) and others between 1.1 to 1.5 which are characteristic of methylene (CH<sub>2</sub>) protons. This data is presented in detail in Table 4.

### 3.10 <sup>13</sup>Carbon NMR Spectrum of Compound $C_5$

Signals observed in this spectra included  $\delta c$  (ppm) 177.2, 150.2, 109.6, 76.7 as characteristic signals and others as presented in the Table 4. The quarternary carboxylic carbon chemical shift is observed at 177.2 while the alkene is observed at 150.2 and 109.6. The signal at 76.7 is due to carbon holding the aliphatic OH group.

### 3.11 Infra Red (IR) Spectroscopy of Compound C<sub>5</sub>

The IR spectra of the compound showed  $v_{max}$  (KBr): 3427.05 cm<sup>-1</sup> (aliphatic OH), 2941.72 cm<sup>-1</sup> (CH<sub>3</sub> bending), 2868.79 cm<sup>-1</sup> (CH<sub>3</sub> stretching), 1687.79 cm<sup>-1</sup> (C=O stretching), 1452.0 cm<sup>-1</sup> (OH caboxylic acid) and 1376.0 cm<sup>-1</sup> (isopropyl).

### 3.12 Suggested Structure of Compound C<sub>5</sub>

From the NMR and IR data, which compare well with available literature, the suggested structure of compound  $C_5$  is betulinic acid (3 $\beta$ -hydroxy-lup-20(29)-en-28-oic acid) (Figure 3).

### 4. Discussion

Compound  $C_4$  was isolated as a white powder, soluble in chloroform, with a melting point of 255- 257 °C. The mass spectral data showed molecular ion peak [M].+ with M/Z 442, with characteristic peaks of other fragment ions at M/Z 424, 393, 234 and 189 (Figure 1) The molecular ion peak 442 represents the intact molecule and also give the exact molecular weight of the compound. The M/Z 424 of the fragment ion is associated with the loss in mass of 18  $[M^+ - 18]$ . The decrease in mass of 18 may be attributed to a loss of the element of water (H<sub>2</sub>O) molecule. It gives a useful information about the type of functional group present in the molecule. The loss of a water molecule in the compound suggests the presence of a hydroxyl (OH) group. The M/Z 393, is associated with the loss in mass of 31, It also gives vital information about another functional group present in the molecule. The loss in mass of 31 in a molecule, generally correspond with the loss of a -CH<sub>2</sub>OH, thus suggesting the presence of a t-CH<sub>2</sub>OH group in the compound. The M/Z 189 and 234 were produced as a result of retro-Diels- Alders fragmentation that occurred in the molecule (Assimopoulou and Papageorgiou, 2005). This information provides a worthwhile evidence of the structural arrangement of the compound, suggesting that the compound is composed of rings. Generally, retro-Diels Alders fragmentation occurs in triterpenes and steroids which biogenetically originates form the same precursor (biogenetic isoprene). The decomposition usually takes place in ring C of both triterpenes and steroids. The presence of M/Z 189 and 234 from M/Z 424 suggest that the compound is a triterpene (Figure 1). The <sup>1</sup>H-NMR (Table 3) showed six methyl (CH<sub>3</sub>) signals at  $\delta_{\rm H}$  (ppm) 0.73 (3H), 0.80 (3H), 0.95 (3H), 0.96 (3H), 0.60 (3H) and 1.62 (3H) respectively. This suggests that there are six methyl groups present in the compound. The presence of the down field signals at  $\delta_{\rm H}$  (ppm) 4.70 (1H, br.s) and 4.58 (1H, br.s) suggest the presence of exocyclic methylene olefinic protons of the lupane triterpenes (Ayotollahi *et al.*, 2011), which are attached to carbon-29. The occurrence of two broad singlets at  $\delta_{\rm H}$  (ppm) 1.60 (1H, br.s) and 1.88 (1H, br.s) indicates the presence of two hydroxyl groups in the compound respectively. The <sup>13</sup>C-NMR gave signals at  $\delta_c$  (ppm) 78.98 (C-3)  $\delta_c$  (ppm) 56.2 (C-28) which are the hydroxylated carbons,  $\delta_c$  (ppm) 150.4 (C-20), a quarternary carbon and  $\delta_c$  (ppm) 109.66 (C-29), the carbon to which the olefinic protons are attached. The <sup>1</sup>H-NMR and <sup>13</sup>C-NMR of the compound are in agreement with the published literature (Seyed et al., 2009) (Table 3). The IR (KBr) spectra of the compound showed characteristic peaks at  $v_{max}$  (v, cm<sup>-1</sup>) 3421.08 cm<sup>-1</sup> ( aliphatic OH), 2941.4 cm<sup>-1</sup> (CH<sub>3</sub> bending), 2868.89 cm<sup>-1</sup> (CH<sub>2</sub> stretching), 1688.58 cm<sup>-1</sup> (OH stretching), 1453.17 cm<sup>-1</sup> (C=C stretching), 1374.90 cm<sup>-1</sup> (isopropyl). The IR data agrees with the earlier reported work (Elvira et al., 2009) and Prince et al. (2010). The data acquired from the MS, NMR and IR are most characteristic of betulin which belongs to lup-20(29)-ene type triterpenes. Compound  $C_5$  was isolated as a white crystalline powder, soluble in dimethylsulfoxide (DMSO), with melting

Compound C<sub>5</sub> was isolated as a white crystalline powder, soluble in dimethylsulfoxide (DMSO), with melting point of 297- 299 °C. The <sup>1</sup>HNMR (Table 4) showed six signals due to methyl (CH<sub>3</sub>) protons respectively at  $\delta_{\rm H}$ (ppm) 0.83 (3H), 1.00 (3H), 1.06 (3H), 1.22 (3H), 1.80 (3H) and 1.79 (3H). There is also a signal at  $\delta_{\rm H}$  (ppm) 12.02 (1H, br.s), which is characteristic of the hydrogen of the hydroxyl group of carboxylic acid (COOH). This confirms the presence of an carboxylic acid functionalilty in the compound. The signals at  $\delta_{\rm H}$  (ppm) 4.67 (1H,s) and 4.54 (1H,s) are characteristic of the exocyclic olefinic protons which confirm the presence of an unsaturated bond in the compound. The <sup>13</sup>CNMR showed thirty carbon atom signals in the compound (Table 4). The appearance of a signal at  $\delta_{\rm c}$  (ppm) 177.19 which occurred in the region usually occupied by the acid carbonyl group, confirm the presence of acid functionality in the compound. The appearance of signal at  $\delta_{\rm c}$  (ppm) 109.6 confirm the presence of the carbon bearing the olefinic protons. The <sup>13</sup>CNMR and <sup>1</sup>HNMR data obtained agrees with the spectral results reported by Ayotollahi *et al* (2011) for betulinic acid (Table 4). The information is further supported by the IR spectral results. The IR spectra of the compound showed v<sub>max</sub> (KBr): 3427.05 cm<sup>-1</sup> (aliphatic OH), 2941.72 cm<sup>-1</sup> (CH<sub>3</sub> bending), 2868.79 cm<sup>-1</sup> (CH<sub>3</sub> stretching), 1687.79 cm<sup>-1</sup> (C=O stretching), 1452 cm<sup>-1</sup> (OH caboxylic acid) and 1376 cm<sup>-1</sup> (isopropyl) (fig. 4.39). The IR data agrees with the earlier work carried out by Elvira et al.(2009), Prince et al.(2010), Soek et al.,(2010) and Ayotollahi et al. (2011 for betulinic acid.

### 5. Conclusion

On the basis of column chromatography and spectroscopic studies (MS, NMR and IR), betulin and betulinic acid have been isolated and characterized. These compounds are reported for the first time as constituents of *Parianri curatellifolia*.

### 6. Acknowledgement

Much gratitude goes to the Tertiary Education Trust Fund (TETFUND) of Nigeria and management of Usmanu Danfodiyo University, Sokoto, for providing the financial support for this research. that was required for this research. The authors express their sincere appreciation to the Department of Chemistry, University of Pretoria for providing the equipment needed for the spectroscopic analysis. Special thanks go to Ms. Yvette Naude for GC-MS analysis and Mr. Eric Palmer for NMR analysis. Appreciation also go to Ms. Bose Fashedemi for the IR analysis and Prof. Ahmed Mohammed of the University of Western Cape for assistance in interpretation of the NMR spectra.

### References

Assimopoulou, A.N., and Papageorgiou, V.P. (2005). GC-MS analysis of penta and tetra cyclic triterpenes from resins of *Pistacia species*. *Biomedical Chromatography*, **19**: 285-311.

Ayatollahi, A.M., Mustafa, G., Suleiman, A., Omer, M.A., Mehdi, M. and Gholamreza, A. (2011). Pentacyclic triterpenes in *Euphorbia microsciadia* with their T-cell proliferation Activity. *Iranian Journal of Pharmaceutical Research*, **10** (2): 287-294.

Christen, P and Veuthey, J. L. (2001). New trends in extraction, identification and quantification of artemisinin and its derivates. *Current medical chemistry*, 8, p. 1827-1839

David J. Phillipson (2001). Phytochemistry and medicinal plants. Phytochemistry, Vol.56, Pp 237-243.

Elvira, E.K., Kemal, D., Zdenka, K. and Emin, S. (2009). Identification and isolation of pharmacologically active triterpenes in *Betula Pendula* Roth., *Betulaceae. Bosnian Journal Of Basic Medical Sciences*, **9** (1): 31-38.

Halilu, M.E., October, N., Balogun, M., Agunu, A., Abubakar, A. and Abubakar, M.S. (2013). Isolation and Characterization of Steroids from Petroleum Ether Extract of Stem Bark of Parinari curatellifolia Planch ex. Benth (Chrysobalanaceae). *Journal of Natural Sciences Research*, Vol.3, (6) 2013, Pp 53-61

Hines, D.A. and Eckman, K. (1993). Indigenous Multipurpose Tree for Tanzania, Uses and Economic

benefits to the people. Cultural Survival, Canada and Development Services Foundation of Tanzania. pp 1-50.

Mohammad Shoeb (2006). Anticancer agents from medicinal plants (*minireview*). Bangladesh Journal of Pharmacology, 2006; 1: 35-41.

Prince, P.S., Roy, R.K., Anurag, B. and Dinesh, G. (2010). Pentacyclic triterpinoids from *Betula utilis* and *Hyptis* suaveolens. International Journal of PharmTech Research, **2** (2): 1558-1532.

Seyed, A.A., Asie, S., Farzad K., Mitra, N., Mohammad, F. and Mohammad, I. C. (2009). Terpens from aerial parts of *Euphorbia splendid*. *Journal of Medicinal Plants Research*, **3**(9) :660-665.

Sidi, S., Dominic, G., Charlotte, R. and Moctar, S. (2006). Seed Leaflet No.110, February, 2006. *Parinari curatellifolia* Planch. ex Benth. Millenium seed bank project, KEW. Phytotrade Africa, Forest and landscape Denmark. <u>www.SL.kvl.dk</u>

Soek, S.T., Gwendoline, C.L., Mawardi, R., Wei, C. S., Siau, H.M. and Siow, H. T. (2010). Two new pyranoxanthones from *Mesua beccariana* (Guttiferae). *Molecules*, **15**: 6733-6742.

Ogbonnia, S.O., Sunday, O.O., Emmanuel, N. A., Veronica, N. E. and Olawale, O. P. (2009). Evaluation of acute

toxicity in mice and subchronic toxicity of hydroethanolic extract of *Parinari curatellifoli*a (Chrysobalanaceae) seeds in rats. *African Journal of Biotechnology*, **8**(9): 1800-1806.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Simons, A. (2009). *Parinari curatellifolia* .Agroforestree Database: a tree reference and selection guide version 4.0 Pp 1-5. <u>http://www.worldagroforestry.org/af/treedb/</u>

| S/No. | Extracts              | Mass obtained (g) | % Yield |  |
|-------|-----------------------|-------------------|---------|--|
| 1     | Pet. Ether extract    | 10.12             | 0.33    |  |
| 2     | Ethyl acetate extract | 24.49             | 0.82    |  |

### Table 1. Mass and Percentage Yield of Extracts

| Table 2. Masses and Physical Appearances of Compounds Isolated |                |           |                     |  |  |
|----------------------------------------------------------------|----------------|-----------|---------------------|--|--|
| S/No.                                                          | Compounds      | Mass (mg) | Physical Appearance |  |  |
| 1.                                                             | $C_4$          | 50.0      | white powder        |  |  |
| 2.                                                             | C <sub>5</sub> | 48.7      | white powder        |  |  |

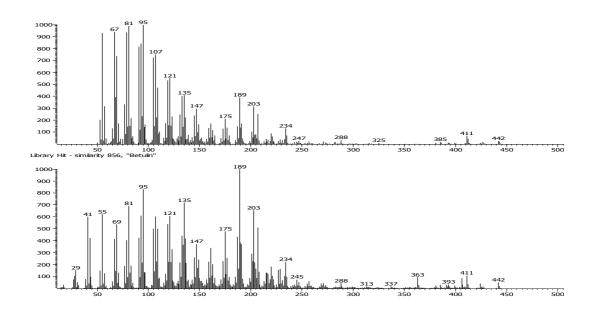



Figure 1. Mass Spectrum of Compound C<sub>2</sub>

| H/C -Position | $\delta_c(ppm)$ | δ <sub>H</sub> (ppm) | $\delta_c^*(ppm)$ | $\delta_{\rm H}^*$ (ppm) | No. of H, Multiplicity,           |
|---------------|-----------------|----------------------|-------------------|--------------------------|-----------------------------------|
|               |                 |                      |                   |                          | J(Hz)                             |
| 1             | 38.37           | 0.88; 1.64           | 38.69             | 0.88; 1.63               | 2H, m                             |
| 2<br>3        | 27.38           | 1.56; 1.52           | 27.37             | 1.57; 152                | 2H, m                             |
|               | 78.98           | 3.19                 | 78.96             | 3.18                     | 1H, (dd, <i>J</i> =11.1, 4.58 Hz) |
| 4             | 38.85           | -                    | 38.86             | -                        | -                                 |
| 5             | 55.33           | 1.38                 | 55.28             | 0.67                     | 1H, m                             |
| 6             | 16.07           | 1.51; 1.27           | 18.28             | 1.51; 1.37               | 2H, m                             |
| 7             | 34.31           | 1.38; 1.38           | 34.22             | 1.38; 1.38               | 2H, m                             |
| 8             | 40.67           | -                    | 40.94             | -                        | -                                 |
| 9             | 50.49           | 1.26                 | 50.30             | 1.26                     | 1H, s                             |
| 10            | 37.19           | -                    | 37.14             | -                        | -                                 |
| 11            | 20.83           | 1.42; 1.23           | 20.81             | 1.42; 1.24               | 2H, m                             |
| 12            | 25.48           | 1.06, 1.62           | 25.19             | 1.01; 1.63               | 2H, m                             |
| 13            | 38.71           | 1.62                 | 37.29             | 1.62                     | 1H, m                             |
| 14            | 42.42           | -                    | 42.73             | -                        | -                                 |
| 15            | 27.97           | 1.66; 1.30           | 27.03             | 1.67; 1.03               | 2H, m                             |
| 16            | 29.68           | 1.92; 1.18           | 29.15             | 1.92, 1.19               | 2H, m                             |
| 17            | 46.87           | -                    | 47.76             | -                        | -                                 |
| 18            | 49.25           | 1.55                 | 48.75             | 1.56                     | 1H, m                             |
| 19            | 42.42           | 2.15                 | 47.83             | 2.37                     | 1H,                               |
| 20            | 150.42          | -                    | 150.46            | -                        | -                                 |
| 21            | 30.92           | 1.92; 1.41           | 29.73             | 1.91; 1.42               | 2H, m                             |
| 22            | 34.31           | 1.55; 1.30           | 33.95             | 1.02; 1.82               | 2H, m                             |
| 23            | 20.83           | 0.95                 | 27.96             | 0.95                     | 3H, s                             |
| 24            | 20.83           | 0.73                 | 15.34             | 0.74                     | 3H, s                             |
| 25            | 16.07           | 0.80                 | 16.09             | 0.80                     | 3H, s                             |
| 26            | 18.27           | 1.06                 | 15.97             | 1.00                     | 3H, s                             |
| 27            | 15.32           | 0.96                 | 14.74             | 0.96                     | 3H, s                             |
| 28            | 56.28           | 1.56; 1.31           | 60.50             | 1,56, 1.31               | 2H, s                             |
| 29            | 109.66          | 4.70; 4.58           | 109.67            | 4.66; 4.56               | 2H, br,s                          |
| 30            | 19.36           | 1.62                 | 19.36             | 1.66                     | 3H, s                             |

| Table.3 <sup>1</sup> H and <sup>13</sup> C-NMR Chemical Shifts of Compound C <sub>4</sub> in CDCl <sub>3</sub> , 300 MHz |
|--------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------|

\*Seyed *et al.*, (2009), coupling constant (*J*), singlet (s), Doublet (d), doublet-doublet (dd), multiplet (m), broad singlet (br.s)

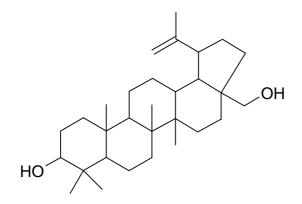



Figure 2: Structure of Compound C<sub>4</sub>

| H/C-Position | δ <sub>c</sub> (ppm) | $\delta_{\rm H}(\rm ppm)$ | δ <sub>c</sub> *(ppm) | δ <sub>H</sub> *(ppm) | No. of H, Multiplicity, |
|--------------|----------------------|---------------------------|-----------------------|-----------------------|-------------------------|
|              |                      |                           |                       |                       | J(Hz)                   |
| 1            | 39.22                | 0.98; 1.63                | 39.3                  | 0.99; 1.67            | 1H, m, each             |
| 2            | 28.23                | 1.83; 1.46                | 28.3                  | 1.85; 1.47            | 1H, m, each             |
| 3            | 76.75                | 3.31                      | 78.1                  | 3.45                  | 1H, t (J=7.2 Hz)        |
| 4            | 39.50                | -                         | 39.5                  | -                     | -                       |
| 5            | 55.38                | 0.82                      | 56.0                  | 0.82                  | 1H, m                   |
| 6            | 18.92                | 1.56; 1.38                | 18.8                  | 1.56; 1.38            | 1H, m, each             |
| 7            | 33.90                | 1.43; 1.39                | 34.9                  | 1.45; 1.38            | 1H, m, each             |
| 8            | 41.20                | -                         | 41.1                  | -                     | -                       |
| 9            | 49.92                | 1.37                      | 51.0                  | 1.38                  | IH, s                   |
| 10           | 37.56                | -                         | 37.6                  | -                     | -                       |
| 11           | 21.05                | 1.43; 1.21                | 21.2                  | 1.43; 1.21            | 1H, m, each             |
| 12           | 25.05                | 1.21; 1.84                | 26.2                  | 1.21; 1.94            | 1H, m, each             |
| 13           | 38.66                | 2.90                      | 38.7                  | 2.74                  | 1H, m, each             |
| 14           | 41.97                | -                         | 42.9                  | -                     | -                       |
| 15           | 30.37                | 1.26; 1.84                | 30.3                  | 1.26; 1.88            | 1H, m, each             |
| 16           | 32.68                | 1.55; 2.90                | 32.9                  | 1.55; 2.63            | 1H, m, each             |
| 17           | 55.39                | -                         | 56.6                  | -                     | -                       |
| 18           | 49.92                | 1.77                      | 49.8                  | 1.77                  | 1H, t , (J= 11.5 Hz)    |
| 19           | 47.00                | 2.11                      | 47.8                  | 2.18                  | 1H, m                   |
| 20           | 150.27               | -                         | 151.3                 | -                     | -                       |
| 21           | 31.69                | 1.53; 2.21                | 31.8                  | 1.53; 2.24            | 1H, m, each             |
| 22           | 37.56                | 1.57; 2.20                | 37.6                  | 1.57; 2.25            | 1H, m, each             |
| 23           | 29.18                | 1.22                      | 28.7                  | 1.22                  | 3H, s                   |
| 24           | 16.98                | 1.00                      | 16.3                  | 1.00                  | 3H, s                   |
| 25           | 17.95                | 0.83                      | 16.4                  | 0.83                  | 3H, s                   |
| 26           | 17.95                | 1.06                      | 16.4                  | 1.06                  | 3H, s                   |
| 27           | 18.92                | 1.08                      | 14.9                  | 1.07                  | 3H, s                   |
| 28           | 177.19               | -                         | 178.8                 | -                     | -                       |
| 29           | 109.60               | 4.67; 4.54                | 109.9                 | 4.95; 4.77            | 2H, s, each             |
| 30           | 20.44                | 1.79                      | 19.5                  | 1.79                  | 3H, s                   |

# Table. 4: <sup>1</sup>H and <sup>13</sup>C-NMR Chemical Shifts of Compound C<sub>5</sub> in DMSO, 300 MHz

Robert and Samir (2004)\* coupling constant (J), singlet (s), Doublet (d), doublet-doublet (dd), multiplet (m), broad singlet (br.s)

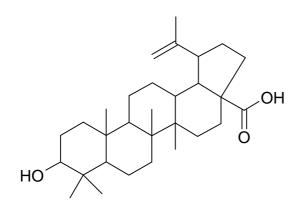



Figure 3: Structure of Compound C<sub>5</sub>

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

# CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/journals/</u> The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

## **MORE RESOURCES**

Book publication information: <u>http://www.iiste.org/book/</u>

Recent conferences: <u>http://www.iiste.org/conference/</u>

# **IISTE Knowledge Sharing Partners**

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

