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Abstract - Oxygen transfer is often the rate-limiting step in the aerobic bioprocess due to the low solubility 

of oxygen inside the aqueous solution. The rate of reaction is such that as oxygen enters the liquid phase, it 

is immediately consumed to oxidize the sulfite so that the rate of oxidation is equivalent to the oxygen-

transfer rate.  Reaction rate often determined by titration is much faster than oxygen transfer rate so that 

gas- liquid mass transfer is the rate controlling step.  The current study involves using central composite 

design, a statistical technique to find out the parameter conditions for the optimum volumetric mass transfer 

coefficient in a lab scale (2L) fermentor.  The optimum volumetric mass transfer coefficient was found to 

lie outside the range of parameters studied and analytical expressions was obtained to predict the 

volumetric mass transfer coefficients for the parameter ranges studied using response surface methodology.  

The analytical expression was found to be significantly valid based on ANOVA results. 
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INTRODUCTION 

In aerobic fermentation processes, oxygen is an important nutrient/substrate for the growth, maintenance and 

production of metabolites.  However, oxygen is sparingly soluble in aqueous and/or fermentation media due to its 

low solubility.  Hence, oxygen needs to be supplied continuously during the fermentation.  Oxygen transfer rate into 

the fermentation media and oxygen uptake rate by microorganisms govern the design and scale-up of fermenters [1]. 

Since one has little control on the oxygen uptake rate governed by microorganisms, it is necessary to enhance the 

rate of transfer of oxygen into the fermentation medium.  The transfer of oxygen into the liquid is usually 

accomplished by sparging air or oxygen into the medium.   Gas-liquid film theory, it can be stated that the oxygen 

mass transfer rate is limited by the resistance of the liquid film surrounding the gas bubbles which in turn limits the 

volumetric mass transfer coefficient.  Volumetric mass transfer coefficient is the product of liquid mass transfer 

coefficient and the interfacial area.  Interfacial area is difficult to measure and is usually lumped with the liquid mass 

transfer coefficient to get the volumetric mass transfer coefficient.  To explain the mass transfer of gases into liquid, 

several theories such as Whitman’s two-film theory according to this theory equilibrium is assumed  based on rigid 

interface and the resistances to mass transfer  in the two phases are added to get an overall resistance, Higbie’s 

penetration theory-there is a continual attachment and deattachment of small  liquid eddies at the gas-liquid 

interface, in the interval of attachment there is a interchange of solute by molecular diffusion, eddies from a 

turbulent bulk fluid, come to within a random distances of the surface, gives slightly higher exponents for the 

diffusivity, which indicates this theory might apply for mass transfer to flat surfaces such as pool of liquid, Higbie’s 

was the first to apply this equation to gas absorption in a liquid , showing diffusing molecule will not reach the other 

side of a thin layer if the contact time is short Kc = 1.13 √(D /t). Danckwert’s surface renewal theory here elements 

of fluid at the transfer surface are randomly replaced by fresh liquid from bulk stream the surface renewal rate is 

considerably higher than that found for bubbles in free rise under potential flow An exponential distribution of ages 

or contact times , the average transfer coefficient is given by Kc = √(D × s).  Where D is diffusivity of gas in a liquid 

is fractional renewal rate [1-3]. In (1951) a combination of these theories has been proposed for prediction of mass 

transfer coefficient.  However, parameters such as film thickness for Whitman’s two film theory, exposure time for 
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Higbie’s penetration theory and surface renewal rate for Danckwert’s surface renewal theory cannot be measured 

experimentally and has to be calculated if mass transfer coefficient value is known [4]. This technique is interesting 

for studying the influence of operational conditions on the volumetric mass transfer coefficient, and is widely 

employed in the literature. Nevertheless, it is necessary to take into account that the response time of the electrode, 

τr, is a critical parameter for the determination of accuracy values of oxygen concentration. This response can affect 

the correct determination of the mass transfer coefficient if the time characteristic for the oxygen   transport, 1/kLa, 

is of  the same order than  the response time of the electrode, defined as the time  necessary to reach 63% of the final 

value  of      measured when exposed to a step change  concentration The response time of the electrode can be 

determined by transferring the oxygen electrode from a solution with sodium sulfite  (whose oxygen concentration is  

zero) to    another dissolution saturated with air (100% of saturation). In the case    when the electrode of oxygen has 

a high value of response time it would be necessary to introduce a correction in the response model are available to 

experimentally determine the volumetric mass transfer coefficient. The most widely used is the sulphite oxidation 

method.  The sulphite oxidation method tends to give higher values for the volumetric mass transfer coefficient and 

the order of the reaction depends on the concentrations of the sulphite and catalyst.  (Usually a divalent cation of 

Cu
++ 

or Co
++

). In order to obtain an adequate reaction rate, avoiding acceleration of oxygen uptake due to the 

chemical reaction. 

The aim of this study is to predict volumetric mass transfer coefficient based on parameters both physical 

and chemical viz., impeller speed and air flow rate. For sodium sulphite oxidation method, Central composite design 

was used to optimize the volumetric mass transfer coefficient for both impeller speed and air flow rate. The rate of 

dissolution of gas inside the liquid solution is studied by knowing the reaction kinetics and mass transfer theories. 

 

MATERIAL AND METHODS 

Sodium Sulphite Oxidation Method 

Sodium sulphite oxidation method was first developed [5]. This method is based on the reaction of sodium 

sulfite, a reducing agent, with the dissolved oxygen to produce sulfate, in the presence of a catalyst (usually a 

divalent cation of Cu
++

 or Co
++

). 0.003 M of copper sulphate solution was prepared in 1 L of de-mineralized water 

which was then transferred to the fermentor vessel.  Agitation was started immediately at the required rpm.  To this 

was added 1 L of 0.05 M sodium sulphite . Molecular weight of copper sulphate =126. Weight of copper sulphate = 

6.3 gm. simultaneously, air was pumped into the solution via a sparger continuously. The oxygen in the air was 

immediately consumed by the sulphite oxidation [1,2] Since the reaction rate is much faster than the oxygen transfer 

rate, so the limiting factor is the oxygen transfer rate [6]. When the dissolved oxygen concentration reached 0% 

saturation, the remaining unreacted sodium sulphite reacted with oxygen until no more sodium sulphite was present 

in the solution. Air was pumped continuously till the oxygen concentration in the fermentor reached 100% 

saturation. At regular intervals of time, a sample was withdrawn from the fermentor.  The sample was mixed with an 

excess of iodine reagent.  weight accurately 2 gm, sodium sulphite of concentration  0.05(M), add excess iodine 

solution which reacts with unconsumed sulphite. The amount of residual sulfite can be also estimated indirectly by 

the stoichiometry of the reaction on basis of colorimetric determination of the iodine concentration. The sample was 

then titrated with standard sodium thiosulphate solution (Na2S2O3.5H2O) 0.1(N) Finally titrating with standard 

sodium thiosulfate solution (Na2S2O3) to a starch indicator end point to a starch indicator end point. The rate of 

sodium sulfite consumption was determined determine from titration of sodium sulphite against sodium thiosulphate 

and kLa calculated according to the following equation. (( - d C Na2SO3) / dt ) = 2 KLaC*. The order of the reaction for 

both i.e., oxygen consumption and sodium sulphite consumption are determined by plotting ln (C/Co) versus time 

for oxygen consumption and concentration of sodium sulphite versus time for sulphite consumption to obtain linear 

plots [1]. 

 

Experimental design and data analysis: Central composite design (CCD) 
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In order to study the combined effect of design or mechanical parameters such as impeller speed, and  

process or chemical parameters such as  air flow rate , a statistical approach namely response surface methodology 

has been used. The process conditions can be optimized using Response surface methodology. Response surface 

methodology is an empirical modelization technique devoted to the evaluation of the relationship of a set of 

controlled experimental factors and observed results. Basically this optimization process involves three major steps, 

performing the statistically designed experiments, estimating the coefficients in a mathematical model, and 

predicting the response and checking the adequacy of the model. The Central composite design is employed for the 

optimization of process conditions [7]. According to the Central composite design, the total number of treatment 

combinations was 2
k 
+ 2k + no where ‘k’ is the number of independent variables and no is the number of repetition of 

experiments at the center point. The total number of design points is thus N = 2
k 
+ 2k + no. The significant variables 

like speed of impeller & air flow rate were chosen as the critical variables and designated as X1 and X2 respectively. 

The low, middle, and high levels of each variable were designated as −, 0, and + respectively. -α and +α are the 

extreme levels in the range studied for each variable ,α describe  a circular design geometry ,which reduce errors by 

locating the axial points at the lower and upper bound of the variable  ranges, which gives direct , mutual, 

curvilinear interaction .  Factorial point should range -1 and +1, axial point –1.414 and +1.414 are intermediate 

levels between the central and extreme levels of each variable, and 0 is the central level in the range studied for each 

variable. The experimental range for Speed of impeller & Air flow rate are chosen for this study (Obtained using 

Design Expert Software, Stat-Ease, U.S.A.) is given in Table 1. 

 

A 2
2
-factorial central-composite-experimental-design was employed and all in duplicate, leading to 13 sets of 

experiments, was used to optimize the mass transfer coefficient. Experimental plan employed for the optimization of 

impeller speed and air flow rate. For statistical calculation, the variable Xi have been coded as xi according to the 

following transformation: xi = (Xi –Xo)/δX, Where xi is the dimensionless coded value of the independent variable 

Xi, Xo is the actual value of the independent variable Xi at the center point and X is the step change.  The optimum 

mass transfer coefficient is taken as the dependent variable or response Ŷ. Regression analysis was performed on the 

data obtained. The behavior of the system was explained by the following second order polynomial equation. Y = βo 

+ Σβi xi + Σβii xi
2
 + Σβij xi xj, where, Y = predicted response, βo = offset term, βi = linear effect, βii = squared 

effect, and βij = interaction effect. xi and xj = coded value of independent variables. The regression equation was 

optimized for maximum value to obtain the optimum conditions using MATLAB version 7.0 The second order 

polynomial equation was obtained using Design-Expert software [8]. 

 

Results and Discussions 

The volumetric mass transfer coefficient was determined using sodium sulphite oxidation method.  The experiments 

were carried out in 2 L (working volume) fermenter. The conventional practice of single factor optimization by 

keeping other involving factors at unspecified constant levels does not depict the combined effect of all the factors 

involved. Also this method requires carrying out a number of experiments to determine the optimum levels, which 

will not give true values. Optimizing all the affecting parameters combined by statistical experimental design can 

eliminate these drawbacks of single factor optimization process. The effect of the process conditions namely 

impeller speed and air flow rate were studied using a second order central composite experimental design (CCD) 

[7].
 
A total of 13 experiments with different combinations of impeller speed and air flow rate were performed using 

central composite design to find the parameter conditions where the optimum volumetric mass transfer coefficient 

occurs. Table 2 show the comparison between experimental and predicted values for the volumetric mass transfer 

coefficient using sodium sulphite oxidation method.  The error was well within + 10 % indicating that the empirical 

expression for the prediction of volumetric coefficient is valid.  The expression obtained in terms of coded factors is 

given by the equation,
 
Y1 = 607.58 - 23.99x1 - 36.60x2 - 15.08x1x2 + 27.66x1

2   
+ 14.59x2

2 
, where Y1 is the response 

variable i.e., volumetric mass transfer coefficient, x1 and x2   are coded  values of independent variables, i.e., 

impeller speed and air flow rate respectively . Actual form of the empirical expression gives the predicted value of 
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volumetric mass transfer coefficient. Y2 = 749.257 - 0.5878X1 - 4.3599X2 - 0.02512X1X2 + 0.0006 X1
2   

+ 1.618 X2
2
. 

WhereY2 is the response variable, Volumetric mass transfer coefficient.  X1 and X2 actual   values of independent 

variables, i.e., impeller speed and air flow rate respectively. 

The independent and the dependent variables were fitted to the second-order model equation. They were examined 

in terms of the goodness of fit. The goodness of fit of the regression equation Y1 was evaluated by the coefficient of 

determination (R
2
) and the coefficient of relation (R). The coefficient of determination (R

2
) is a measure of total 

variation of observed values of extracted oil about the mean explained by the fitted model. The coefficient of 

correlation (R) explains the correlation between the experimental and predicted values from the model. A good 

model equation explains most of the variations in the response. The coefficient of determination (R
2
) is 0.9204. This 

value indicates that the response model can explain 92.04% of the total variability in the responses. The coefficient 

of correlation (R) is 0.9593.The closer value of coefficient of correlation (R) to unity is the better. Statistical testing 

of the model was done in the form of variance (ANOVA), which is required to test the significance and adequacy of 

the model. The reliability of the suggested model was tested using the Fisher’s statistical test (F). The results of 

statistical testing using ANOVAs are given in Table 3. 

 Values of " Probability (P) > F"less than 0.05 indicate that the model terms are significant. The ANOVA of the 

regression model corresponding to quadratic for volumetric mass transfer coefficient Table 3 demonstrates that the 

model is highly significant, as it is evident from the calculated F-value (= 28.74) and a very low probability value 

(Probability(P) > F = 0.0009). Moreover the computed F-value (F= 28.74) is much greater than the F value (F0.005 (5, 

7) = 9.52) obtained from the standard distribution table, so the null hypothesis is rejected at 5% α level of 

significance [7-8]. From Figure 1 it can be observed that a stationary point exists although it is outside the range 

based on the shape of the contour plot. The response surface plot shown in Figure 2 for the chosen model Y1 

illustrates the three dimensional relationship for the effects of impeller speed and air flow rate on volumetric mass 

transfer coefficient.  The response surface indicates that the volumetric mass transfer coefficient increases with 

decrease in impeller speed and subsequent increase in air flow rate. This result indicates that two variables had 

mutually dependent influence on the volumetric mass transfer coefficient. 

 

CONCLUSION 

 Evaluation of mass transfer coefficients in fermenters were studied using central composite design to get the 

optimum value.  A total of 13 experiments for each set were employed to determine the volumetric mass transfer 

coefficients.  The order of the reaction for oxygen consumption for 2 L sodium sulphite oxidation method was found 

to be first order and zero order for the case of sodium sulphite oxidation.  Optimum volumetric mass transfer 

coefficient was found from response surface methodology to be outside the range of parameters studied.  Analytical 

expressions for predicting the volumetric mass transfer coefficient for the range of impeller speed and air flow rate 

tested were obtained using response surface methodology. 

  

Nomenclature 

kLa = Volumetric mass transfer coefficient, C*  =  Equilibrium concentration in moles /liter, t =  Time in minutes or 

sec and CNa2S03 = Concentration of sodium sulphite in mol/liter 
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Table 1. Experimental range and levels of impeller speed and air flow rate in Central composite design (CCD). 

Parameter Level 

-α -1 0 +1 +α 

Speed of impeller 217.16 300 500 700 782.84 

Air flow rate 4.76 6 9 12 13.24 

 

 

 

 

 

Table 2. Comparison of experimental and predicted values of volumetric mass transfer coefficient for 2 L sodium 

sulphite oxidation method 

 

Run Impeller 

speed (rpm) 

Air flow 

rate (lpm) 

Volumetric mass transfer 

coefficient kLa (hr
-1

) 

 

(%)-Error 

Experimental Model 

1 500.00 9.00 611.985 608.583 0.555 

2 782.84 9.00 609.151 675.977 1.177 
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3 217.16 9.00 710.677 675.977 0.588 

4 500.00 9.00 609.151 608.583 0.093 

5 500.00 9.00 607.735 608.583 -0.139 

6 500.00 9.00 604.151 608.583 0.608 

7 300.00 12.00 727.204 721.619 -0.768 

8 500.00 13.24 670.539 678.583 -1.257 

9 700.00 12.00 672.900 670.774 0.315 

10 500.00 4.76 596.402 575.691 3.472 

11 700.00 6.00 609.151 626.961 -2.923 

12 500.00 9.00 604.902 608.583 0.093 

13 300.00 6.00 603.151 608.583 -2.497 

 

 

Table 3. Analysis of Variance (ANOVA) Table for the effect of 

 speed of impeller, air flow rate on volumetric mass transfer coefficient. 

Source Sum of 

squares 

Degrees of 

freedom 

Mean 

square 

F value    

 

*Probability(P)>F 

Model 24505.94 5 4901.19 28.74 

 

0.0009 

significant Error 1193.78 7 170.54 
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Figure 1. Isoresponse contour plots showing the effect of impeller speed and air flow rate and their interactive effect 

on the volumetric mass transfer coefficient for 2 L sodium sulphite oxidation method. 

 

Figure 2. Response surface plot showing the effect of impeller speed and air flow rate and their interactive effect on 

the volumetric mass transfer coefficient for 2 L sodium sulphite oxidation method 
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