Developing Aspen-Plus Procedure on Flash Separation of Methanol-Water Mixture

* Awajiogak A. Ujile^a and Itong A Ujile^b

 ^aDepartment of Chemical/Petrochemical Engineering, Rivers State University of Science and Technology, P M B 5080, Port Harcourt, Nigeria. Email: <u>ujile.awajiogak@ust.edu.ng</u>; Tel: +2348033398876; *Corresponding author.
 ^bDepartment of Chemical Engineering, Texas A&M University, Kingsville, USA. Email: <u>itong.ujile@students.tamuk.edu</u>; Tel: +1 (361)355-6187

Abstract

A step-by-step procedure on the separation of methanol-water mixture has been developed. Application of ASPEN PLUS Software was utilized. Aspen Plus interface with Thermodynamics Package selection and an activity coefficient model are incorporated. UNIQUAC is used. Results obtained have shown a simple method that can be easily used by all chemical engineers at all levels. The developed method can be used for separation of other mixtures in the separation process industries.

Keywords: UNIQUAC model, separation, simulation, computer package

Introduction:

Risk and uncertainty are facts of life in most business and public policy decisions. However, with the right tools one can better understand risks and identify ways to mitigate them. This is especially important when "experimenting" in the real world becomes too expensive, dangerous, or time consuming. In a short amount of time and for very little money one can run thousands of "what if" scenarios allowing us to make better decisions more quickly [Monte-Carlo Simulations, Woller, 1996]. An example is illustrating the use of Monte-Carlo Simulation to compute the value of the mathematical constant; Pi has been applied for **Computing Pi Model**. The sensitivity analysis and scenario analyses are quite useful to understand the uncertainty of the investment projects. But both approaches suffer from certain weakness. They do not consider the interactions between variables and also, they do not reflect on the profitability of the change in variables EzineArticles (2010). Simulation is one of the most widely used quantitative methods, because it is so flexible and can yield so many useful results. Here is just a sample of the applications where simulation is used, (Wharton University of Pennsylvania):

- Choosing drilling projects for oil and natural gas
- Evaluating environmental impacts of a new highway or industrial plant
- Setting stock levels to meet fluctuating demand at retail stores
- Forecasting sales and production requirements for a new drug
- Planning aircraft sorties and ship movements in the military
- Planning for retirement, given expenses and investment performance
- Deciding on reservations and overbooking policies for an airline
- Selecting projects with uncertain payoffs in capital budgeting

Chemical engineers use flow sheets/process flow diagrams to analyze unit operations. There are varieties of computer programs or packages which can be utilized. Examples of process simulation packages are: Aspen plus, Hysys, ProII, ChemCAD, Design II, to mention but a few Peters, et al (2004). The benefits of simulation package application are (Process Engineering Associates, LLC) available online:

- Accurate design information
- Software-produced mass and energy balances and process flow diagrams
- Multiple design cases at a fraction of the cost
- Process optimization, finding the process' maximum performance point

• Sensitivity analyses, determining the process' key control variables and degree of operating stability. The availability of this powerful software is a great asset to the experienced process engineer, but such sophisticated tools can be potentially dangerous in the hands of neophyte engineer. The bottom line in doing any process simulation is that you the engineer are still responsible for analyzing the results from the computer, Turton et al (2009).

The work of Ujile and Amagbo (2013) on determination of plate efficiency of rectification column in refinery operations has shown that to gain high efficiency of separation in a distillation column requires increase in the number of trays within a given section by reducing the spacing between trays. However, optimization principle

is required to obtain optimum results. They asserted this proposal to form the subject matter for further work on the plant, which might require the application of process engineering system tools.

Chemical engineers' knowledge of basic principles of one of these simulation programs is expedient to be able to carry out further work on optimization problems in industrial separation processes. However, these programs are similar; therefore basic knowledge of one of them would facilitate understanding the other programs. This guide attempts to provide a step by step approach in modeling a flash separation of a methanol-water system using Aspen Plus such that would be easy to understand by chemical engineers at all levels, and other engineers or individuals that are involved in process design activities. The developed procedure enables the process engineer to analyze results from the computer.

<u>Methodology</u>

The method adopted in this work involves the process system of methanol – water mixture at different concentrations in a typical distillation (separation) unit.

Process Description

A mixture composed of methanol and water with mole fractions 0.1 and 0.9 is fed into a flash unit at 1000lbm/hr at 27 °C and atmospheric pressure. Suppose the flash unit operates at 1atm and vaporizes 30% of the mixture, determine the composition of the product streams using Aspen Plus.

<u>START UP ASPEN PLUS</u>: From the start menu, follow the sequence as shown in the illustration below, (Figure 1).

Fig 1: Sequence for Start-up

Select the radio button next to Blank Simulation and hit the OK button to display the GUI

(Fig. 2).

Aspen Plus ¥7.0 - aspenONE	🧕 Aspen Plus ¥7.0 - aspenONE
Aspen Plus Startup	
Create a New Simulation Using	
C Blank Simulation	
© Open an Existing Simulation	
Help, press F1	For Help, press F1

Fig.2: Selection process for Aspen-Plus

The GUI would be the environment where the process flow diagram is defined.

Defining Process Flowsheet Connectivity: This is the first thing to be done immediately the flow sheet is set up. The various unit operations and their connecting streams are placed on the workplace. For this tutorial, A 3-product flash separator unit is required. The unit and connecting streams can be selected as shown in Fig. 3 below.

The flash tank could be resized by regular windows operation.

Fig. 3: Various unit operations and connecting streams

The red markers on the flash unit show where process streams can be connected.

The figure below shows the flash unit with all feed and product streams (Fig. 4). For ease of operations, the streams and flash unit can be renamed by right clicking and using the drop-down menu that appears.

Fig. 4: Flash unit with feed and product streams

The NEXT button : The next button on the flow sheet provides an orderly procedure in preparing the flow sheet. However, it is not the only way. Aspen Plus provides a variety of approach to achieve a goal on the flow sheet.

The next button could provide a dialogue box showing the next operation required on the spreadsheet Fig. 5.

Fig. 5: Orderly procedure in preparing the flow sheet

In this case, since the process units and connecting streams have been installed on the flow sheet, the next button suggests providing problem specifications on input forms on the data browser. Clicking ok displays the SETUP SPECIFICATIONS in the DATA BROWSER

💽 Simulation 1 - Aspen Plus V7.0 - aspenONE - [Setup Report Options - Data Browser]
File Edit View Data Tools Run Plot Library Window Costing Help
🗋 🗖 🖓 🖓 🖄 📾 🛍 🕺 🕅 🚰 🐔 📽 🐔 🐼 🕨 🗊 🕑 💌 🔳 📰 🔛 🗖 🖸 🙆 💭 🏢 Costing: Uninitialized 📓 🖳 🚝
Specifications Sindation Optor Stream Case St
Input Complete
Mixers/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design
$\xrightarrow[Material]{} \left(\bigcup_{\text{Flash2}} \bullet \bigcup_{\text{Flash3}} \bullet \bigcup_{\text{pecanter}} \bullet \bigotimes_{\text{Sep}} \bullet \bigcup_{\text{Sep2}} \bullet \bigcup_{s$
For Help, press F1 C:\AspenTech\Aspen Plus V7.0 NUM Required Input Incomplete
🐮 Start 💋 🚱 💽 💽 Simulation 1 - Aspen 🦉 untitled - Paint 🔤 MeOH, Water VLE Simula

IISTE

Fig. 6: Component selection display

Note that the red element shows that the required input is incomplete. The blue data shows that the required input is complete. However, the operator can modify the units, run type and other parameters to suit his or her own specifications. In this tutorial, we want our results to be displayed in mole fractions so under report options>Streams tab, select "MOLE" next to the fraction basis.

Clicking the Next button leads to the next required input which is COMPONENTS as in Fig. 6.

Simulation 1 - Aspen Plus V7.0 - aspenONE - [Components Specifications - Data B]]]]]]]]]]]]]]]]]]	irowser]	×								
	▶ 💌 🔳 🛒 🖬 🛛 🛑 🔾 🚳 🔠 Eosting:	Uninitialized 🔤 🖳 🔫								
Specifications	Find									
Setup VSelection Petroleum Nonconventional Datab	Name or Formula Advanced									
Specifications		Find now								
Assay/Blend Component ID Type Component nam	Component name or formula : METHANOL	Close								
Light-End Proper WATER Conventional WATER	Match alternate names									
Pseudocomponer METHA-01 Conventional METHANOL	Match only components beginning with this string	New search								
Attr-Comps										
Moisture Comps										
UNIFAC Groups										
Comp-Lists		Databank								
Polymers Attr-Scaling	Double click on component to add to list									
Properties	Component name Formula Alternate name Databar	nk MW								
	METHANOL CH40 CARBINOL PURE2	2 32.0419								
Blocks	TERT-BUTYL-ALCA C4H100-1 PROPYLMETHAN PORE2. TERT-BUTYL-ALCA C4H100-4 TRIMETHYLMET PURE2.	2 74.1216								
	4-METHYL-2-PENT C6H140-D4 ISOBUTYLMETHY PURE23 AGATHADIOI 20H3402 1-NAPHTHALENE PUBE23	2 102.175								
	ALPHA-TERPINEOL C10N180-D1 alpha,alpha,4-TRI PURE23	2 154.249								
Flowsheeting Options	DIMETHYL-PHENY C9H120-E BENZENEMETHAN PURE2	2 102.132								
Model Analysis Tools Find Elec Wizard User Defined Re	PROPARGYL-ALCO C3H40-D0 ETHYNYLMETHA PURE2	2 56.0633 🔽								
Results Summary										
Dynamic Configuration Component ID. If data are to be retrieved from databanks, er	Add									
	Matches found : 24	li.								
Input Complete										
Mixers/Splitters Separators Heat Exchangers Columns Reactors	Pressure Changers Manipulators Solids User Models Cond	ceptual Design								
		L. L								
STREAMS Flash2 Flash3 Decanter Sep Sep2		/								
For Help, press F1	C:\AspenTech\Aspen Plus V7.0 CAP NUM	Required Input Incomplete								
🛃 Start 💋 🚱 💽 🦲 Simulation 1 - Aspen 🤰 untitled - Paint 🦉	MeOH, Water VLE Simula	🎯 💟 🧐 4:56 PM								

IISTE

Fig. 7: Selection of component package

To add components, use the display on Fig. 7.

Click find, then type the compound name or formula and click find now. Select the name of the component and click add. (Follow arrow captions in the screenshot above).

The Next button suggests selection of Thermodynamic Package. For this example, an activity coefficient model is suitable. UNIQUAC is used and the display is shown in Fig. 8.

IISTE

Fig. 8: Selection of thermodynamic package

Choosing the right thermodynamic package is very important and could be cumbersome.

Aspen- Plus provides a hint to choosing the right thermodynamic package as in Fig. 8.

Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.26, 2014

www.iiste.org

IISTE

Fig. 9: Property method selection

The button displays a wizard that aids in choosing the most suited thermodynamic package.

The next step requires a review of the binary interactions specifications for this process as shown in figure 9. The display in Fig. 10 shows the binary interaction specifications. The parameters in UNIQUAC can be obtained in Fig. 10, by searching method on the display button.

Simulation 1 - Aspen Plus V7.0 - aspenONE - [Properties Parameters Binary Interact	tion UNIQ-1 (T-DEPENDENT) - Data Browser]
	🔢 📕 🖾 📕 💛 💭 🛄 🏢 Costing: Uninitialized 🎬 🗛 😤 🗖
Moisture Comps	
UNIFAC Groups	
Comp-Groups Parameter UNID Data set: 1	Derhema
Comp-Lists	
Polymers Temperature-dependent binary parameters	
Attr-Scaling	
Properties Component i WATER	
Specifications Component j METHA-01	
Estimation	
Molecular Structure	
Parameters	
Pure Component	
Binary Interaction	
ANDKIJ-1 BIJ -579.8361554	
ANDMIJ-1 BJI 779.1812938	
Electrolyte Pair	
Electrolyte Ternary	
UNIFAC Group	
UNIFAC Group Bina	
Results	
Data I Estimate missing parameters by UNIFAL	SearchSwap
Advanced .	
Input Complete	
Mixers/Splitters Separators Heat Exchangers Columns Reactors	Pressure Changers Manipulators Solids User Models Conceptual Design
Material STREAMS)
For Help, press E1	C:\AspenTech\Aspen Plus V7.0 NUM Required Toput Tocomplete
	Marchi Wakan U.C. Cinida 🖉 Dalia David. Lisina Thina
🛫 Start 🖉 🕲 💙 [🕑 Simulation 1 - Aspen 🦉 Unitied - Paint 🦉	Meon, water vic billula

Fig. 10: Binary interactions

The next required Step is specifying the input parameters for the feed stream in Fig. 11.

Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.26, 2014

💌 Simulation 1 - Aspen Plus ¥7.0 - aspenONE - [Stream FEED (MATERIAL) Input - Data Browser] 📃 🗗 🗙
File Edit View Data Tools Run Plot Library Window Costing Help
DIE BARRY INDIALIZED DIE Costing: Uninitialized B
Property Metl Yespecifications Flash Options PSD Component Attr. EO Options Costing
Contraction
Analysis Temperature Mole-Frac
Prop-Sets 27 C
Flowsheet Flowsheet METHA-01 0.1
BOTTOMS
FEED Total flow. Mole
Results 1000 Ibmol/hr 🔽
EO Varix
Custom Solvent: ▼
Blocks Utilities
E Reactions
Convergence Flowsheeting Octio
Model Analysis Too Total
CO Configuration Results Summary
Dynamic Configurat Lets you type the component flow, traction or concentration. See Help.
Input Complete
Mixers/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design
Material
STREAMS ' Hash2 Hash3 Decanter Sep Sep2
Start 2 Start 2 Start 2 Simulation 1 - Aspen 2 untitled - Paint 2 MeOH, Water VLE Simula 2 Simulation 1 - Aspen

www.iiste.org

Fig. 11: Simulation for the feed stream

The Temperature, pressure, mass flow rate, composition can be specified in this section.

The Next line of action is to specify the operating conditions of the flash tank as in Fig. 12.

Fig. 12: Determining operating conditions for the flash tank

Note that all indicators are blue; hence all required input is specified. Either use the play or

Next button to view results as in Fig. 13.

Fig.13: Viewing the results of the simulations

Clicking OK will display results as shown in figure 14.

🢽 Simulation 1 - Aspen Plus ¥7.0 - aspenONE - [Block FLASHTNK (Flash3) Input - Data Browser]
File Edit View Data Tools Run Plot Library Window Costing Help
□ 😂 🖬 🖗 🕼 🕺 📈 🛣 🔍 🚧 🍕 🐼 🕪 🗊 ▶ ▶ 💌 🔳 🛒 🖾 🗖 💽 🙆 🎽 Costing: Uninitialized 📓 張 👘 🔹
CAPE-OPEN F VSpecifications Key Components Flash Options Entrainment Utility
to towsheet
BOTTOMS Vanot fraction
⊨_ M Blocks
Hourves
Dynamic
Block Or Required Input Complete
EO Varik All required input is complete. You can run the simulation now, or you can enter more input. To enter more input,
EO Inpu Select Cancel, then select the options you want from the Data pulldown menu.
Spec or Run the simulation now?
Stream OK Cancel
B Convergence
B S Investering Optio
B → Fold Configuration
Results Summary Lets you type the pressure. Absolute units: outlet pressure if value > 0; pressure drop if value <= 0. Gauge units: outlet pressure for all values.
Combee
Mixers/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Concentual Design
Material STREAMS Flash3 Decarter Sep Sep2
For Help, press F1 C:\AspenTech\Aspen Plus V7.0 NUM Required Input Complete
🐉 Start 🖉 🚱 💽 💽 Simulation 1 - Aspen 🦉 untitled - Paint 🔄 MeOH, Water VLE Simula 🌈 Linkin Park - Living Thing

Fig. 14: Results display

The figure 15 shows the Run Control Panel.

🧕 meoh - Aspen Plus ¥7.0 - aspenONE - [Control Panel]
Tile Edit View Data Tools Run Library Window Costing Help
DICE 🖉 🖓 🖓 🖓 🖓 🖓 🍕 🎻 🕪 🗊 🕑 💌 🔳 😨 🗹 🗶 🕒 🔘 🌐 Costing: Uninitialized 🖉 🗄 🤤
▶ ▷ ► Solve ▼ 😨 🗹 📴 -
Calculation Sequence COMPUTATION ORDER FOR THE FLOWSHEET: FLASHTNK ->Calculations begin
Block: FLASHTNK Model: FLASH3
->Simulation calculations completed
*** No Errors or Warnings Generated ***
<< Loading Simulation Engine 17:53:46 Thu Aug 30, 2012>>
<< Problem specifications modified 17:56:22 Thu Aug 30, 2012>>
->Processing input specifications
->Finished processing new specifications
->Calculations begin
More #
All blocks have been executed
Mixers/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Material STREAMS Mixer FSplit SSplit SSplit SSplit SSplit
Simulation run completed C:\guest.ENGINEERING\Desktop CAP NUM Results Available
🏄 Start 🎉 🚱 📀 🦉 untitled - Paint 🔄 MeOH, Water VLE Simula 💽 meoh - Aspen Plus ¥7

Fig. 15: Run control panel

The Stream Results can be viewed under the block menu as shown in figure 16.

🕐 meoh - Aspen Plus ¥7.0 - aspen ONE - [Block FLASHTNK (Flash3) Stream Results - Data Browser] 📃 🗗 🗙										
File Edit View Data Tools Run Plot Library Window Costing Help										
	1 🕅 🖬 🖌 🏔 🖻	π - ⊈ 6ω^ №			2 🗹 🛛			Costing: Uninit	tialized 🎦 🗄 🔫 🖪	
🗸 Stream Results 🛛 💌 🖭			• >>		N→ [2]	×				
🚽 🗸 Stream Class 🔺 📕	aterial Heat Load	Vol.% Curves	Wt. % Curves	Petro, Curve	s Poly. Curve	es				
Substreams Costing Options										
	Direlen C	Frank Fills		Charles Table						
🗄 🔯 Units-Sets	Display: Streams	Format: [FULL		Stream Lable						
Custom Units										
Components		FEED 🗾	OVHDVAP 🔽	воттомз 💌	SIDEDRAW	<u> </u>	1			
7 Properties	Substream: MIXED						_			
1 Flowsheet	Mole Flow Ibmol/hr									
Difference Streams	WATER	900.0000	229.0712	0.0	670.9288					
FEED	METHA-01	100.0000	70.92877	0.0	29.07123					
🗄 🛃 OVHDVAP	Mole Frac									
	WATER	.9000000	.7635708	0.0	.9584697					
	METHA-01	.1000000	.2364292	0.0	.0415303					
	Total Flow Ibmol/hr	1000.000	300.0000	0.0	700.0000					
Hcurves	Total Flow lb/hr	19417.97	6399.493	0.0	13018.47					
Block Ontion	Total Flow cuft/hr	327.7648	1.44665E+5	0.0	230.5457					
Results	Temperature F	80.60000	200.6915		200.6915		1			
EO Variable:	Pressure psia	14.69595	14.69595	14.69595	14.69595]_1			
EO Input										
Ports										
🚽 🗸 Stream Re										
Custom Stre										
Results Available										
Mixers/Splitters	Separators Heat Excha	angers Colum	ns Reactors	Pressure Chan	gers Manipul	lators Solids	User Mode	els 📔 Conceptual D	esign	
									N N	
STREAMS Mixer FS	plit SSplit									
For Help, press F1						C:\guest.	ENGINEERING	\Desktop NUN	1 Results Available	
🏄 Start 🏾 🏉 🚱 🕒 🦉 untit	led - Paint 🛛 💇	MeOH, Water VL	.E Simula	meoh - Aspen	Plus ¥7				🎯 🕅 🧶 5:59 PM	

IISTE

Fig. 16: Stream results

Also, VLE (vapor liquid equilibrium) Analysis can be carried out with this procedure.

Subsequent outputs show the analysis of the stream results

Image: Set Were Case Tools Fine Risk Library Window Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tools Fine Risk Library Window Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tools Fine Risk Library Window Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tools Fine Risk Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Set Were Case Tool Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Control Hele Image: Contro	🦲 meoh - Aspen Plus ¥7.0) - aspenONE - [Block FLAS	HTNK (Flash3) Str	eam Results - I	Data Browser]					_ 8 ×			
Image: Construction Model Support (FdC) Person	🔄 File Edit View Data	Tools Run Plot Library	Window Costing	Help						_ 8 ×			
Image: Streem Image: Streem<		Analysis	Þ	Property	Pure			III Costin	ng: Uninitialize	d 🔤 🗈 🔫 .			
Image: Sector		NIST Thermo Data Engine	(TDE)	Stream	Binar	y	د ریدید -		-				
Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Image: Second Reads Im		Retrieve Parameter Result	s	Pressure Che	cker Resi	ue							
Important Leving Import Levi	Charles Davids	Dean Property Parameter: Property Method Selection	5				a						
Specificity	Steam nesults	Concentral Decision	A0000010	10 × Comp		no I Rola Carao	<u> </u>						
Sinulating Sinulating Sinulating Sinulating Sinulating South and South B Explorer Sinulating Sinulating Sinulating Sinulating South and South B Explorer File Orthorows Sinulating Orthorows Orthorows South and South B Explorer File Orthorows Orthorows Orthorows Orthorows South And South B Explorer File Orthorows Orthorows Orthorows Orthorows South And South B Explorer File Orthorows Orthorows Orthorows Orthorows South And South B Explorer File Orthorows Orthorows Orthorows Orthorows South And South B Explorer File Orthorows Orthorows Orthorows Orthorows South And South Explorer File Orthorows Orthorows Orthorows Orthorows South And South Explorer File Orthorows Orthorows Orthorows Orthorows South And South Explorer File Orthorows Orthorows Orthorows Orthorows South Explorer South Explorer	Specificati	Conceptual besign			s i read, com	co inclui curveo	1						
• Stream date • Stream date • Stream date • Stream date • Stream date • Stream date		Import CAPE-OPEN Packag	je										
Image: Contraging of the second of the s	Stream Ck	Variable Explorer	Je	-	Stream Table								
Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Print Image: Stream Pri	Costing Op	Mault	E4		1	1 1	1						
Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbooks Outbook	🕀 🔯 Stream Pri			OVHDVAP -	BOTTOMS	SIDEDRAW	•						
Wide Rev Uswit/h Wate R 9000000 228 0712 0.0 670 9338 Wate R 9000000 728 577 0.0 280 9723 0.0 670 9338 Wate R 9000000 728 577 0.0 280 9723 0.0 670 9338 Wate R 9000000 728 576 0.0 584887 0.0 984887 Wate R 9000000 728 576 0.0 584887 0.0 100 9000 Wate R 9000000 728 576 0.0 584887 0.0 100 9000 Bods 1.0 6 me 0.0 700 00000 0.0 700 00000 Bods 1.0 6 me 1417 97 589 483 0.0 100 847 100 0000 Bods 1.0 6 me 1417 97 589 483 0.0 100 847 100 847 Wate R 900000 146 5956 14 5956 14 5955 14 5955 14 5955 Wate R 900000 14 5955 14 5955 14 5955 14 5955 14 5955 Wate R 900000 14 5955 14 5955 14 5955 14 5955 14 5955 14 5955 14 5955 14 5955<	Units-Sets	Options					-	1					
Imposence Watter 90 30000 220 0712 0.0 90 3388 Imposence MicHa Adit 100 0000 228 0712 0.0 28 07123 Imposence MicHa Adit 100 0000 228 0712 0.0 28 07123 Imposence MicHa Adit 100 0000 258 4837 Imposence Imposence Imposence MicHa Adit 90 300000 275 578 0.0 95 4857 Imposence Imposence MicHa Adit 90 0000 258 4857 Imposence Imposence Imposence Imposence Imposence MicHa Adit 100 0000 238 4857 Imposence	Report Op	Mole Flow Ibmol/hr											
	🕀 🧭 Components	WATER	900.0000	229.0712	0.0	670.9288							
Image: Separation: Image: Se	Properties Flowsheet	METHA-01	100.0000	70.92877	0.0	29.07123							
Image: Section of the section of t	Streams	Mole Frac											
Image: Conceptual Design Image: Charge and tables Conceptual Design Image: Charge and tables Conceptual Design Conceptual Design Image:	BOTTOMS	WATER	.900000	.7635708	0.0	.9584697							
Image: Successive Image: Successive Image: Successive Image: Successive Image: Successive Image: Successive </th <th>H CONTRACT</th> <th>METHA-01</th> <th>.1000000</th> <th>.2364292</th> <th>0.0</th> <th>.0415303</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	H CONTRACT	METHA-01	.1000000	.2364292	0.0	.0415303							
Image Rook as which in 1967 37 6 389 483 00 101 827 47 Image Rook as which in 1967 37 6 389 483 00 101 827 47 Image Rook as which in 1967 37 6 389 483 00 100 1 201 827 Image Rook as which in 1967 37 6 14 68555 0 203 487 Image Rook as which in 1967 37 6 14 68555 14 68555 14 68555 Image Rook as which in 1967 37 6 14 68555 14 68555 14 68555 Image Rook as which in 1967 37 80 14 68555 14 68555 14 68555 Image Rook as which in 1967 38 484 Image Rook as which in 1967 39 14 68555 14 68555 Image Rook as which in 1967 39 14 68555 14 68555 14 68555 14 68555 Image Rook as which in 1967 39 14 68555 Image Rook as which in 1967 39 14 68555 14 68555 14 68555 Image Rook as which in 1967 30 14 14 14 14 14 14 14 14 14 14 14 14 14	E SIDEDRAV	Total Flow Ibmol/hr	1000.000	300.0000	0.0	700.0000							
Image: Lasting and Flow out // 12277648 1446505-15 00 220.9457 Image: Lasting and Flow out // 12277648 1446505-15 00 220.9457 Image: Lasting and Flow out // 12277648 1446505-1446505 1465555 1465555 Image: Lasting and Flow out // 12277648 1465555 1465555 1465555 Image: Lasting and Flow out // 12277648 1465555 1465555 1465555 Image: Lasting and Flow out // 12277648 1465555 1465555 1465555 Image: Lasting and Flow out // 12277648 1465555 1465555 1465555 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 12277648 Image: Lasting and Flow out // 122777648	E M Blocks	Total Flow lb/hr	19417.97	6399.493	0.0	13018.47							
Terreter Units Too, Too, and Gale servery of mixing joks and tables Terreter Units Too, Too, and Gale servery of mixing joks and tables Terreter Units Too, Provided to Too, and the State Sta	E FLASHTNK	Total Flow cuft/hr	327.7648	1.44665E+5	0.0	230.5457							
Pressure prime Pressure	Hcur	Temperature F	80.60000	200.6915		200.6915							
Bod B	🚽 🕖 Dyna	Pressure psia	14.69595	14.69595	14.69595	14.69595		1					
	Block							-					
Clquest.ENGIDEERINGDestro Municipalities More PSpt Spt	EO V												
Luis Available Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Pressure Changers Manipulators Solids User Models Conceptual Design Mixeru/Spikters Separators Pressure	EO II												
Available Maters/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids Use Models Conceptual Design Fight - Splitters Separators - Splitters - Spli	Spec	1											
Asserted Assetted Miner/Splitters Separators Heat Exchanges Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Assetted Miner/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Miner/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Miner/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design mercete tampart Top, Poy, and Gala settery of mining locids and tables Instrume Columns Reactors Manipulators		1											
Marcert/Spillerer Separator Heat Exchanges Columns Reactor Pressure Changers Manipulators Solds User Models Conceptual Design Marcert/Spillerer Separator Heat Exchanges Columns Reactor Pressure Changers Manipulators Solds User Models Conceptual Design Marcert/Spillerer Separator Heat Exchanges Columns Reactor Pressure Changers Manipulators Solds User Models Conceptual Design Press Figure Spillerer Separator Heat Exchangers Columns Reactors Pressure Changers Manipulators Solds User Models Conceptual Design Press Figure Spillerer S	Results Available												
Image: Spit Spit Read Structure Spit Instant Structure Clquest.ENCINEERINGDesitor Num Preside and ubles Stant Structure Structure Stant Structure Structure Stant Structure Structure Structure Structure Structure Structure Structure Structure	Mixers/Splitte	ers Separators Heat E	xchangers Colum	ns Reactors	Pressure Cha	ngers Manipula	tors Solids	User Models C	Conceptual Design				
										L. A.			
Insert FSpit SSpit neretest inny try, Py, and tables serving of mixing plots and tables [C1guest.EINGTDEERINGDestrop [MM] Results Available Start # 32 - 00 Munthed - Max Mix Start & S	Material -	· · · · · ·											
nerates binary Toy, Pry, and Gibbs energy of mixing plots and tables [C1,guest. ENGINEERING[Desktop] NUM Results Available [Start # @ 0] untitled - Park [I] Medint, Water M.E. Simila] meeh - Asseen Plus VT	STREAMS Mixer	FSplit SSplit								1			
start 🖉 🕲 💽 untibled - Paint 🖉 MeCH, Water VLE Simula 🕒 mech - Aspen Plus Y7	Generates binary Txy, Pxy, an	nd Gibbs energy of mixing plots	and tables				C:\guest.ENG	INEERING\Desktop	NUM	Results Available		~	-
	🏄 Start 🏾 🏉 🕑 🦉	untitled - Paint	MeOH, Water V	LE Simula	meoh - Asper	Plus V7			(@	🕅 🕘 6:01 PM	(a)	Strea	m da

e meoh - Aspen Plus V7.0 - aspenONE - [Binary Analysis]
File Edit View Data Tools Run Library Window Costing Help
🗋 🚔 🖶 👼 🛃 📓 🕺 🧱 式 🐼 恥 💷 🕑 📧 🔳 🔟 🗾 🕖 🗩 🚺 🛄 Costing: Uninitialized 🖼 🛼 🛫 🕫
Analysis type: Image: Solution approach Component 1: WATER Component 2: METHA:01 Compositions Image: Solution approach Basis: Mole fraction Component: VATER VATER Image: Solution approach Conversil range Upper: Lower: 0 Upper: 1 Points: 41 Increments: Image: Solution approach
Save As Form Go Cancel
Mixers/Splitters Separators Heat Exchangers Columns Reactors Pressure Changers Manipulators Solids User Models Conceptual Design Material TREAMS
or Help, press F1 C:\guest.ENGINEERING\Desktop NUM Required Input Incomplete
🐉 Start 🖉 🚱 💿 🦉 untitled - Paint 🔤 MeOH, Water VLE Simula 💽 meoh - Aspen Plus ¥7

IISTE

(b) Binary analysis

Fig. 17 (a) and (b): Binary analysis of methanol-water mixture

Fig. 18: Graphical results /VLE of methanol-water mixture

Exiting the screen would display data (as shown in figure 19) that can be copied to excel

spreadsheet for further

analysis.

🦲 me	oh - Aspen Plus V e Edit View Data	7.0 - aspenONE - [8 a Tools Run Plot	iinary Analysis Res : Library Window	sults] Costing Help							
			<u>4 * % % %</u>] 🔣 🔟 🔟			ig: Uninitialized		
4											
Bir	nary analysis results —										
	PRES	MOLEFRAC	TOTAL	TOTAL	TOTAL	LIQUID	LIQUID	VAPOR	VAPOR		
		WATER	TEMP	KVL	KVL	GAMMA	GAMMA	MOLEFRAC	MOLEFRAC		
				WATER	METHA-01	WATER	METHA-01	WATER	METHA-01		
	psia 💌	_	F	_	· · · · · · · · · · · · · · · · · · ·	~		_	F		
	14.69595	0	148.1623	0.4086634	0.9999937	1.689167	1	0	1		
	14.69595	0.025	148.8413	0.4080125	1.015179	1.658226	1.000246	0.0102003	0.9897996		
	14.69595	0.05	149.5253	0.4074152	1.03119	1.627934	1.001	0.0203717	0.9796283		
	14.69595	0.075	150.2148	0.4068807	1.048093	1.598293	1.002286	0.0305193	0.9694807		
	14.69595	0.1	150.9099	0.4064153	1.065954	1.569304	1.00413	0.0406414	0.9593585		
	14.69595	0.125	151.6114	0.4060298	1.084853	1.540971	1.006559	0.0507535	0.9492464		
	14.69595	0.15	152.3197	0.4057322	1.104871	1.513294	1.009604	0.0608595	0.9391405		
	14.69595	0.175	153.0352	0.4055325	1.126099	1.486276	1.013298	0.0709676	0.9290324		
	14.69595	0.2	153.7586	0.4054415	1.14864	1.459919	1.017676	0.0810874	0.9189126		
	14.69595	0.225	154.4906	0.4054715	1.172606	1.434225	1.022777	0.0912297	0.9087703		
<u> </u>	14.69595	0.25	155.2321	0.405636	1.198123	1.409197	1.028643	0.1014071	0.8985929		
	14.69595	0.275	155.984	0.40595	1.225331	1.384837	1.03532	0.1116336	0.8883664	-	
Plot Wizard Close											
	Mixers/Spl	itters Separators	Heat Exchanger:	s Columns Re	actors Pressure	Changers 📔 Manip	ulators Solids	User Models C	onceptual Design \mid		
Mater STREA			Split								
For Help	p, press F1					C:\.	guest.ENGINEERIN	G\Desktop NL	JM Required	Input Incomplete	
樻 Sta	art 🏉 📴 💽	🦉 untitled - Paint	MeC 🔮	H, Water VLE Simula	💽 meoh - As	pen Plus ¥7			٩	🤊 🕘 6:06 PM	

Fig. 19: Binary analysis results/Output data of the simulation.

Conclusion

This guide is intended as a step-by step procedure to simulate the compositions of mixture in a separation process.. However, hands-on learning is strongly recommended such that, one follows step by step running his/her own simulation because ONLY reading this would be least effective in educating the user; unless one is an expert with experience on process simulations. A procedure that could help chemical/process engineers to analyze results of process simulations from computer has been developed. The guide can be applied in various process systems. The volume liquid equilibrium (VLE) in graphical form obtained as shown in figure 18 is of significant importance in separation processes. The components of various streams could be viewed with minimum difficulty.

Acknowledgements

The authors gratefully acknowledge the Aspen Technology Group for the software licenses granted Texas A & M University, Kingsville (TAMUK) which has enhanced the development of the procedure. In like manner we appreciate Invensys Systems, Inc (SimSci) for the Process Engineering Systems (PES) licenses granted Department of Chemical/Petrochemical Engineering, Rivers State University of Science and Technology, Port Harcourt, Nigeria which has supported this procedure.

References

EzineArticles (2010): <u>http://professional-edu.blogspot.com/2010/07/216-simulation-analysis.html</u> Article Source: <u>http://EzineArticles.com/4763419</u> accessed on 15/06/2013

Peters, M. S., Timmerhaus, K. D. and West, R. E. (2004): Plant Design and Economics for Chemical Engineers, Fifth Edition, The McGraw Hill Companies

Process Engineering Associates, LLC, Available online at: <u>http://www.processengr.com</u> / accessed on 27/08/2014

Turton, R., Bailie, R. C., Whiting, W. B. and Shaeiwitz, J. A (2009): Analysis, Synthesis, and Design of Chemical Processes, Third Edition. Prentice Hall International Series

Ujile, A. and Amagbo, L. G. (2013): Determination of Plate Efficiency of Rectification Column in Refinery Operations; International Journal of Engineering and Technology Volume 3 No. 8, August, 2013 Wharton University of Pennsylvania, Available online at: <u>http://opim.wharton.upenn.edu/~sok/phillydistricts/</u> accessed on 15/06/2013

Woller, S (1996): The Basics of Monte Carlo Simulations, Available online at: <u>http://www.Solver.com/Monte-Carlo</u> accessed on 14/06/2013

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: <u>http://www.iiste.org/journals/</u> All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: <u>http://www.iiste.org/book/</u>

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

