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Abstract 

Due to the continuous search for cost effective and less time consuming means of obtaining reservoir and well 

parameters(k, S, etc.), well test analysts have sought for other means of automating the well test interpretation 

process. Although nonlinear regression is central to the automation process, its use is limited by the subjective 

selection of the regression reservoir model. This is due to the difficulty in distinguishing the characteristic 

behavior/features of the pressure (or pressure derivative) response hidden behind noise or of ambiguous plots 

and this usually leads to wrong parameter estimation. To forestall this problem of model selection, an Artificial 

Intelligence (AI) approach has been developed to identify the features necessary to discriminate these different 

models. 

This approach completely automates the well test interpretation process and involves the generation of a 

representative dimensionless pressure derivative data and the extraction of symbolic data from the pressure 

transient data. This symbolic data is matched with the generated dimensionless pressure derivative data and 

subsequently used by the AI system to chose the reservoir model and make initial model parameter estimates. 

Nonlinear regression is then used to refine these estimates. The part 2 of this paper presents the analysis of the 

results of this approach. 

1.0 Introduction 

For decades, well tests have been the prime means of estimating reservoir and well parameters (k, S, etc.). 

However, recent developments in the area of well testing, such as the use of permanent down-hole gauges, call 

for automated/mechanized model selection and parameter estimation. This is due to the large amount of data 

acquired and  has led to the development and continuous search for other cost effective and less time consuming 

means of accurately obtaining these parameters.  

There are three (3) methods of analyzing well test data; conventional, type-curve and regression (or automated 

type-curve) methods (Onyekonwu, 1997). The conventional method involves using straight lines that are 

characteristic of the different flow regimes to estimate the desired parameters, while the type-curve method 

involves finding a type curve that matches the reservoir response, from which the desired parameters can be 

estimated. The regression or automated type-curve method entails fitting the well test pressure data to an 

analytical model, from which the required parameters can be estimated. This work is based on the third method, 

automated type-curve method. 

Automated type-curve matching can be seen as a three-stage technique; model selection, initial parameter 

estimation and regression. The challenges of using regression in well test analysis is compounded by the 

subjective selection of the regression reservoir model due to the difficulty in distinguishing the characteristic 

behavior/features of the pressure (or pressure derivative) response hidden behind noise. This usually leads to 

wrong parameter estimation. 

As a solution to this problem, a complete automated well test analysis program that will mechanize all the three 

stages involved in the regression method is required. 

One of the benefits of using non-linear regression is the use of Confidence Intervals (CI) to measure the 

goodness of fit. This is used to determine if the appropriate model was selected. As an edge over the 

conventional and manual type-curve method, nonlinear regression provides the well test analyst a quantitative 

means of determining how acceptable the parameter estimates are.  

 

1.1 Previous Works 

Rosa and Horne (1983) conducted a comprehensive study of nonlinear regression. In the study, they developed 

techniques that made it relatively easy to implement almost any reservoir model in an automated procedure.  
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Allain and Horne (1990) used syntactic pattern recognition and a rule-based system to identify the reservoir 

model by extracting symbolic data from the pressure derivative data. The well and reservoir parameters were 

also estimated. The limitations of this approach are that it requires a preprocessing of the derivative data in order 

to distinguish the true response from the noise and a complex definition of rules to accommodate ‘nonideal’ 

behavior.  

Al-Kaabi and Lee (1990) used artificial neural networks (ANN) to identify the well test interpretation model 

from pressure derivative data. Although they reported that this approach was effective in identifying reservoir 

models and data smoothening was unnecessary, it only provided a qualitative description of the well test. The 

computation of reservoir parameters was not considered. 

Allain and Houźe (1992) presented a hybrid approach to combine the symbolic and artificial neural network 

methods. In essence, they proposed to use the neural network to determine the sketch of the derivative before 

applying a rule-based approach to determine the model and estimate its parameters.  

Ershaghi et al. (1993) implemented multiple neural networks with each neural network representing a single 

reservoir model. This is to overcome the inefficiency in the training of an enormous number of reservoir models. 

Although parameter estimation was not mentioned in their work, this approach improved on the shortcomings of 

the artificial neural network approach as a tool in well test interpretation. 

Anraku and Horne (1993) introduced a new approach to discriminate between reservoir models using the 

sequential predictive probability method. This approach was effective in identifying the correct reservoir models 

by matching to all candidate reservoir models and then computing the probability (joint probability) that each 

match would correctly predict the pressure response. Candidate reservoir models and initial estimates of the 

models' parameters need to be determined in advance for this process. 

Athichanagorn and Horne (1995) investigated the use of the artificial neural network and the sequential 

predictive probability approach to recognize characteristic components of candidate models on the derivative 

plot (unit slope, hump, at slope, dip, and descending shape). This approach was able to discriminate between 

candidate reservoir models by identifying the flow regimes corresponding to these characteristic components and 

make initial estimates of their underlying parameters. Nonlinear regression was simultaneously performed on 

these parameters to compute best estimates of reservoir parameters. 

Bariş et al. (2001) demonstrated an approach based on Genetic Algorithm (GA) with simultaneous regression to 

automate the entire well test interpretation process. This was able to select the most probable reservoir model 

among a set of candidate models, consistent with a given set of pressure transient data. They defined the type of 

reservoir model to be used as a variable type which was estimated together with the other unknown model 

parameters (permeability, skin, etc.).  

Dastan and Horne (2011) made significant improvements to non-linear regression used in well test analysis by 

developing several different methods to overcome such commonly observed issues such as sensitivity to noise, 

parameter uncertainty and dependence on starting guesses. The nonlinear techniques regression developed were 

considered in three groups;  the first group involved parameter transformations (Cartesian Transform), the 

second group, data space transformations, (the wavelet transform and the pressure derivative) and in the third 

group, they considered alternative objective functions to regular least squares; total least squares (TLS) and 

lest absolute value (LAV). Using these strategies, Dastan and Horne (2011) achieved improved performance in 

terms of likelihood of convergence and narrower confidence intervals (reduced uncertainty), hence making 

interpretation results more accurate and more stable.  

 

2.0 Objectives and Scope of Work  

The objectives of this study are: 

1. To present algorithms for data smoothening and for automating the selections of reservoir models in 

well test analysis. 

2. To make an initial estimate of the parameters and refine these estimates using nonlinear regression 

(Automated Type-Curve Matching). 

3. To evaluate the acceptability of the parameter estimates using confidence intervals (CIs). 
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4. To develop a VBA Excel application for automated well test analysis, implementing the above 

objectives/algorithms. 

5. To test the VBA Excel application with simulated and field data and present the results. 

 

The scope of this work is to present a new technique/method for automating well test analysis. This technique is 

tailored to improve both the performance and accuracy of well test interpretation/analysis and implemented in a 

computer program, written in Visual Basic programming language. The artificial intelligence (AI) approach used 

in this project is based on the works of Allain and Horne (1990); with some modifications. This will involve 

extracting a symbolic representation of the reservoir model from the pressure transient data, estimation of the 

model parameters from the characteristic flow regimes and subsequently, performing nonlinear regression to 

refine these parameters. In this research work, eight (8) fundamental reservoir models (Anraku and Horne, 

1993) are used. Namely; 

TABLE 1.1: EIGHT FUNDAMENTAL RESERVOIR MODELS 

 Reservoir Model Parameters 

1 Infinite Acting K, S, Cs 

2 Sealing Fault K, S, Cs, re 

3 No flow Outer Boundary K, S, Cs, re 

4 Constant Pressure Outer Boundary K, S, Cs, re 

5 Dual Porosity with Pseudosteady State Interporosity Flow K, S, Cs, ω, λ 

6 Dual Porosity with Pseudosteady State Interporosity Flow and Sealing 

Fault 

K, S, Cs, ω, λ, re 

7 Dual Porosity with Pseudosteady State Interporosity Flow and No Flow 

Outer Boundary 

K, S, Cs, ω, λ, re 

8 Dual Porosity with Pseudosteady State Interporosity Flow and Constant 

Pressure Outer Boundary 

K, S, Cs, ω, λ, re 

 

This work is limited to a single vertical oil well, single layer, as the primary objective of this work is to 

demonstrate and present the merits of computerizing well test analysis. Although the intervention of a well test 

analyst is required, this can be greatly minimized by incorporating more complex models, to account for the 

diverse reservoir configurations, into the program.  

The developed program will be tested with 10 data sets. These data sets are generated using a simulator 

(PanSystem 
TM

), lifted from literature and actual field data. In nonlinear regression, fitting single rate pressure 

transient data is as simple as fitting multi-rate pressure transient data, this is one of the benefits of using 

automated type-curve matching. 

3.0 Methodology 

The dimensionless pressure derivative plot is a more powerful diagnostic tool, as this makes it easier to identify 

characteristic features of vague plots. For instance, the plot shown in Figure 3.0.1 could either be a dual-porosity 

no flow outer boundary or simply a (homogenous) no-flow outer boundary model. This is a clear case of the 

subjectivity of well test interpretation, as different analysts could have their different justifications for choosing 

either model. This case is easily solved when the dimensionless pressure derivative plot of the data is analyzed. 

But the primary challenge is getting a reliable dimensionless pressure derivative plot, as this is a strong function 

of permeability, k. An estimate close to that of Laboratory results could be used in such a case. But this poses a 

greater problem when such data is not available. 
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FIGURE 3.0.1: A Typical Ambiguous Diagnostic Plot 

This problem was solved by making a rough estimate of permeability, k and skin, S from the semi-log plot 

straight section(s) and regressing on the first few data points using the infinite acting reservoir model to get a 

better estimate (based on the least sum of squares). This permeability, Kest is used to evaluate the dimensionless 

pressure, PD and dimensionless time, tD using the following Equations (3.3.7) and (3.3.8). 

Using the Bourdet et al. (1983a) algorithm, the dimensionless pressure derivative plot is evaluated, smoothened 

and segmented for model identification. From this a reservoir model is chosen and the model parameters are 

estimated.  The smoothening of noise is imperative as the model identification and parameter estimation 

algorithms could fail. 

This project is implemented using Visual Basic for Applications (VBA) Excel. This chapter describes in detail, 

all the mathematical tools/algorithms used to implement this methodology. The Methodology workflow is 

outlined as follows: 

 Log-log Pressure derivative and semi-log pressure data smoothening. 

 Log-log Pressure derivative and semi-log pressure data segmentation. 

 Estimation of permeability values from the segmented semi-log straight sections. 

 *Computation of the Dimensionless Pressure derivative using the best ‘k’ value; based on the least 

sum-of squares of the regression on the infinite acting model using the first 1.5 cycle of data points. 

 Dimensionless Pressure derivative data smoothening. 

 Dimensionless Pressure derivative data segmentation. 

 Model Identification. 

 Parameter estimation. 

 Nonlinear regression. 

 

3.2   SEGMENTATION ALGORITHM 

The algorithm for creating segments of the pressure transient plots is presented in this section. This is based on 

the works of Allain and Horne (1990). This is to extract symbolic data which is a representative of the features 

of the flow regimes. 

1. Starting from the first point on the curve, a point is chosen (xi, yi) and its slope, 𝕊*i, with the next 

adjacent point, (xi+1, yi+1), forms the start of a new segment, 𝕊 j. 

2. The subsequent immediate point is added to the current segment if its slope, 𝕊*i+1, does not differ by 

more than a tolerance parameter, 
*
epsilon (ε), with the average of the slopes, 𝕊∗̅̅

�̅�, in the segment 𝕊𝔾j. 

This segment’s slope is updated by recalculating the average slope, 𝕊∗̅̅
�̅�. 

𝕊∗
𝑗 =

∑ 𝕊𝑖
∗𝑛

𝑖=1

𝑛
 (3.2.1) 

                                                      
* The dual porosity model could be used if a ‘MINIMA’ is found or if the early time data is truncated. In 
case of truncated data, the default values for storativity and transmissivity are 0.99 and 1 x 10

12
 

respectively.  
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3. This segment, 𝕊𝔾j, terminates at (xn, yn) with the start of a new segment, 𝕊𝔾j+1, where the change in 

slope is greater than ε, i.e.  

𝕊∗̅̅
�̅� − 𝕊∗

𝑖 ≥  𝜀 (3.2.2) 

4. Each segment, 𝕊𝔾j, will have properties/attributes of sg_ft, n,𝕊∗̅̅
�̅�, (x1, y1)and (xn, yn).  Where: 

sg_ft = feature  of  segment, 𝕊𝔾j. 

nj = number of points bound by segment 𝕊𝔾j. 

(x1, y1)j = first point on the segment 𝕊𝔾j. 

(xn, yn)j = last point on the segment 𝕊𝔾j. 

𝕊∗̅̅
�̅� = the average slope of the segment 𝕊𝔾j.   

5. Each segment is compared with the neighbouring segments to identify characteristic features on the plot 

such as extremas (Minimum and Maximum), inflexions and straight sections. 

These features are identified by the AI system using the mathematical expressions presented as follows: 

Extremas: 

MINIMA 

𝕊∗̅̅
�̅�−1 < 0 𝑎𝑛𝑑 𝕊∗̅̅

�̅�+1 > 0 (3.2.3) 

MAXIMA 

𝕊∗̅̅
�̅�−1 > 0 𝑎𝑛𝑑 𝕊∗̅̅

�̅�+1  < 0 (3.2.4) 

INFLEXION 

(𝕊∗̅̅
�̅�−1 − 𝕊∗̅̅

�̅�) × (𝕊∗̅̅
�̅� − 𝕊∗̅̅

�̅�+1) < 0 (3.2.5) 

STRAIGHT SECTION 

A straight section is identified when the number of points, nj, in the segment, 𝕊𝔾j, exceeds a given 

minimum, nmin, i.e. nj > nmin. 

STEP SECTION 

A step section is identified when the number of points, nj, in the segment, 𝕊𝔾j, is less than a given 

maximum, nmax, i.e. nj < nmax. 

Other segment features for the last segments are DOWNTURN (if the slope of the last segment falls 

below a certain negative value), UPTURN (if the slope of the last segment exceeds a certain positive 

value) and FLAT (if the slope is approximately zero). 

3.3   BOURDET ET AL. (1983a) PRESSURE DERIVATIVE ALGORITHM 

The above expression still results in noise. This can be reduced by selecting data points separated by at least 0.2 

of a cycle rather than immediate adjacent points (Horne, 1995): 

𝑡 (
𝜕𝑝

𝜕𝑡
)

𝑖
=

ln (𝑡𝑖/𝑡𝑖−𝑘)∆𝑃𝑖+𝑗

ln (𝑡𝑖+𝑗/𝑡𝑖)ln (𝑡𝑖+𝑗/𝑡𝑖−𝑘)
+

ln (𝑡𝑖+𝑗𝑡𝑖−𝑘/𝑡𝑖
2)∆𝑃𝑖

ln (𝑡𝑖+𝑗/𝑡𝑖)ln (𝑡𝑖/𝑡𝑖−𝑘)

−
ln (𝑡𝑖+𝑗/𝑡𝑖)∆𝑃𝑖−𝑘

ln (𝑡𝑖/𝑡𝑖−𝑘)ln (𝑡𝑖+1/𝑡𝑖−𝑘)
 

 

(3.3.4) 

ln 𝑡𝑖+𝑗 − ln 𝑡𝑖 ≥ 0.2 (3.3.5) 
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ln 𝑡𝑖 − ln 𝑡𝑖−𝑘 ≥ 0.2 (3.3.6) 

The value, 0.2, is known as the differentiation interval and could be replaced with values between 0.1 and 0.5 

(Horne, 1995). This will have different results in the smoothening of the noise. 

3.3.1 DIMENSIONLESS PRESSURE DERIVATIVE 

Dimensionless pressure drop; 

 𝑃𝐷 =
2𝜋𝑘ℎ

𝑞𝐵𝜇
(𝑃𝑖 − 𝑃𝑤𝑓) 

(3.3.7) 

Dimensionless time; 

 𝑡𝐷 =
0.000264𝑘𝑡

∅𝜇𝑐𝑡𝑟𝑤
2  

(3.3.8) 

 

Since the Bourdet et al. (1983a) algorithm is a linear transformation, is can be used to evaluate the 

dimensionless pressure derivative. Hence, the algorithm is given in terms of dimensionless pressure drop in 

Equation (3.5.9). 

𝑡𝐷 (
𝜕𝑝𝐷

𝜕𝑡𝐷
)

𝑖

=

ln (
𝑡𝐷,𝑖

𝑡𝐷,𝑖−𝑘
) 𝑃𝐷,𝑖+𝑗

ln (
𝑡𝐷,𝑖+𝑗

𝑡𝐷,𝑖
) ln (

𝑡𝐷,𝑖+𝑗

𝑡𝐷,𝑖−𝑘
)

+

ln (
𝑡𝐷,𝑖+𝑗𝑡𝐷,𝑖−𝑘

𝑡𝐷,𝑖
2 )𝑃𝐷,𝑖

ln (
𝑡𝐷,𝑖+𝑗

𝑡𝐷,𝑖
) ln (

𝑡𝐷,𝑖

𝑡𝐷,𝑖−𝑘
)

−
ln (𝑡𝐷,𝑖+𝑗/𝑡𝐷,𝑖)𝑃𝐷,𝑖−𝑘

ln (𝑡𝐷,𝑖/𝑡𝐷,𝑖−𝑘)ln (𝑡𝐷,𝑖+1/𝑡𝐷,𝑖−𝑘)
 

 

(3.5.9) 

3.4   MODEL IDENTIFICATION ALGORITHM 

The pseudo-code of the model identification algorithm for the reservoir models used in this work is presented 

here. This is simplified as this algorithm identifies the models from the segmented dimensionless pressure 

derivative data. The data segments are looped through as the following pseudo-code identifies the model from 

the segment ‘features’. 

MODEL SELECTION PSEUDO-CODE 

 

If ‘MINIMA’ IS present below 0.5 in the SEGMENT collection then 

If last segment feature is ‘FLAT’ at 1.0 then 

  Select Model 6 

  Estimate Parameters 

Else if last segment feature is ‘UPTURN’ then 

  Select Model 7 

  Estimate Parameters 

Else if last segment feature is ‘DOWNTURN’ then 

  Select Model 8 

  Estimate Parameters 

Else  

 Select Model 5 

 Estimate Parameters 

 

Else if ‘MINIMA’ IS NOT present or IS present above 0.5 in the SEGMENT collection then 

If last segment feature is ‘FLAT’ at 1.0 then 
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  Select Model 2 

  Estimate Parameters 

Else if last segment feature is ‘UPTURN’ then 

  Select Model 3 

  Estimate Parameters 

Else if last segment feature is ‘DOWNTURN’ then 

  Select Model 4 

  Estimate Parameters 

Else  

  Select Model 1 

  Estimate Parameters 

 

3.5   INITIAL PARAMETER ESTIMATION 

The procedures for estimating the model parameters are discussed in this section. These parameters are: 

Permeability, Skin, Wellbore Storage Constant, storativity ratio, transmissivity ratio, distance to sealing fault, 

distance to constant pressure outer boundary and distance to no-flow outer boundary. 

3.5.1 - PERMEABILITY, k 

The permeability is estimated from the pressure data in the infinite acting period; good transient phase data. This 

flow regime, on a semi-log plot of pressure versus time (with time on the logarithm scale), is characterized by a 

straight line. For a drawdown test, the equation describing this straight line is given in Equation (3.5.1).  

𝑝𝑤𝑓 = 𝑝𝑖 − 162.6
𝑞𝐵𝜇

𝑘ℎ
(log 𝑡 + log

𝑘

∅𝜇𝑐𝑡𝑟𝑤
2
+ 0.8686 𝑆 − 3.2274) (3.5.1) 

where: 

pwf = well flowing pressure, psi 

pi = initial reservoir pressure, psi 

µ = viscosity, cp 

k = permeability, md 

h = thickness, ft 

t = time, hours 

φ = porosity, dimensionless 

ct = total system compressibility, psi
-1

 

rw = wellbore radius, ft 

S = skin factor, dimensionless. 

For a buildup test, this straight line is described by Equation (3.5.2); 

𝑝𝑤𝑠(∆𝑡) = 𝑝𝑖 − 162.6
𝑞𝐵𝜇

𝑘ℎ
log (

𝑡𝑝 + ∆𝑡

∆𝑡
) (3.5.2) 

where: 

pws  =  shut-in pressure, psi 

tp  =   producing time, hours 
𝑡𝑝+∆𝑡

∆𝑡
    =   Horner's time, dimensionless 

From the semi-log plot of pwf (or pws ) versus t, the slope, m is used to calculate the value of permeability using 

Equation (3.5.3). 

𝑘 = |162.6
𝑞𝐵𝜇

𝑚ℎ
| (3.5.3) 

3.5.2 - SKIN, S 

The skin, S, is estimated using equation (3.5.4) which is based on equation (3.5.1). 
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𝑆 = 1.151 (
𝑝𝑖 − 𝑝1ℎ𝑟

𝑚
− log

𝑘

∅𝜇𝑐𝑡𝑟𝑤
2
+ 3.2274) (3.5.4) 

 

If p1hr does not lie on the straight line, the line is extrapolated to t = 1hr, where p1hr is read off. 

3.5.3 - WELLBORE STORAGE CONSTANT, Cs 

The wellbore storage constant is determined using the early time unit slope on the pressure log-log plot. 

Equation (3.5.5) is used to compute the wellbore storage constant. 

𝐶𝑆 =
𝑞𝐵 ∙ ∆𝑡

24 ∙ ∆𝑃
 (3.5.5) 

Where: 

q = production rate, STB/D 

B = formation volume factor, res. vol./std vol. 

ΔP = pressure drop on the log-log unit slope line, psi 

Δt = time at ΔP on the log-log unit slope line, hr 

 

 

3.5.4 - STORATIVITY RATIO, ω 

The presence of a dip on a pressure derivative curve suggests reservoir heterogeneity. The storativity ratio (ω) is 

a dual porosity parameter, which is determined from the minimum point, (tDP’D,min, tD,min), on the derivative 

curve using the procedure described by Bourdet et al. (1983b). 

𝑡𝐷 (
𝜕𝑝𝐷

𝜕𝑡𝐷
)

𝑖

= 𝑡𝐷𝑃𝐷,𝑚𝑖𝑛
′ =

1

2
(1 + 𝜔

1
1−𝜔 − 𝜔

𝜔
1−𝜔) ( 3.5.6) 

The storativity ratio is evaluated using Equation (3.5.6). But since the relationship between pressure derivative 

and the storativity ratio is non-linear, the Newton-Raphson’s method is used to solve for storativity. The 

Equations for this procedure are presented as follows: 

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 −
𝑓(𝜔𝑜𝑙𝑑)

𝑓′(𝜔𝑜𝑙𝑑)
 (3.5.7) 

𝑓(𝜔) =  1 + 𝜔
1

1−𝜔 − 𝜔
𝜔

1−𝜔 −  2 𝑡𝐷𝑃𝐷
′  (3.5.8) 

and: 

 
 

𝑓′(𝜔) =
ln𝜔

(1 − 𝜔)2
 (𝜔

1
1−𝜔 − 𝜔

𝜔
1−𝜔) (3.5.9) 

  

Equation (3.5.7) is evaluated iteratively until it converges i.e. ωnew – ωold ≤ ɛ, a small tolerance value. 

3.5.5 - TRANSMISSIVITY RATIO, λ 

The transmissivity ratio (λ) is the second dual porosity parameter, which is also determined from the minimum 

point, (tDP’D,min, tD,min),  on the pressure derivative curve using the procedure described by Bourdet et al. 

(1983b).The transmissivity ratio (λ) is evaluated using Equation (3.5.11). 

𝑡𝐷,𝑚𝑖𝑛 =
𝜔

𝜆
𝑙𝑛

1

𝜔
 (3.5.10) 

Hence, 

𝜆 =
𝜔

𝑡𝐷,𝑚𝑖𝑛

𝑙𝑛
1

𝜔
 (3.5.11) 
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3.5.6 - DISTANCE TO BOUNDARY, re 

For buildup tests, there is no distinct feature for determining the boundary type; the pressure derivative decreases 

irrespective of the type of boundary reached by the pressure transient. Thus, the distance to boundary for any 

boundary type is estimated using the radius of investigation, rinv (Lee, 1982). 

𝑟𝑖𝑛𝑣 = √
4 × 0.000264 k t

∅𝜇𝑐𝑡𝑟𝑤
2

 

 

(3.5.12) 

Where; 

t, is the time the pressure derivative starts to decrease or the end of the test if the boundary has not been reached. 

The distance to boundary for drawdown tests can be determined for the following boundary types as follows: 

a) DISTANCE TO SEALING FAULT 

The presence of an ‘upward’ trend followed by a ‘flat’ at late time on a dimensionless pressure 

derivative plot at 1.0 indicates the presence of a sealing fault. With this, a doubling of slope on the 

semi-log plot, which is also indicative of the presence of a sealing fault, is used to compute the distance 

to sealing fault boundary (d).  Davis and Hawkins (1963) and Gray (1965) described how to evaluate 

the distance to the fault boundary using the time, tx where the two straight lines intersect on the semilog 

plot. 

𝑑 =  √
1.48 × 10−4 k tx

∅𝜇𝑐𝑡

 (3.5.13) 

 

b) DISTANCE TO CONSTANT PRESSURE OUTER BOUNDARY 

When a constant pressure boundary is reached by the pressure transient, the reservoir encounters a 

steady state flow regime. This is indicated by a steady decrease of the pressure derivative and a constant 

pressure at the well.  The dimensionless pressure drop (PD) can be expressed as follows: 

𝑃𝐷 = 𝑙𝑛
𝑟𝑒
𝑟𝑤

 (3.5.14) 

 

Taking the dimensionless pressure drop to include the skin, Equation (3.5.14) can be substituted in to 

Equation (3.3.7) as follows: 

𝑘ℎ

141.2 𝑞𝐵𝜇
(𝑝𝑖 − 𝑝𝑤𝑓) +  𝑆 = 𝑙𝑛

𝑟𝑒
𝑟𝑤

 (3.5.15) 

Therefore the distance to the constant pressure boundary, re can be calculated as follows: 

𝑟𝑒 = 𝑟𝑤  𝑒
𝑘ℎ

141.2 𝑞𝐵𝜇
(𝑝𝑖−𝑝𝑤𝑓)− 𝑆

 (3.5.16) 

c) DISTANCE TO NO-FLOW OUTER BOUNDARY 

The distance to a closed boundary can be estimated from the pressure data in the pseudo-steady state 

flow period. During this period, the pressure change is a linear function of time as described by 

Equation (3.5.17): 

𝑝𝑖 − 𝑝𝑤𝑓 =
0.2342𝑞𝐵

𝜙𝑐𝑡ℎ𝐴
𝑡 + 70.65

𝑞𝐵𝜇

𝑘ℎ
(ln(2.2458𝐴𝐶𝐴𝑟𝑤

2) +  2 𝑆) (3.5.17) 

where; 
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A = reservoir area, ft
2
 

CA = shape factor, dimensionless 

From the slope of the Cartesian straight line, mCartesian, the drainage area can be calculated using: 

 

𝐴 =
0.2342𝑞𝐵

𝜙𝑐𝑡ℎ 𝑚𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛

 

 

(3.5.18) 

Assuming a circular reservoir, the distance to the boundary, re can be calculated using: 

𝑟𝑒 = √
𝐴

𝜋
 (3.5.19) 

 

 

3.6   RESERVOIR MODELS  

The eight (8) fundamental reservoir models (Anraku, 1993) used in this work are described in this section; 

Infinite Acting, Sealing Fault, No flow Outer Boundary, Constant Pressure Outer Boundary, Dual Porosity 

with Pseudosteady State Interporosity Flow, Dual Porosity with Pseudosteady State Interporosity Flow and 

Sealing Fault, Dual Porosity with Pseudosteady State Interporosity Flow and No Flow Outer Boundary and 

Dual Porosity with Pseudosteady State Interporosity Flow and Constant Pressure Outer Boundary. 

Characteristic plots and the governing equations of these reservoir models are presented in this section. 

Although, the analytical derivatives of pressure drop with the model parameters were used in performing 

nonlinear regression, they will not be presented in this work.  Interested readers should refer to Anraku (1993) 

for the analytical derivatives of pressure drop with model parameters.  

𝜂 =
𝑘

∅𝜇𝑐𝑡

 (3.6.1) 

𝑐1 =
ℎ

141.2𝜇
 (3.6.2) 

∆𝑃 = (𝑃𝑖 − 𝑃𝑤) (3.6.3) 

3.6.1 - INFINITE ACTING MODEL 

The Infinite Acting Model has three (3) parameters; k, S and Cs. A typical plot of this model is shown in 

FIGURE 3.6.1; this is a simulated plot of the infinite acting model using a k of 920.844mD, S of 24.669 and Cs 

of 0.01 bbl/psi. On the pressure derivative plot, this model is characterized by a flat at late time. 

http://www.iiste.org/Journals/index.php/CPER
http://www.iiste.org/


Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.28, 2014 

 

99 

 

FIGURE 3.6.1: Infinite Acting Model – Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the infinite acting model in field units is given in Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
.
𝐴1

𝐴2

 (3.6.4) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
⋅ 𝑧 (3.6.5) 

Where:  

𝐴1 = 𝐾0(√𝑢) + 𝑆√𝑢𝐾1(√𝑢) (3.6.6) 

𝐴2 = 𝑐1𝑘√𝑢𝐾1(√𝑢) +  24𝐶𝑧. 𝐴1 (3.6.7) 

When skin, S is negative, the concept of the effective radius is used to avoid numerical instabilities as follows; 

𝑟𝑤𝑒𝑓𝑓 = 𝑟𝑤e−𝑠 (3.6.8) 

𝑢 =  
𝑟𝑤𝑒𝑓𝑓

2

0.000264𝜂
∙ 𝑧 (3.6.9) 

𝐴1 = 𝐾0(√𝑢) (3.6.11) 

Where:  rweff is the effective radius 

of the wellbore. 
 

3.6.2- SEALING FAULT MODEL 

The sealing fault model has four (4) parameters; k, S, Cs and re. A typical plot of this model is shown in FIGURE 

3.6.2; this is a simulated plot using a k of 920.00mD, S of 24.0, Cs of 0.01 bbl/psi and re of 1200.00ft. On the 

pressure derivative plot, this model is characterized by an upward trend followed by a flat at late time. 
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FIGURE 3.6.2: Sealing Fault Model – Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the sealing fault model in field units is given in Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
.
𝐴1

𝐴2

 (3.6.11) 

𝑤 =  
4𝑟𝑒

2

0.000264𝜂
𝑧 (3.6.12) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
𝑧 (3.6.13) 

where:  

𝐴1 = 𝐴11 + 𝐴12 (3.6.14) 

𝐴11 = 𝐾0(√𝑢) + 𝑆√𝑢𝐾1(√𝑢) (3.6.15) 

𝐴12 = 𝐾0(√𝑤) (3.6.16) 

𝐴2 = 𝑐1𝑘√𝑢𝐾1(√𝑢) +  24𝐶𝑧 ⋅ 𝐴11 (3.6.17) 

When skin, S, is negative, the concept of the effective radius is used to avoid numerical instabilities. Equation 

(3.6.8) and (3.6.9) are used to calculate the effective radius, rweff and reevaluate u; 

and :  

𝐴11 = 𝐾0(√𝑢) (3.6.18) 

3.6.3 - NO FLOW OUTER BOUNDARY MODEL 

The no-flow outer boundary model has four (4) parameters; k, S, Cs and re. A typical plot of this model is shown 

in FIGURE 3.6.3; this is a simulated plot using a k of 920.44mD, S of 24.669, Cs of 0.01 bbl/psi and re of 

1200.00ft. On the pressure derivative plot, this model is characterized by an upward trend at late time. 
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FIGURE 3.6.3: No Flow Outer Boundary Model– Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the no-flow outer boundary model in field units is given in Laplace space 

as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
⋅
𝐴1

𝐴2

 (3.6.19) 

𝑤 =  
𝑟𝑒

2

0.000264𝜂
⋅ 𝑧 (3.6.20) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
⋅ 𝑧 (3.6.21) 

where:  

𝐴1 = 𝐵1 + 𝑆√𝑢 ⋅ 𝐵2 (3.6.22) 

𝐵1 = 𝐼1(√𝑤)𝐾0(√𝑢) + 𝐾1(√𝑤)𝐼0(√𝑢) (3.6.23) 

𝐵2 = 𝐼1(√𝑤)𝐾1(√𝑢) − 𝐾1(√𝑤)𝐼1(√𝑢) (3.6.24) 

𝐴2 = 𝑐1𝑘√𝑢𝐵2 +  24𝐶𝑧. 𝐴1 (3.6.25) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and (3.6.9) respectively; 

and :  

𝐴1 = 𝐵1 (3.6.26) 

 

3.6.4 - CONSTANT PRESSURE OUTER BOUNDARY MODEL 

The constant pressure outer boundary model has four (4) parameters; k, S, Cs and re. A typical plot of this model 

is shown in FIGURE 3.6.4; this is a simulated plot using a k of 920.844mD, S of 24.669, Cs of 0.01 bbl/psi and 

re of 800.00ft. This model is characterized by a downward trend at late time. On the pressure derivative plot, this 

model is characterized by a downward trend at late time. 
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FIGURE 3.6.4: Constant Pressure Outer Boundary Model– Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the constant pressure outer boundary model in field units is given in 

Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
⋅
𝐴1

𝐴2

 (3.6.27) 

𝑤 =  
𝑟𝑒

2

0.000264𝜂
⋅ 𝑧 (3.6.28) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
⋅ 𝑧 (3.6.29) 

where:  

𝐴1 = 𝐵3 + 𝑆√𝑢 ⋅ 𝐵4 (3.6.30) 

𝐵3 = 𝐼0(√𝑤)𝐾0(√𝑢)

− 𝐾0(√𝑤)𝐼0(√𝑢) 
(3.6.31) 

𝐵2 = 𝐼0(√𝑤)𝐾1(√𝑢)

+ 𝐾0(√𝑤)𝐼1(√𝑢) 
(3.6.32) 

𝐴2 = 𝑐1𝑘√𝑢 ⋅ 𝐵4 +  24𝐶𝑧. 𝐴1 (3.6.33) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and (3.6.9) respectively; 

and :  

𝐴1 = 𝐵3 (3.6.34) 

3.6.5 - DUAL POROSITY MODEL 
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The dual porosity model has four (5) parameters; k, S, Cs, ω and λ. A typical plot of this model is shown in 

FIGURE 3.6.5; this is a simulated plot using a k of 889.64mD, S of 23.629, Cs of 0.00996 bbl/psi, ω of 0.05 and 

λ of 2.0 x 10
-6

. This model is characterized by a dip at middle time on the pressure derivative plot. 

 

FIGURE 3.6.5: Dual Porosity Model – Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the dual porosity model in field units is given in Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
.
𝐴1

𝐴2

 (3.6.35) 

𝑣 =  𝑢 ⋅
𝑤(1 − 𝑤)𝑢 + 𝜆

(1 − 𝑤)𝑢 + 𝜆
 (3.6.36) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
𝑧 (3.6.37) 

Where:  

𝐴1 = 𝐾0(√𝑣) + 𝑆√𝑣𝐾1(√𝑣) (3.6.38) 

𝐴2 = 𝑐1𝑘√𝑣𝐾1(√𝑣) +  24𝐶𝑧. 𝐴1 (3.6.39) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and (3.6.9) respectively; 

and :  

𝐴1 = 𝐾0(√𝑣) (3.6.40) 

 

3.6.6 - DUAL POROSITY AND SEALING FAULT MODEL 

The dual porosity and sealing fault model has six (6) parameters; k, S, Cs, ω, λ and re. A typical plot of this 

model is shown in FIGURE 3.6.6; this is a simulated plot using a k of 889.64mD, S of 23.629, Cs of 0.00996 

bbl/psi, ω of 0.05,  λ of 2.0 x 10
-6

 and re of 1300.00ft. On the pressure derivative plot, this model is characterized 

by a dip at middle time and an upward trend followed by a flat at late time. 
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FIGURE 3.6.6: Dual Porosity with Sealing Fault Model – Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the dual porosity sealing with fault model in field units is given in Laplace 

space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
.
𝐴1

𝐴2

 (3.6.41) 

𝑣 =  𝑢 ⋅
𝑤(1 − 𝑤)𝑢 + 𝜆

(1 − 𝑤)𝑢 + 𝜆
 (3.6.42) 

𝑤 =  
4𝑟𝑒

2

𝑟𝑤
2

⋅ 𝑣 (3.6.43) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
𝑧 (3.6.44) 

where:  

𝐴1 = 𝐵1 + 𝐵2 (3.6.45) 

𝐵1 = 𝐾0(√𝑣) + 𝑆√𝑣𝐾1(√𝑣) (3.6.46) 

𝐵2 = 𝐾0(√𝑤) (3.6.47) 

𝐴2 = 𝑐1𝑘√𝑣𝐾1(√𝑣) +  24𝐶𝑧 ⋅ 𝐴1 (3.6.48) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and (3.6.9) respectively; 

and :  

𝐵1 = 𝐾0(√𝑣) ( 3.6.49) 

3.6.7 - DUAL POROSITY NO FLOW OUTER BOUNDARY MODEL 

The dual porosity no-flow outer boundary model has six (6) parameters; k, S, Cs, ω, λ and re. A typical plot of 

this model is shown in FIGURE 3.6.7; this is a simulated plot using a k of 920.00mD, S of 25.00, Cs of 0.01 
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bbl/psi, ω of 0.01,  λ of 7.0 x 10
-7

 and re of 800.00ft. On the pressure derivative plot, this model is characterized 

by a dip at middle time and an upward trend at late time. 

 

FIGURE 3.6.7: Dual Porosity with No Flow Outer Boundary Model – Simulated using ‘Well Test Auto’ 

The pressure drop at the wellbore for the dual porosity with no-flow outer boundary model in field units is given 

in Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
⋅
𝐴1

𝐴2

 (3.6.50) 

𝑣 =  𝑢 ⋅
𝑤(1 − 𝑤)𝑢 + 𝜆

(1 − 𝑤)𝑢 + 𝜆
 (3.6.51) 

𝑤 = 
𝑟𝑒

2

𝑟𝑤
2
⋅ 𝑣 (3.6.52) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
⋅ 𝑧 (3.6.53) 

Where:  

𝐴1 = 𝐵1 + 𝑆√𝑣 ⋅ 𝐵2 (3.6.54) 

𝐵1 = 𝐼1(√𝑤)𝐾0(√𝑣) + 𝐾1(√𝑤)𝐼0(√𝑣) (3.6.55) 

𝐵2 = 𝐼1(√𝑤)𝐾1(√𝑣) − 𝐾1(√𝑤)𝐼1(√𝑣) (3.6.56) 

𝐴2 = 𝑐1𝑘√𝑢 ⋅ 𝐵2 +  24𝐶𝑧. 𝐴1 (3.6.57) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and (3.6.9) respectively; 

and:  

𝐴1 = 𝐵1 (3.6.58) 
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3.6.8 - DUAL POROSITY CONSTANT PRESSURE OUTER BOUNDARY MODEL 

The dual porosity constant pressure outer boundary model has six (6) parameters; k, S, Cs, ω, λ and re. A typical 

plot of this model is shown in FIGURE 3.6.8; this is a simulated plot using a k of 889.64mD, S of 23.629, Cs of 

0.00996 bbl/psi, ω of 0.05,  λ of 1.0 x 10
-5

 and re of 1000.00ft. On the pressure derivative plot, this model is 

characterized by a dip at middle time and a downward trend at late time. 

 

 

FIGURE 3.6.8: Dual Porosity with Constant Pressure Outer Boundary Model – Simulated using ‘Well Test 

Auto’ 

The pressure drop at the wellbore for the dual porosity with constant pressure model in field units is given in 

Laplace space as; 

∆𝑝̅̅̅̅ =
𝑞𝐵

𝑧
⋅
𝐴1

𝐴2

 (3.6.59) 

𝑣 =  𝑢 ⋅
𝑤(1 − 𝑤)𝑢 + 𝜆

(1 − 𝑤)𝑢 + 𝜆
 (3.6.60) 

𝑤 = 
𝑟𝑒

2

𝑟𝑤
2
⋅ 𝑣 (3.6.61) 

𝑢 =  
𝑟𝑤

2

0.000264𝜂
⋅ 𝑧 (3.6.62) 

where:  

𝐴1 = 𝐵3 + 𝑆√𝑣 ⋅ 𝐵4 (3.6.63) 

𝐵3

= 𝐼0(√𝑤)𝐾0(√𝑣)

− 𝐾0(√𝑤)𝐼0(√𝑣) 

(3.6.64) 
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K : 889.640 [mD] 
S : 23.629 [-] 
Cs : 9.96E-03 [bbl/psi] 
Omega : 5.00E-02 [-] 
Lambda : 1.00E-05 [-] 
re : 1000.000 [ft] 
 
MODEL:  
Dual Porosity with Constant 
Pressure Outer Boundary Model 

dP' Plot 
Delta P Plot 
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𝐵2

= 𝐼0(√𝑤)𝐾1(√𝑣)

+ 𝐾0(√𝑤)𝐼1(√𝑣) 

(3.6.65) 

𝐴2 = 𝑐1𝑘√𝑣 ⋅ 𝐵4 +  24𝐶𝑧. 𝐴1 (3.6.66) 

When skin, S, is negative, the concept of the effective radius is used by calculating the effective radius, rweff and 

reevaluating u using Equation (3.6.8) and 3.6.9 respectively; 

and:  

𝐴1 = 𝐵3 (3.6.67) 

 

3.7   STEHFEST’S ALGORITHM 

This is a numerical Laplace inverse technique, first introduced by Graver and its algorithm presented by Stehfest 

(1970). This method is extensively used in petroleum engineering literature because of its simplicity and ease of 

implementation. The algorithm uses the following equation to approximate the time domain; 

𝑓(𝑡) =
𝑙𝑛2

𝑡
⋅ ∑𝑉𝑖𝐹 (

𝑙𝑛2

𝑡
⋅ 𝑖)

𝑛

𝑖=1

 (3.7.1) 

Where the Stehfest’s Coefficient, Vi is 

computed as follows; 
 

𝑉𝑖

= (−1)(
𝑛
2
+1) ∑

𝑘1
(
𝑛
2
+1)(2𝑘1)!

(
𝑛
2

+ 𝑘1) ! 𝑘1! (𝑖 − 𝑘1)! (2𝑘1 − 1)!

min (𝑖,
𝑛
2
)

𝑘1=(
𝑖+1
2

)

 
(3.7.2) 

 

And n, is a heuristic integral parameter which represents the number of terms used in the summation in Equation 

(3.7.1).  An optimal choice of 10 ≤ n ≤ 14 has been commonly observed. 

 

3.8   BESSEL FUNCTIONS 

The modified Bessel functions of the of integer order, In(x) and Kn(x) are used in this work; where n is the order 

of the Bessel function.  For the reservoir models used in this work, the modified Bessel functions of the first and 

second kind and of zero and first order are evaluated based on polynomial coefficients given by Abromowitz and 

Stegun (1964). 

 

3.9   NONLINEAR REGRESSION 

3.9.1 - LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt algorithm (LMA), also called the Marquardt method, is a very popular numerical 

solution to the problem of minimizing a function (generally nonlinear) over a space of parameters of the 

function; nonlinear regression. In a nutshell, the LMA is a solution to the least squares curve fitting problem. 

This algorithm interposes between the gradient decent algorithm and the Gauss-Newton algorithm.  Although the 

LMA tends to be a bit slower than the Gauss-Newton algorithm (GNA), it is more robust than the GNA i.e. in 

most cases the LMA finds a solution even if it starts far off the final minimum. However, the LMA algorithm 

only finds local minima, instead of the required global minima. 

In nonlinear regression, given a set of N empirical datum pairs of independent and dependent variables, (ti, pi), 

with model parameters a, the LMA seeks to minimize the sum of squares of the deviations; the objective 

function, E (a); 
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𝐸(𝒂) =  ∑(𝑝(𝑡𝑖; 𝒂) − 𝑝𝑖)
2

𝑁

𝑖

, (3.9.1) 

by optimizing the parameters a of the model curve, p(ti; a). 

Therefore, LMA is a curve fitting algorithm for a model which depends nonlinearly on the set of unknown 

parameters ak, k = 1, 2, …, M. A merit function χ
2
 is defined and its minimization is used to determine best-fit 

parameters a*. Hence, the merit function is the objective function of this minimization problem. This nonlinear 

dependency implies that minimization must proceed iteratively. This procedure aims to improve the initial trail 

values of the fit parameters a0.  

With the model function; 

𝑝 = 𝑝(𝑡; 𝑎), 
(3.9.2) 

the chi-square χ
2
 merit function can be defined as; 

𝝌𝟐(𝒂) = ∑[𝑝𝑖 − 𝑝(𝑡𝑖; 𝑎)]2
𝑁

𝑖=1

 (3.9.3) 

The Taylor’s series expansion of a function, f(x) is expressed as; 

𝑓(𝑥) = 𝑓(𝑥0) +  (𝑥 − 𝑥0)
𝜕𝑓

𝜕𝑥
+

(𝑥 − 𝑥0)
2

2

𝜕2𝑓

𝜕𝑥2
+ ⋯ (3.9.4) 

In matrix notation (𝐴 =
𝜕2𝑓

𝜕𝑥2), f(x) is expressed as; 

𝑓(𝑥) ≅  𝑓(𝑥0) + (𝑥 − 𝑥0) ∙ ∇𝑓(𝑥)

+ 
1

2
(𝑥 − 𝑥0) ∙ 𝐴

∙ (𝑥 − 𝑥0) 

(3.9.5) 

∴ 𝑖𝑓, 𝑓(𝑥) ≡ 𝐸(𝑎)  ≡  𝜒2(𝑎), (3.9.6) 

then, as the objective function converges,  

𝑓(𝑥) −  𝑓(𝑥0) → 0 (3.9.7) 

Substituting this into Equation (3.9.4) and dividing through by (x – x0), results in Equation (3.9.8) i.e. in matrix 

notation; 

∇𝑓(𝑥) + 
1

2
∙ 𝐴 ∙ (𝑥 − 𝑥0) =  0 (3.9.8) 

∴ 𝑥 = 𝑥0−A−1 ∙ ∇𝑓(𝑥0) (3.9.9) 

Similarly, our objective function, χ
2
(a) can be expressed as follows, using Taylor’s series expansion; 

𝝌(𝒂) = 𝜒(𝑎0) +  (𝑎 − 𝑎0)
𝜕𝜒2

𝜕𝑎
+

1

2

∙ (𝑎 − 𝑎0)
2
𝜕2𝜒2

𝜕𝑎2
+ ⋯ 

(3.9.10) 

∴  𝑎𝑛𝑒𝑥𝑡 = 𝑎𝑐𝑢𝑟  + A−1 ∙ [−∇𝜒2(𝑎𝑐𝑢𝑟)] (3.9.11) 

The first partial derivative of the merit function, χ
2
 with respect to the model parameters is given as; 
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𝜕𝜒2

𝜕𝑎𝑘

= −2∑[𝑝𝑖 − 𝑝(𝑡𝑖; 𝑎)] ∙
𝜕𝑝(𝑡𝑖, 𝑎)

𝜕𝑎𝑘

𝑁

𝑖=1

 (3.9.12) 

Taking additional partial derivatives (the Hessian matrix), 

𝜕2𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙

= 2∑[
𝜕𝑝(𝑡𝑖; 𝑎)

𝜕𝑎𝑘

𝜕𝑝(𝑡𝑖; 𝑎)

𝜕𝑎𝑙

𝑁

𝑖=1

− [𝑝𝑖

− 𝑝(𝑡𝑖; 𝑎)]
𝜕2𝑝(𝑡𝑖; 𝑎)

𝜕𝑎𝑙𝜕𝑎𝑘

] 

(3.9.13) 

Let  𝛼 𝑎𝑛𝑑 𝛽 be defined as follows; 

𝛽𝑘 = −
1

2

𝜕𝜒2

𝜕𝑎𝑘

 (3.9.14) 

𝛼𝑘𝑙 =
1

2

𝜕2𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙

 (3.9.15) 

𝛼𝑘𝑙 ≅ ∑[
𝜕𝑝(𝑡𝑖; 𝑎)

𝜕𝑎𝑘

𝜕𝑝(𝑡𝑖; 𝑎)

𝜕𝑎𝑙

]

𝑁

𝑖=1

 (3.9.16) 

∑𝛼𝑘𝑙𝛿𝑎𝑙 =

𝑀

𝑙=1

𝛽𝑘 (3.9.17) 

where : 𝛿𝑎 = parameter increment  

Levenberg proposed the introduction of a non-negative dampening factor λ, as shown in Equation 3.9.18. This 

dampening factor, λ, is adjusted at each iteration step, with a smaller value of λ used if there is a reduction in χ
2
 

and vice versa.  

𝛼𝑘𝑙
′ ≡ 𝛼𝑘𝑙(1 +  𝜆) (3.9.18) 

∑𝛼𝑘𝑙
′𝛿𝑎𝑙 =

𝑀

𝑙=1

𝛽𝑘 (3.9.19) 

Marquardt later provided the insight of diagonal scaling to improve convergence over small gradients. This 

improvement is shown in Equation (3.9.20) and (3.9.21) as a modification to Equation (3.9.18). This is bases of 

the Levenberg-Marquardt algorithm.    

𝛼𝑗𝑗
′′ ≡ 𝛼𝑗𝑗(1 +  𝜆) (3.9.20) 

𝛼𝑗𝑘
′′ ≡ 𝛼𝑗𝑘             (𝑗 ≠ 𝑘) (3.9.21) 

∑𝛼𝑘𝑙
′′𝛿𝑎𝑙 =

𝑀

𝑙=1

𝛽𝑘 (3.9.22) 
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Given an initial guess for the set of fitted parameters a0, Press et al. (2007) briefly outlined the LMA steps as 

follows: 

1. Compute χ
2
(a). 

2. Pick a modest value for λ, say λ= 0.001. 

3. Solve the linear equations (Equation 3.9.22) for δa and evaluate χ
2
(a+ δa). 

4. If χ
2
(a+ δa) ≥ χ

2
(a), increase λ by a factor of 10 (or any other substantial factor) and go back to (3). 

5. If χ
2
(a+ δa) < χ

2
(a), decrease λ by a factor of 10, update the trial solution a = a + δa, and go back to 

(3). 

 

A tolerance value ɛ of χ
2
(a+ δa) - χ

2
(a) is set as a stopping condition i.e. convergence criteria . Alternatively, the 

maximum number of iterations can be set as a stopping condition. A reasonable value of ɛ is chosen, so as to 

avoid unnecessary and wasteful computation time. To test for convergence, the merit function χ
2
 used in steps 4 

and 5 is combined with the pressure derivative data as follows; 

𝝌𝟐(𝒂) = 0.5 × ∑[𝑝𝑖 − 𝑝(𝑡𝑖; 𝑎)]2 +  0.5 × ∑[𝑝′
𝑖
− 𝑝′(𝑡𝑖; 𝑎)]

2
𝑁′

𝑖=1

𝑁′

𝑖=1

 (3.9.23) 

Where; p’i   = the pressure derivative data at time ti. 

              N’ = the number of pressure derivative data points. 
 

 

This is to improve the convergence of dual porosity models. 

The Barrier method was used to constrain the parameter estimates. This was done by setting upper (UB) and 

lower bounds (LB) of the parameters. In implementing this method, a parameter is only updated after an iteration 

step if it falls within the bounds i.e. between UB and LB. 

If (a+ δa) ≤UB and (a+ δa)≥LB then 

Update the parameter, a = a+ δa 

Else a = a 

The upper and lower parameter bounds were set from the initial estimates as presented in table 3.9.1. 

 

The linear equations (Equation 3.9.22) are solved using Gaussian elimination method. Press et al. (2007) 

presented, in detail, the implementation of Gaussian elimination method.  

TABLE 3.9.1:  UPPER AND LOWER LIMITS 

Paramete

r 

UB LB 

K Kest +10% of Kest Kest - 10% of Kest 

Cs Cs,est +10% of Cs,est Cs,est - 10% of Cs,est 

ω ωest +10% of ωest ωest - 10% of ωest 

λ λest +10% of λest λest - 10% of λest 

re re,est +10% of re,est re,est - 10% of re,est 

S Sest +10 Sest - 10 

 

3.9.2 - CONFIDENCE INTERVAL 

This is a statistical interval estimate of a model parameter used to indicate the reliability of the parameter 

estimate. This information is not available in traditional graphical well test analysis. Hence matching a wrong 

reservoir model for a given set of data would give confidence intervals that are not acceptable for most or all the 

estimates (Horne, 1995). Also if the data over a given flow regime is missing, this results in a wider confidence 

interval. Even with an appropriate model, noisy data can also result in a wider confidence interval. TABLE 3.9.2 

shows the acceptable confidence ranges based on match of pressure. Roughly twice these values are used when 

matching pressure derivative. 

TABLE 3.9.2:  ACCEPTABLE CONFIDENCE LIMITS (Horne, 1995) 

Parameter % Interval Absolute Interval 

K 10 - 

Cs 10 - 

ω 20 - 

λ 20 - 

re 10 - 
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S - 1.0 

 

The confidence interval of an estimate is a function of noise in the data, the number of data points and the degree 

of correlation between the unknowns (Horne, 1995). The procedure used in this work for calculating the 

confidence intervals of the parameters, a, of a given model, p(ti ;a) are outlined as follows: 

1. Calculate the error mean square, sn
2
; 

𝑠𝑛
2 =

𝑆𝑆𝑅𝑛

𝑛 − 𝑚
 (3.9.24) 

where: 

𝑆𝑆𝑅𝑛 = ∑[𝑝𝑖 − 𝑝(𝑡𝑖; 𝑎)]2
𝑁

𝑖=1

 (3.9.25) 

n = number of data points.  

m = number of parameters.  

  

2. Evaluate  the Hessian matrix , H defined as given below,  

𝐻

=  

[
 
 
 
 
 
 
∑(

𝜕𝑝

𝜕𝑎1

) (
𝜕𝑝

𝜕𝑎1

)

𝑁

𝑖=1

⋯ ∑(
𝜕𝑝

𝜕𝑎1

) (
𝜕𝑝

𝜕𝑎𝑚

)

𝑁

𝑖=1

⋮ ⋱ ⋮

∑(
𝜕𝑝

𝜕𝑎𝑚

) (
𝜕𝑝

𝜕𝑎1

)

𝑁

𝑖=1

⋯ ∑ (
𝜕𝑝

𝜕𝑎𝑚

) (
𝜕𝑝

𝜕𝑎𝑚

)

𝑁

𝑖=1 ]
 
 
 
 
 
 

 

(3.9.26

) 

 

3. Evaluate the standard error of each parameter, σaj
2
; 

𝜎𝑎𝑗
2 = 𝑠𝑛

2 𝐻𝑗𝑗
−1 (3.9.27) 

Hjj
-1

 is the jth diagonal element of the inverse Hessian matrix, evaluated at a = a* 

 

4. A (1 – α) x 100 % confidence interval is evaluated using Equation (3.9.28). 

𝑎𝑗
∗ − 𝜎𝑎𝑗 

∙ 𝑡
1− 

𝛼
2

≤ 𝑎𝑗 ≤ 𝑎𝑗
∗ + 𝜎𝑎𝑗 

∙ 𝑡
1− 

𝛼
2
 (3.9.28) 

 

Where, for a two tailed distribution, 𝑡1− 
𝛼

2
  is a tabulated value that cuts off 

𝛼

2
  x 100% in the tails of the 

student t – distribution with n-m degrees of freedom. But for large n, such that the degree of freedom, 

n-m, is greater than 30, the t-distribution approaches a normal distribution. Therefore using a 95% 

confidence interval, i.e. α = 5, the corresponding value of the normal distribution is 1.96. Hence, the 

confidence interval of each parameter is computed as using Equation (3.9.29). 

 𝑎𝑗
∗ −  1.96 ∙ 𝜎𝑎𝑗 

≤ 𝑎𝑗 ≤ 𝑎𝑗
∗ +  1.96 ∙ 𝜎𝑎𝑗 

 (3.9.29) 

However, a confidence interval does not predict that the true value of the parameter has a particular probability 

of being in the confidence interval given the data actually obtained. 

 

Conclusions 

A computer-aided approach to well test interpretation has been presented in this work. Although this approach is 

limited to eight fundamental reservoir models (Anraku, 199), it aims to completely automate the well test 
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interpretation procedure. Also, this work intends to highlight the following benefits of automating well test 

analysis; 

1. For better accuracy, as this will avert the subjective results of well test analysis. 

2. For real time monitoring; this will be an added value to the invention of permanent down-hole gauges 

and recent developments in computer technology.  With a computer aided well test analysis, the vast 

amount of data obtained can be analyzed in a short time, producing reliable results. 

3. Although good engineering judgment cannot be replaced by the use of computers, the importance of 

automating well test analysis stems from the fact that it presents a quantitative means of comparing 

different results.  

In the part 2 of this paper, this approach is implemented in a computer program; WELL TEST AUTO. The 

analysis of the results of well test data used to validate this approach is also presented in the second part of this 

paper. 
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