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Abstract 

Energy is an important input for economic development. Solar energy is created by light and heat which is 

emitted by the sun, in the form of electromagnetic radiation. Solar energy is the most readily and abundantly 

available source of green energy. Copper nanoparticle suspensions in the Cu-water have been proposed as a 

means to enhance solar collector efficiency through direct absorption of the incoming solar energy. Thermal 

stratification is the scientific term that describes the layering of bodies of water based copper nanofluid on their 

temperature. The aim of the present work is to investigate theoretically the effect of thermal stratification in the 

presence of magnetic field on unsteady Hiemenz non-Darcy flow and heat transfer of incompressible copper 

nanofluid along a porous wedge due to renewable (solar energy). It is of notable interest in this work to consider 

the similarity transformation is used for unsteady flow. Copper nanofluid flow past a porous wedge plays a 

dominant role on absorbs the incident solar radiation and transits it to the working fluid by convection.  

Keywords: Nanofluid; Porous wedge; Unsteady non-Darcy flow; Magnetic field; Thermal stratification; Solar 

energy radiation. 

 

1. Introduction 

The radiant heat and light energy from the Sun is called as solar energy. Solar energy is that energy which comes 

from the natural energy flows on earth. Renewable solar energy is also termed as green energy. The earth 

receives more energy in just one hour from the sun than what is consumed in the whole world for one year. 

Initially, the application of nanofluids in collectors and water heaters are investigated from the efficiency, 

economic, and environmental aspects. Some studies conducted on thermal conductivity and optical properties of 

nanofluids are also briefly reviewed, because these parameters can determine the capability of nanofluids to 

enhance the performance of solar systems. Solar collectors are particular kind of heat exchangers that transform 

solar radiation energy into internal energy of the transport medium.  

Nanofluids have been considered for applications as advanced heat transfer fluids for almost two 

decades. However, due to the wide variety and the complexity of the nanofluid systems, no agreement has been 

achieved on the magnitude of potential benefits of using nanofluids for heat transfer applications. Nanofluids 

poses the following advantages as compared to conventional fluids which make them suitable for use in solar 

energy collectors: Absorption of solar energy will be maximized with change of the size, shape, material and 

volume fraction of the nanoparticles. The suspended nanoparticles increase the surface area and the heat capacity 

of the fluid due to the very small particle size. The suspended nanoparticles enhance the thermal conductivity 

which results improvement in efficiency of heat transfer systems. Properties of fluid can be changed by varying 

concentration of nanoparticles. The suspension of nano-sized particles (1–100 nm) in a conventional base fluid is 

called a nanofluid. Choi first used the term “nanofluid” in 1995, Choi (1995).  

Saidur et al. (2011) reviewed the potential of nanofluids in the improvement of heat transfer in 

refrigeration systems. The authors concluded that more studies are required to find the reasons behind the 

considerable improvements in heat transfer whereas an insignificant increase in pressure occurs. Thomas and 

Sobhan (2011) presented experimental studies on nanofluids, with emphasis on the techniques of measuring the 

effective thermal conductivity. Escher et al. (2011) investigated the applications of nanofluids in cooling 

electronics. Recently, applications of computer simulations and computational fluid dynamics (CFD) used to 

model systems employing nanofluids were reviewed and analyzed by Abouali and Ahmadi (2012) and Kamyar 

et al. (2012). Ahn and Kim (2012) also published a review on the critical heat flux of nanofluids for both 

convective flow boiling and pool boiling applications. In another publication, Saidur et al. (2011)reviewed the 

general applications of nanofluids in some fields such as cooling of electronics, heat exchangers, medical 

applications, fuel cells, nuclear reactors, and many more. They also mentioned briefly the applications of 

nanofluids in solar water heaters. They investigated challenges in using nanofluids, including an increased 

pressure drop and pumping power, long-term stability of nanoparticles dispersion, and the high cost of 

nanofluids. 

Thermo physical properties of the nanofluids are quite essential to predict their heat transfer behavior. 

It is extremely important in the control for the industrial and energy saving perspectives. Nanoparticles have 
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great potential to improve the thermal transport properties compared to conventional particles fluids suspension, 

millimetre and micrometer sized particles. Radiative transport in porous media has important engineering 

applications in solar collectors and the porous medium acts as a means to absorb or emit radiant energy that is 

transferred to or from a fluid. Some previous works are reviewed in which the potential of nanofluids for use in 

solar energy system is performed through the study of optical properties and thermal conductivity of nanofluids. 

Link and El-Sayed (2000) reviewed the optical properties of gold nanoparticles. Particularly, they studied the 

shape and size dependence of radiative, and photo thermal properties of gold nanocrystals. Khlebtsov et al. 

(2005) investigated the effects of the size, shape, and structure of gold and silver nanoparticles on the optical 

properties of the nanofluids and perceived that the shape and size of the nanoparticle have great effect on the 

optical properties of a nanofluid. Sani et al. (2011) reported the optical characterization of a new fluid consisting 

of single-wall carbon nanohorns and ethylene glycol for solar energy applications. Mercatelli et al. (2011a, 

2011b) investigated the potential of single-wall carbon nanohorns nanoparticles with two different base fluids 

including water and glycol. Mercatelli et al. (2012) applied a simple spectrophotometric to estimate the spectral 

scattering albedo of water nanofluid. Saidur et al. (2012) investigated the potential of Aluminum/water nanofluid 

to use in direct absorption solar collectors. Lenert and Wang (2011) and Lenert (2010) presented a combined 

theoretical and experimental work to optimize the efficiency of liquid-based solar receivers seeded with carbon-

coated absorbing nanoparticles. Colangelo et al. (2012) measured the thermal conductivities of CuO, Al2O3, ZnO 

and Cu with different shapes and volume fraction by 3%, where water and diathermic oil are as the base fluids, 

to evaluate their potential to use for high temperature applications such as in solar collectors. Kameya and 

Hanamura (2011) found experimentally that the solar radiation absorption for the nanofluid of Ni/alkyl 

naphthalene with 0.1% volume fraction is much higher than the base fluid. Gan and Qiao (2012a, 2012b) found 

that for ethanol-based nanofluids, the radiation absorption for nanofluids containing Al2O3 nanoparticles is 

higher than nanofluids containing aluminum nanoparticles. Generally, the fluid itself can be assumed to be 

transparent to radiation, because the dimensions for radiative transfer among the solid structure elements of the 

porous medium are usually much less than the radiative mean free path for scattering or absorption in the fluid.  

Convective flow in porous media has been widely studied in the recent years due to its wide 

applications in engineering as post-accidental heat removal in nuclear reactors and solar collectors. The effects 

of heat transfer laminar boundary layer flow over a wedge have been studied by many authors (Kafoussias and 

Nanousis (1997), Kandasamy et al. (2008) and Cheng and Lin (2002)) in different situations. Nanofluids are 

suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest 

nanoparticle concentration was investigated by Rosmila Abdul-Kahar et al. (2011), Kandasamy et al. (2011), 

Vajravelu et al. (2011) and Rana and Bhargava (2011). Nanofluids may be used in various applications which 

include electronic cooling, vehicle cooling transformer and coolant for nuclear reactors. In this paper, we apply 

the so-called symmetry methods for a particular problem of fluid mechanics. The main advantage of such 

methods is that they can successfully be applied to non-linear differential equations. The method of Lie group 

transformations is used to derive all group-invariant similarity solutions of the unsteady two-dimensional laminar 

boundary-layer equations, Ovsyannikov (1982) and Avramenko et al. (2001). Solar energy is currently one kind 

of important resource for clean and renewable energy, and is widely investigated in many fields. For this reason, 

it is of special interest in this work to consider natural convection due to solar radiation non-Darcy flow from a 

wedge embedded in a porous medium with variable porosity distribution. The inertia effect is expected to be 

important at a higher flow rate and it can be accounted for through the addition of a velocity squared term in the 

momentum equation, which is known as the Forchheimer's extension. Several researchers have studied natural 

convection heat transfer in porous medium by considering Forchheimer's extension. The thermal stratification of 

nanofluids refers to a change in the temperature at different depths in the nanofluid, and is due to the change in 

fluid's density with temperature. Nanotechnology is an enabling technology that provides an extensive range of 

resources to resolve the energy-related problems, as the developing components and appliances are smaller than 

100 nm they provide the new ways to catch, store and exchange energy. Every day, the sun shines a huge amount 

of energy which is generated through a process of nuclear fusion. Even the sun radiates more energy in one 

second than people have practiced since the beginning of time. It has been noted that the technical potential of 

solar energy all over the world is many times larger than the current total primary energy demanded. 

The effect of magnetic field on natural convection along a wedge plate in a thermally stratified 

Hiemenz nanofluid flow on non-Darcy porous medium under the convective boundary condition has not been 

reported in the literature. There is a more common practice situation, where heat transfer occurs at the boundary 

surface to or from a fluid flowing on the surface at a known temperature and a known heat transfer coefficient, 

e.g. in heat exchangers, condensers and reboilers. In view of the above said application, the aim of this 

investigation is to consider the effects of thermal stratification on unsteady Hiemenz non-Darcy copper nanofluid 

flow over a porous wedge in the presence of magnetic field due to solar radiation (green) energy. Lie symmetry 

group transformation is utilized to convert the governing partial differential equations into ordinary differential 

equations and then the numerical solution of the problem is accomplished by using Runge Kutta Gill method 
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(Gill (1951)) with shooting technique. The effects of magnetic, thermal stratification and convective radiation 

parameters are examined and are displayed through graphs. 

 

2. Mathematical Analysis 

                    

 
Fig.1 Physical flow model over a porous wedge sheet 

Consider the unsteady two-dimensional free convection flow from the wedge flat plate in a thermally stratified, 

electrically conducting non-Darcy copper nanofluid flow over a porous medium in the presence of solar energy 

radiation (Fig. 1). Influence of a constant magnetic field of strength B0 which is applied normally to the sheet and 

the temperature at the wall of the wedge takes the constant value Tw, whereas the ambient (y tends to infinity), 

takes the constant value T∞. The magnetic Reynolds number is assumed to be small so that the induced magnetic 

field can be neglected. The porous medium is assumed to be transparent and in thermal equilibrium with the 

fluid. The non reflecting absorbing ideally transparent wedge plate receives an incident radiation flux of intensity

radq ′′  and the porous medium absorbs the incident solar radiation and transits it to the working fluid by 

convection. This radiation flux penetrates the plate and is absorbed in an adjacent fluid of absorption coefficient. 

Due to heating of the absorbing nanofluid and the wedge plate by solar radiation, heat is transferred from the 

plate to the surroundings and the solar radiation is a collimated beam that is normal to the plate and the working 

fluid is assumed to have heat absorption properties. The thermophysical properties of the nanofluid are given in 

Kandasamy et al. (2011). Under the above assumptions, the boundary layer equations governing the flow and 

thermal field can be written in dimensional form as 
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k  is the mean absorption coefficient. The Rosseland approximation is 

used to describe the radiative heat transfer in the limit of the optically thick fluid (nanofluid).  
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Here 11 nandc (power index) are constants and 0v and wT are the suction ( 00 >v ) or injection ( 00 <v ) 

velocity and the fluid temperature at the plate. The potential flow velocity of the wedge can be written as
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(Anjali Devi and Kandasamy (2001)), n refers to thermal stratification parameter, such that 10 <≤ n . g  is the 

acceleration due to gravity, K is the permeability of the porous medium, F is the empirical constant in the 

second-order resistance and setting F = 0 in Equ. (2) is reduced to the Darcy law. ov is the velocity of suction / 
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nfµ is the effective dynamic viscosity of the nanofluid, 
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It represents the lower limit for the thermal conductivity of nanofluids and it can seen that in the limit where ζ  

= 0 (no particles), Equ. (5) yields 1=lowk  as expected. Experiments report thermal conductivity enhancement of 

nanofluids be yond the Maxwell limit of ζ3 . In the limit of low particle volume concentration (ζ ) and the 

particle conductivity ( sk ), being much higher than the base liquid conductivity ( fk ), Equ. (5) can be reduced to 

Maxwell ζ3  limit as: 
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fµ  is the dynamic viscosity of the base fluid, fβ  and sβ are the thermal expansion  coefficients of the base 

fluid and nanoparticle, respectively, fρ  and sρ are the density of the base fluid and nanoparticle, respectively, 

nfk is the effective thermal conductivity of the nanofluid and 
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Equations (1)-(4) take the non-dimensional form 
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The symmetry groups of Equs. (13) and (14) are calculated using classical Lie group approach, Kandasamy et al. 

(2011) as  
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The boundary conditions take the following form 
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S is the suction parameter if 0>S and injection if 0<S and  2
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dimensionless distance along the wedge ( ξ > 0 ). In this system of equations, it is obvious that the nonsimilarity 
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The boundary conditions take the following form 
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Further, we suppose that 
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υλ where c is a constant so that 
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= and integrating, it is obtained that 

[ ] 1
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)1( ++= m
f tmc νδ .When 2=c  and 1=m in δ  and we get tfνδ 2= which shows that the parameter δ

can be compared with the well established scaling parameter for the unsteady boundary layer problems (see 

Schlichting (1979)). The functions  )(ηf  and )(ηθ  allow us to determine the skin friction coefficient and 

Nusselt number as  
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respectively. Here, 
f

x

xU

ν
=Re is the local Reynolds number. 

3. Numerical Analysis   

Equations (19) and (20) under the boundary conditions (21) are solved numerically by applying Runge–Kutta-

Gill (Gill (1951)) integration scheme together with shooting iteration technique with υλλζ ,,,,Pr 1nf
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NandFMS n,,,Ω as prescribed parameters. The details of the solution method are omitted here to conserve 

space. In the numerical solution, a check was made to confirm that smoothness conditions at each of the 

boundary layers were satisfied and also the step size of 001.0=∆η was selected to be satisfactory for a 

convergence criterion of 10
− 6

 in all cases. The case 0.1>>γ  corresponds to pure free convection, 0.1=γ

corresponds to mixed convection and 0.1<<γ  corresponds to pure forced convection. Throughout this 

calculation we have considered 0.2=γ  unless otherwise specified.  

 

4. Results and Discussion 

In order to validate our method, we have compared the results of )()(),( ηηη fandff ′′′  for various values of η  

(Table.1) with those of White (2006) and the results are found to be in very good agreement. The velocity and 

temperature profiles for different values of ξ  are compared with the available exact solution of Minkowycz and 

Sparrow (1988) is shown in Fig.2. It is observed that the agreement with the theoretical solution of velocity 

profile is excellent. 

Table 1: Comparison of the current results with previous published work  

-------------------------------------------------------------------------------------------------------------------------   

η       White (2006)                         Present works 

       ------------------------------------------------------------------------------------------------------------------------- 

0.0      0.000000   0.000000    0.469599          0.000000    0.000000    0.469686 

1.0      0.23299     0.46063      0.43438            0.232986    0.460628    0.434377 

2.0      0.88680     0.81669      0.25567            0.886797    0.816687    0.255668 

3.0      1.79557     0.96905      0.06771            1.795569    0.969046    0.067714 

------------------------------------------------------------------------------------------------------------------------- 

 
Minkowycz and Sparrow (1988),       Present work 

            Fig.2: Comparison of the velocity and temperature profiles with Minkowycz and Sparrow (1988) 
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Figs. 3-6 represent typical velocity and temperature profiles for different values of thermal stratification 

parameter in the presence of base fluid (pure water) and nanofluid (Cu-water). In the presence of base fluid 

(Figs. 3 and 5) and copper nanofluid ((Figs. 4 and 6), it is observed that the velocity and temperature 

decelerate with increase of the strength of thermal stratification, n . Particularly, it is shown that the velocity 

profiles in the case of copper nanofluid decreases when 5.0≤η  whereas it increases when 5.0>η  because 
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of the dynamic thermal conductivity and viscosity are not only dependent on volume fraction of copper 

nanoparticle, also highly dependent on other parameters such as particle shape, size, mixture combinations 

and slip mechanisms, surfactant, etc.  For hydrodynamic characteristics mechanism, it is interesting to note 

from Fig. 4 that the positive value of the velocity profile is observed in the outer boundary region for 

1.0≤n (see Fig. 4) since the copper nanofluid has noticeable higher thermal conductivities than the base 

fluid. It is seen that as thermal stratification parameter increases the thermal boundary layer thickness 

decreases. This is due to the fact that the thermal stratification parameter n  is directly proportional to the 

heat transfer coefficient and the dynamic viscosity of the nanofluid. On the other hand it is interesting to 

note that the negative value of the temperature profile is predicted in the outer boundary region for 9.0=n . 

It is concluded that the addition of nanoparticles showed an improvement in the heat transfer rate from the 

surface. Therefore, the type of copper nanofluid is a key factor for heat transfer enhancement. The thermal 

stratification is based on a natural process: since warm water is lighter than cold water, it will ascend until it 

reaches a layer of warmer water or the top of the tank. This process facilitates the efficient utilization of 

solar heat: The higher the temperature difference between collector and solar storage and the longer such a 

difference exists, the higher the efficiency of solar heating. The principle of thermal stratification in 

insulation of the storage tank is of very high importance to the efficiency of a solar heating system. Thermal 

stratification in storage tanks for solar domestic hot water is essential to improve the efficiency of solar 

collectors and deliver more useful energy on demand. Thermal stratification and water temperature 

dynamics have profound effects in chemical and biological reservoir processes. Suspensions of copper 

nanoparticles in base fluid (Cu-nanofluid) show remarkable thermal and optical property changes from the 

base fluid at low particle loadings.  
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The nondimensional temperature )(ηθ  for various values of magnetic parameter in the presence of 

base fluid and Cu-water are shown in Figs. 7 and 8. In both the cases, the temperature enhances with the increase 

of magnetic parameter. The magnetic field opposes the transport process. Actually, the increase of � leads to the 

increase of the Lorentz force arising because of interaction of magnetic and electric fields for the motion of an 

electrically conducting fluid, and the stronger Lorentz force produces much more resistance to the transport 

phenomena and it has the tendency to increase the temperature in nanofluid motion. Consequently, the thermal 

boundary layer thickness becomes thicker for stronger magnetic field. In all cases, the temperature vanishes at 
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some large distance from the surface of the wedge. This result qualitatively agrees with the expectations, since 

magnetic field exerts retarding force on the natural convection flow. Physically, it is interesting to note that the 

temperature of the nanofluid (Cu Water) increases significantly as compared to that of the base fluid because the 

copper nanofluid has high thermal conductivity. Magnetic copper nanoparticles in nanofluid is a unique material 

that has both the liquid and magnetic properties. Many of the physical properties of these fluids can be tuned by 

varying magnetic field. These results clearly demonstrate that the magnetic field can be used as a means of 

controlling the flow and heat transfer characteristics.  

Thermal radiation is one of the principal mechanisms of heat transfer. Temperature profiles for 

different values of the thermal radiation parameter N in the presence of base fluid (pure water) and nanofluid 

(Cu-water) are shown in Figs. 9 and 10. In the presence of (pure water) and nanofluid (Cu-water), it is observed 

that the temperature reduces with increase of the radiation parameter N . The effect of radiation is to decrease the 

rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. This is because the large 

values correspond to an increased dominance of conduction over radiation thereby decreasing buoyancy force 

and thickness of the thermal boundary layer, despite of improved thermal conductivity for specific volume 

concentration of copper nanoparticles. It is interesting to note that the temperature of the Cu-nanofluid is 

decelerated significantly as compared to that of the base fluid with increase of thermal radiation because of 

thermal conductivity of the copper nanofluid. It should be noted that the enhancement of heat transfer greatly 

depends on particle type, particle size, base fluid, flow regime and specially boundary condition. This is in 

agreement with the physical fact that the thermal boundary layer thickness decreases with increasing radiation 

parameter N. Nanofluid-based direct solar collectors are solar thermal collectors where nanoparticles in a liquid 

medium can scatter and absorb solar radiation. They have recently received interest to efficiently distribute solar 

energy. Nanofluids have recently found relevance in applications requiring quick and effective heat transfer such 

as industrial applications, cooling of microchips, microscopic fluidic applications, etc. Nanoparticle materials 

including copper  have been added to different base fluids and characterized in terms of their performance for 

improving heat transfer efficiency.  

Fig. 11 illustrates the effect of nanoparticle volume fraction ζ  on temperature profile. It is clear that 

the temperature of the nanofluid increases with increase of nanoparticle volume fraction and tends 

asymptotically to zero as the distance increases from the boundary. It is also observed that the temperature 

distribution in Silver–water and Alumina-water nanofluids are higher than that of Cu–water nanofluid. It is 

observed that with increasing ζ , the thermal boundary layer thickness increases. This agrees with the physical 

behavior, when the volume of nanoparticles increases the thermal conductivity and then the thermal boundary 

layer thickness increases. The variation of the Prandtl number within the boundary layer for different values of 

the unsteadiness parameter υλ  plays a dominant role on nanofluid flow field. Significant change in the rate of 

decrease of θ for increasing values of υλ  is noticed. Temperature at a point on the sheet decreases significantly 

with the increase in υλ  i.e. rate of heat transfer increases with increasing unsteadiness parameter υλ . Non-Darcy 

behavior is important for describing nanofluid flow in porous media in situations where high velocity occurs. 

This is consistent with the fact that non-Darcy behavior is more severe in low permeability porous media. All 

these physical behavior are due to the combined effects of the strength of volume fraction of the nanoparticles in 

the presence of non-Darcy flow. The nanoparticles suspension demonstrates some unique and novel thermal 

properties when compared to the traditional heat transfer of fluids.  

 

5. Conclusions  

In the present work, the effect of thermal stratification on MHD unsteady non-Darcy flow and heat transfer of 

incompressible copper nanofluid past a porous wedge due to solar energy have been analyzed. It is of notable 

interest in this work to consider the similarity transformation is used for unsteady flow. 

1 In the presence of base fluid and copper nanofluid flow, it is seen that the velocity and 

temperature decelerate with increase of the strength of thermal stratification. In the case of 

copper nanofluid, it is interesting to note that the positive value of the velocity and negative 

value of the temperature profiles are observed in the outer boundary region which is due to the 

layering effect of thermal stratification as it acts like a resistive force.  

2 Physically, it is interesting to note that the temperature of the copper nanofluid increases 

significantly as compared to that of the base fluid with increase of magnetic field because of 

the transport properties of copper nanofluid. Copper nanoparticles in the magnetic field are a 

unique material that has both the nanofluid and magnetic properties. 

3 It is noticed that the temperature of the copper nanofluid is decelerated significantly as 

compared to that of the base fluid with increase of convective radiation because the effect of 

solar radiation is to decrease the rate of energy transport to the copper nanofluid. 
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5 Increase of thermal boundary layer field due to increase in nanoparticle volume fraction 

parameter shows that the temperature decreases gradually as we replace Copper nanofluid, 

05.0=ζ  by Silver, 10.0=ζ  and Alumina nanofluid, 15.0=ζ  in the said sequence. It 

implies that the thermal conductivity of nanofluid is strongly dependent on the nanoparticle 

volume fraction. Hiemenz copper nanofluid flow over a porous wedge plays a significant role 

on absorbs the incident solar radiation and transits it to the working fluid by convection.  

Recently, the dynamics of thermally stratified fluid has attracted attention of researchers and emerged 

as an important topic for scientific enquiry because of its wide applications in a number of industrial, 

engineering and environmental applications. Nanofluids due to solar energy are important because they can be 

used in numerous applications involving heat transfer and other applications such as in detergency, solar 

collectors, drying processes, heat exchangers, geothermal and oil recovery, building construction, etc. 

Convective heat transfer coefficient of nanofluids is higher than those of the base fluid. The increases in 

effective thermal conductivity are important in improving the heat transfer behavior of fluids. The determination 

of nanofluid thermophysical properties is an increasingly important area in nanofluid cooling applications. 
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Nomenclature 

0B  Magnetic field strength, 

C  Nanoparticles volume fraction, 

wC  Nanoparticle volume fraction at the wall,  

∞C   Ambient nanoparticle volume fraction,  

pc  Specific heat at constant pressure, 

TC  Temperature ratio  

Ec   Eckert number, 

f  Dimensionless stream function, 

F   Empirical constant in the second-order resistance,  

nF  Forchheimer number, 

g   Acceleration due to gravity,  

k  Thermal conductive,  
*k   Mean absorption coefficient  

K  Permeability of the porous medium, 

M  Magnetic parameter,  
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N  Conductive radiation parameter  

n  Thermal stratification parameter 

fPr  Prandtl number, 

radq ′′  Incident radiation flux of intensity 

S  Suction / Injection parameter 

T   Temperature of the fluid, 

wT   Temperature at the wall, 

∞T  Ambient temperature,  

vu,   Velocity components along x- and y- axes, 

)(xU   Uniform velocity of the free stream flow,  

0v  Velocity of suction / injection, 

Greek symbols 

nfα  Thermal diffusivity of the nanofluid  

β   Coefficient of thermal expansion,  

θ   Dimensionless temperature, 

φ   Dimensionless nanoparticle volume fraction, 

η   Similarity variable, 

µ  Dynamic viscosity, 

nfµ  Effective dynamic viscosity of the nanofluid, 

σ  Electric conductivity of the fluid,  

1σ  Stefan–Boltzman constant, 

fρ  Density of the base fluid,  

nfρ  Effective density of the nanofluid, 

fc)(ρ  Heat capacity of the base fluid, 

Pc)(ρ  Effective heat capacity of the nanoparticle material, 

ν  Kinematic viscosity,  

ψ   Stream function. 

1σ  Stefan–Boltzman constant is,  

Ω   Angle of the wedge,  
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