Investigations on Tool Wear Rate of AISI D2 Die Steel in EDM using Taguchi Methods

Arjun kumar R.S. Jadoun Sushil Kumar Choudhary Department of Industrial & Production Engineering, College of Technology, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India, Pin-26314

Abstract

EDM has become an important and cost-effective method of machining extremely tough and brittle electrically conductive materials. It is widely used in the process of making moulds and dies and sections of complex geometry and intricate shapes. The workpiece material selected in this study is AISI D2 Die Steel. The input parameters are voltage, current, pulse on time and pulse off time. L₉ orthogonal array was selected as per the Taguchi method. The data have been analyzed using Minitab15 Software. The effect of above mentioned parameters upon machining performance characteristics such as Tool Wear Rate (TWR) are studied and investigated on the machine model C-3822 with PSR-20 Electric Discharge Machine. The copper alloy was used as tool material. The results obtained showed that the optimum condition for tool wear rate (TWR) is A3, B2, C2, D3 i.e. Ton (40 μ s),Toff (8 μ s), Ip (8 amp) and Vg (60V). The order of process parameters influencing the tool wear rate is Toff>Ip>Ton>Vg. Hence, pulse off parameter has more contribution to tool wear rate whereas gap voltage has the least contribution. As per the optimal level of parameters, the optimum value of TWR is 0.117 mm³/min. These results were validated by conducting confirmation experiments and found satisfactory.

Keywords: EDM, TWR, MRR, ANOVA, Taguchi method, AISI D2 Die steel, copper electrode

1-INTRODUCTIONS

1.1 Introduction of EDM

At present time metal manufacturing working industries are facing challenges from these advanced materials viz. super alloys, ceramics, and composites, that are hard and difficult to machine, requiring high precision, surface quality which increases machining cost. To meet these challenges, non-conventional machining processes are being employed to achieve higher metal removal rate, better surface finish and greater dimensional accuracy, with less tool wear. Electro Discharge Machining is a non-conventional or non-traditional machining process which is used for machining hard materials which are difficult to machine by conventional machining process. EDM can be used in machining difficult cavities and contours. There are various types of products which can be produced using EDM with high precision and good surface quality, such as dies, moulds, parts for aerospace, automobile and surgical instruments etc. In Electrical Discharge machining process using thermal energy by generating a spark to erode the workpiece. Material is remove from the workpiece by series of rapidly recurring discharge between two electrode separated by dielectric liquid subjected to an electric voltage. The workpiece must be a conductive electricity material which is submerged into the dielectric fluid for better erosion. EDM process showing in the figure-1

Fig.1 Line digram of EDM [S.K Choudhary & R.S Jadoun (2014)]

1.2 Process Parameters: The process parameters in EDM are used to control the performance measures of the machining process. Process parameters are generally controllable machining input factors that determine the conditions in which machining is carried out. These machining conditions will affect the process performance result, which are gauged using various performance measures.

S.	Process	Parameters Discription				
No.	Parameters					
1.	Pulse On-time	The pulse on time represents the duration of discharge and is the time during				
		which the electrode material is heated by the high temperature plasma channel.				
2.	Pulse off-time	The pulse off time represents the duration when no discharge exists and the				
		dielectric is allowed to demonize and recover its insulating properties.				
3.	Arc Gap	The Arc gap is distance between the electrode and workpiece during the process of				
		EDM. It may be called as spark gap. Spark gap can be maintained by servo system				
4.	Duty cycle	Duty factor is a percentage of the pulse duration relative to the total cycle time				
		(Pulse-on time +.pulse-off time)				
5.	Discharge	It is a measure of the amount of electrical charges flowing between the tool and				
	Current	workpiece electrode. Discharge current is directly proportional to the Material				
		removal rate.				
6.	Gap Voltage	This can be measured as two different values during one complete cycle.				
7.	Electrode	Electrode polarity is chosen based on the requirement of electrode wear				
	polarity	dominance at a given pulse on time.				

Table: 1 Process Parameters of EDM

2. LITERATURE REVIEW 2.1 General review of EDM work

Guu Y.H. et al, [2003] proposed the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. Surface roughness was determined with a surface profilometer. Guu Y.H. [2005] proposed the surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Pecas, P, et al. [2008] presents on EDM technology with powder mixed dielectric and to compare its performance to the conventional EDM when dealing with the generation of high-quality surfaces. Kansal, H.K, et al., [2005] study has been made to optimize the process parameters of powder mixed electrical discharge machining (PMEDM). S.Prabhu, et al [2008] analysed the surface characteristics of tool steel material using multiwall carbon nano tube to improve the surface finish of material to nanolevel. Ko-Ta Chiang, et al [2007] methodology for modeling and analysis of the rapidly resolidified layer of spheroidal graphite (SG) cast iron in the EDM process using the response surface methodology. The results of analysis of variance (ANOVA) indicate that the proposed mathematical model obtained can adequately describes the performance within the limits of the factors being studied. Seung-Han Yang, et al [2009] proposes an optimization methodology for the selection of best process parameters in electro discharge machining. Regular cutting experiments are carried out on die-sinking machine under different conditions of process parameters

Table: 2 Researchers work Contribution based on workpiece, Tool Electrode & Parameters

Researcher contribution	Workpiece material	Electrode	Process & performance Parameters
Wong et al. (1995) Investigated the	AISI 01 tool	Copper	Voltage, current, Pulse-on time
influence of flushing on the efficiency	steel		Polarity, Flushing rate
and stability of machining condition.	Testendi	Common	Oran Richard Dischard
Ghoreishi and Atkinson (2002) Investigated and Compared the effect of	I ool and die	Copper	Open voltage, Discharge
high and low frequency forced axial	A1S101		Amplitude of ultrasonic & low
vibration, electrode rotation and			frequency vibration, electrode
combination of these methods on			rotation, frequency of
performance measures.			vibration
Zhang et al. (2006) Applied ultrasonic to	AISI 1045	Copper	Open voltage, Pulse duration,
improve the efficiency in EDM in gas	steel		Discharge current, Gas
meurum			actuation amplitude
Kansal et al. (2007) Effect of Silicon	AISI 1045	Copper	Peak current, pulse on time,
Powder Mixed EDM on Machining Rate	steel		pulse off time, concentration
of AISI D2 Die Steel			of powder, gain, and nozzle
Lie Tee et al. (2009) Experimental Study		Connor	flushing
of the Dry and Near-Dry Electrical	tool steel	Copper	duration pulse interval
Discharge Milling Processes	1001 51001		Gap Voltage , Open circuit
			Voltage, Polarity, Electrode
			rotary speed ,Depth of cut
			Electrode diameter ,Pressure
Jahal & Khan (2010) Influence of	Stainless	Copper	Voltage feed rate Rotational
Process Parameters on Electrical	steel AISI	copper	speed of the
Discharge Machined Job Surface	304		electrode
Integrity.	~ · · ·	2	
B. Sidda Reddy et. al. (2010) Parametric	Stainless staal AISI	Copper	Current, Open
of	304		Servo and Duty cycle
ASI304 Stainless steel.	501		Serve and Duty cycle.
Vishwakarma M. et. al.(2012) Response	AISI 4140	Copper	Discharge current, Pulse-on
surface approach for optimization of	Grade steel		time, Duty Cycle, Gap
Sinker Electric Discharge Machine	alloy.		Voltage, flushing Pressure
steel			
Belgassim and Abusada (2012)	AISI D3	Copper	Pulse current Pulse –on time,
Optimization of the EDM Parameters on	Tool Steel		Pulse –off time & gap voltage
the Surface Roughness of AISI D3 Tool			
Steel.	Die steel D2	coppor	Pulse ourrent Pulse on time
Gurule & Nandurkar (2012) Effect of Tool Rotation on Material Removal	Die steel D2	copper	Pulse –off time Suspension of
Rate during Powder Mixed Electric			Al powder concentration.Tool
Discharge Machining of Die Steel.			rotation, flushing pressure,
Arjun kumar, R.S Jadoun & S.K	AISI D2 Die	Copper	Pulse-on time, pulse-off time,
choudhary (2015) Investigations on	steel		current, voltage,
Material Removal Rate of AISI D2 Die Steel in FDM using Taguahi Mathada			
Steel in EDM using Taguein Methods			

3. RESEARCH METHODLOGY

3.1 Experimental Setup

The experiments were conducted using the Electric Discharge Machine model C- 3822 WITH PSR-20.The polarity of the electrode was set as nigative while that of workpiece was positive. The dielectric fluid used was EDM oil or kerosene oil (specific gravity-0.820). The EDM consists of the following parts:

- Power generator and control unit: The power supply control the amount of energy consumed.
- The tool holder: The tool holder holds the tool with the process of machining.
- The servo system to feed the tool: The servo control unit is provided to maintain the pre determined gap between the electrode and workpiece.
- Working tank with work holding device:-All the EDM oil kept in the working tank is used to the supply the fluid during the process of machining.
- Dielectric reservoirs pump and circulation system: Dielectric reservoirs & pump are used to circulate the EDM oil for every run of the experiment & also used the filter the EDM oil.

Fig.2Experimental setup of EDM

3.2 Selection of the Workpiece

AISI D2 Die steel is an air hardening, high-carbon, high-chromium tool steel. It has high wear and abrasion resistant properties. AISI D_2 Die Steel is one of the most widely used materials in all industrial applications such as: Stamping or Forming Dies, Punches, Forming Rolls, Knives, slitters, shear blades, Tools, Scrap choppers, Tyre shredder etc. AISI D2 Die Steel block of 50 mm x50mm x5mm size has been used as a work piecematerial for the present experiments. This is shows in fig 3.

Fig.3 A View of Work piece Machined by EDM

Table-3 Chemical composition of AISI D2 Die Steel					
Element	Chemical Compositions (wt %)				
Carbon (C)	1.50				
Silicon (Si)	0.30				
Cromium (Cr)	12.00				
Molybdenum (Mo)	0.80				
Vanadium (V)	0.90				
Ioron (Fe)	84 5				

Table-4 Mechanical Properties of AISI D2 Die Steel

AISI D2 Die	Steel
Density (gm./cc)	7.7
Thermal Conductivity (W/m °C)	20.0
Modulus of elasticity (MPa)	210×10^3
Specific heat (J/kg °C)	460

3.3 Selection of tool electrode

The tool material used in Electro Discharge Machining can be of a variety of metals like copper, brass, aluminium alloys, silver alloys etc. The selection of particular electrode material depends primarily upon the specific cutting application and upon the material being machined. Main characteristics of the tool electrode material should have high thermal conductivity, high electric conductivity, high melting point and high density etc. Theese properties available in the copper tool electrode so used in this experiment is copper. The tool electrode is in the shape of a cylinder having a diameter of 8 mm. This is shows in fig.4.

Fig.4 Copper Tool Used For Experiments

Table-4 Mechanical properties of tool electrode

Copper (99% pure)				
Thermal Conductivity (w/mk)	391			
Density (gm/cc)	1083			
Electrical Resistivity (ohm-cm)	1.69			
Specific heat capacity (j/gm-°c)	0.385			

4. RESULTS & DISCUSSION

The effects of the machining parameters in electrical discharge machining on the machining characteristics of D2 Die Steel work piece has been investigated in this study. Tool Wear Rate (TWR) are considered as responses while machining variables are pulse on time, pulse off time, current and voltage. Taguchi method is used to develop empirical models correlating process variables and their interactions with the said response functions. The significant parameters that critically influence the machining characteristics are examined and the variations of responses with the process parameters are studied.

4.1 Data Analysis for Tool Wear Rate (TWR)

In this section, the data of TWR obtained from experiments are analysed. As mentioned earlier, experiments are carried out varying the process parameters (pulse on time, pulse off time, current and voltage) in EDM of D2 Die Steel. The experiments are conducted by Minitab15 software based on L9 Orthogonal array (OA) consisting 9 number of experiments. The raw data for TWR is presented in Table-5.

Exp. No	Pulse ON Time (μs)	Pulse OFF Time (μs)	Peak Current (amp)	Gap Voltage (volt)	Tool Weight (gm)				
					W _b	Wa			
1	20	7	6	40	29.8217	29.8216			
2	20	8	8	50	29.8269	29.8238			
3	20	9	10	60	29.8201	29.8166			
4	30	7	8	60	29.8210	29.8201			
5	30	8	10	40	29.8166	29.8129			
6	30	9	6	50	29.8216	29.8210			
7	40	7	10	50	29.8129	29.8121			
8	40	8	6	60	29.8238	29.8217			
9	40	9	8	40	29.83246	29.82690			

Table-5 Experimental results for TWR

After taking the raw data from table-5, we conclude the tool wear rate by applying the formula which is discussed in materials and methods. The S/N ratio and mean ratio are to be given by the Minitab15 software.

Table-6 Average Table for TWR								
Exp.	Ton	Toff	Ip	Vg	TWR	S/N	Mean ratio	
No	μs	μs	amp	volt	mm ³ /min	Ratio		
1	20	7	6	40	0.001124	58.9847	0.001124	
2	20	8	8	50	0.034831	29.1607	0.034831	
3	20	9	10	60	0.039326	28.1064	0.039326	
4	30	7	8	60	0.010112	39.9033	0.010112	
5	30	8	10	40	0.041573	27.6238	0.041573	
6	30	9	6	50	0.006742	43.4242	0.006742	
7	40	7	10	50	0.008989	40.9258	0.008989	
8	40	8	6	60	0.023596	32.5432	0.023596	
9	40	9	8	40	24.0863	24.0863	24.0863	

Taguchi method (smaller is better criteria) is applied to analyse the effect of individual parameters. On the basis of response table it is finding that the pulse off time is more contribution to metal removal rate. The main effect plot for S/N ratio and main effect plot for means shows that the indivisiual effects of the different parameters which is used in these experiments.

1 401	Table-7 Response for SAV Ratio Smaller is better (1 WR)								
Level	Pulse-on	lse-on Pulse-off		Voltage					
	time	time	(C)	(D)					
	(A)	(B)							
1	38.75	46.60	44.98	36.90					
2	36.98	29.78	31.05	37.84					
3	32.52	31.87	32.22	33.52					
Delta	6.23	16.83	13.93	4.32					
Rank	3	1	2	4					

Table-7 Response for S/N Ratio Smaller is better (TWR)

Table-8 Response for Means (TWR)

Level	Pulse on time (A)	Pulse off time (B)	Current	Voltage
			(C)	(D)
1	0.025094	0.006742	0.010487	0.035056
2	0.019476	0.033333	0.035805	0.016854
3	0.031686	0.036180	0.029963	0.024345
Delta	0.012210	0.029438	0.025318	0.018202
Rank	4	1	2	3

From the main effect plot for S/N ratios shows in fig.5 that the tool wear rate is linearly vary with the process parameters. MRR with respect to Toff, it is decreases rapidly initially and after that it is increase. TWR also decreases with respect to the current. Whereas Ton factor is less contribution to metal removal rate shows in fig.41.Gap voltage is also less contribution to tool wear, at initial level of the voltage the TWR increase slightly and after that it is falls down.

Fig.5 Main Effect Plot for S/N Ratio of TWR

Fig.6 Main Effect Plot for Means Ratio of TWR

4.2.1 Selection of Optimal Settings for TWR

Tool Wear Rate (TWR) is Smaller-the-better type quality characteristic. Therefore lower values of TWR are considered to be optimal. It is clear from Fig.5 and Fig.6 that tool wear rate is lowest at third level of pulse on time, second level of pulse off time, second level of current and third level of voltage. Process parameters and their selected optimal levels are given below:

Pulse on time (Ton)	A (3)	40µs
Pulse off time (Toff)	B (2)	8 µs
Current (Ip)	C (2)	8 amp
Voltage (Vg)	D (3)	60 Volt

4.2.2 Analysis of Variance (ANOVA) For Tool Wear Rate (TWR)

The S/N ratios for TWR are calculated as given in Equation.1. Taguchi method is used to analysis the result of response of machining parameter for smaller is better (SB) criteria.

SB:
$$\eta = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} y_i^2\right]....(1)$$

The analysis of variances for the factors are Ton, Toff, Ip and vg as shown in Table-7

\mathbf{I} abit- \mathbf{J} ATTO \mathbf{I} A 101 \mathbf{S}/\mathbf{I} (\mathbf{I} with)								
Source	DOF	Seq SS	Adj SS	Adj MS	F	P(%)		
Pulse on(Ton)	2	61.901	61.901	30.950	2.729	6.6		
Pulse off(Toff)	2	504.639	504.639	252.319	22.246	54.3		
Current	2	358.476	358.476	179.238	15.803	38.6		
(I _p)								
Voltage	2	30.966	30.966	15.483	1.365	3.3		
(V _g)								
Residual error	0	22.684						
Total	8	929.297						

Table 0 ANOVA for S/N Datia (TWD)

Table-10 ANOVA for Means (TWR)

Sauraa	DOF	Sec SS	A J: 66	AJ: MG	F	$\mathbf{D}(0/)$
Source	DOF	Seq SS	AUJSS	AUMO	Г	P(70)
Pulse on(Ton)	2	0.000224	0.000224	0.000112	9.334	6.6
Pulse off(Toff)	2	0.001582	0.001582	0.000791	6.592	47.04
Current	2	0.001054	0.001054	0.000527	43.916	31.34
(I _p)						
Voltage	2	0.000502	0.000502	0.000251	20.917	14.92
(V _g)						
Residual error	0	0.000024				
Total	10	0.003363				

Seq, SS, sum of squares; DOF, Degree of freedom; Adj MS, Adjusted Mean square P, Percentage contribution; Significance at 95% confidence level

4.3 Optimal Design for TWR

In the experimental analysis, main effect plot of S/N ratio is used for estimating the S/N ratio of TWR also with optimal design condition. As shown in the graphs, there are highest values which affect the tool wear rate which are the pulse on (A1), pulse-off (B1), current (C1) and voltage (D2) respectively. After evaluating the optimal parameter settings, the next step of the Taguchi approach is to predict and verify the enhancement of quality characteristics using the optimal parametric combination. Theestimated S/N ratio using the optimal level of the design parameters can be calculated.

 $n_{opt} = n_m + \sum_{i=1}^{a} (n_i - n_m)$ Where n_m = the total mean of S/N ratio

 $\overline{n_1}^{\dagger}$ = mean S/N ratio at optimum level

a = number of design parameters that effect quality characteristics

Based on the above equation the estimated multi response signal to noise ratio can be obtained.

 $n_{opt} = 36.08 + (32.52 - 36.08) + (29.78 - 36.08) + (31.05 - 36.08) + (33.52 - 36.08)$ = 18.63

Correspond ing value of TWR = $y_{opt}^2 = 10^{\frac{-n_{opt}}{10}}$

Correspond ing value of TWR = $y_{opt}^2 = 10 \frac{-18.63}{10}$

$$= 0.117 \text{ mm}^{3}/\text{min}$$

As per the optimal level again the experiment is performed as A3, B2, C2 and D3. And the optimal vale of TWR is $0.117 \text{ mm}^3/\text{min}$.

4.4 Effects of Process Parameters on Metal Removal Rate (MRR)

From above main effect plot of MRR we can conclude the optimum condition for MRR is A2, B1, C3, D1 i.e. Pulse-on (30µs) and Pulse-off (7 µs), Current (10 amp), Voltage (40V).

Pulse on time factor have more contribution for removing the material after that current have been giving there

contribution for that. The increasing order of influence parameters are showed in below. Ton ($30\mu s$)> Ip (10 amp)> Vg (40V) >Toff ($7 \mu s$)

4.5 Effects of Process Parameters on Tool Wear Rate (TWR)

It is clearly indicate that Vg not important for influencing TWR and the value of Toff and Ip is most affected the TWR and as well as into Toff significant is shown in bold and otherwise not significant. The delta values of Ton, Toff, Ip and Vg are 6.23, 16.83, 13.93 and 4.32 respectively, in Table-9. The case of TWR Smaller is better, so from this table it is clearly definite that Toff is the most important factor then Ip and last is voltage. From above main effect plot of TWR we can conclude the optimum condition for TWR is A3, B2, C2, D3 i.e. Pulse-on (40 μ s) and Pulse-off (8 μ s), Current (8 amp), Voltage (60V).The increasing order of influence parameters are showed in below.

```
Toff(8 \ \mu s) > Ip(8 \ amp) > Ton(40 \ \mu s) > Vg (60 \ volt)
```

5. CONCLUSION

In this study the experiment was conducted by considering four variable parameters namely current, pulse on time, pulse off time and voltage. The objective was to find the Tool Wear Rate (TWR) to study the effects of the variable parameters on these characteristics. The tool material was taken as copper and the workpiece was chosen as AISI D2 Die Steel. Using the Taguchi method an L₉orthogonal array was created and the experiments were performed accordingly. In the case of Tool wear rate the most important factor is pulse off time then current and after that voltage. The result obtained for TWR is A3, B2, C2, D3 i.e. Pulse-on (40μ s) and Pulse-off (8 μ s), Current (8 amp), Voltage (60V).As per the optimal level of parameters the optimum value of TWR is 0.117 mm³/min.

6. FUTURE SCOPE OF WORK

The present study is extremely useful for minimizing TWR. Future study on this method may evaluate the following aspects.

- Instead of copper electrode other electrode material like, brass or graphite, Copper tungsten, tungsten carbide may be used, in EDM process.
- Different grades of tool steels may be used for the optimization of machining parameters for the interest of industries.
- In this study, only four machining parameters (pulse-on time, pulse-off time, Current, Voltage, are chosen. A detailed study may be done, considering other parameters also.
- There are several optimization tools, viz. RSM, ANN, ANFIS, GA and WPCA may be employed for the optimization procedure.
- This optimization procedure of machining parameters may be used for other nonconventional machining process like WEDM, ECM, AJM, USM, PAM &other hybrid EDM etc.

Aknowledgement

The author would like to acknowledge the support of Industrial & Production Engineering Department, College of Technology, G.B Pant University Agriculture & Technology, Pantnagar, Uttarakhand, India and all those who contributed direct or indirectly are thanked.

References

- Kumar, A; Jadoun, R.S; Choudhary, S.K (2015) "Investigations on Material Removal Rate of AISI D2 Die Steel in EDM using Taguchi Methods", Industrial Engineering Letters, Vol.5, No.5, pp.114-122.
- Choudhary S.K. & Jadoun, R.S. (2014) "Current Advanced Research Development of Electric Discharge Machining (EDM): A Review," International Journal of Research in Advent Technology, Vol.2, No.3, pp.273-297.
- Choudhary, S.K., Jadoun, R.S, Kumar, A., Ajay. (2014) "Latest Research Trend of optimization Techniques in Electric Discharge Machining (EDM): Review Article", International Journal of Research in Engineering & Advanced Technology, Vol.2, Issue 3, pp.1-29.
- 4. Choudhary, S.K, Jadoun, R.S. (2014) "Current research issue & applications of powder mixed dielectric electric discharge machining: A review" International journal of Engineering science & research Technology, Vol.3, No.7, pp.335-358.
- Choudhary, S.K; Jadoun, R.S. (2014) "Current research development in Dry Electric discharge machining: A Review paper." International Journal of Emerging Technology and Advanced Engineering, Vol.4, No. 8, pp.832-839.
- 6. Vishwakarma M., Khare K. & Parashar V., (2012) "Response surface approach for optimization of Sinker Electric Discharge Machine process parameters on AISI 4140 alloy steel", International Journal of

Engineering Research and Applications (IJERA), vol.2, No. pp.185-189.

- Gurule N. B.& Nandurkar K. N. (2012) "Effect of Tool Rotation on Material Removal Rate during Powder Mixed Electric Discharge Machining of Die Steel", International Journal of Emerging Technology and Advanced Engineering, Vol.2, pp..328-332..
- Belgassim O. & Abusada A. (2012) "Optimization of the EDM Parameters on theSurface Roughness of AISI D3 Tool Steel", Proceedings of the International Conference on Industrial Engineering and OperationsManagement Istanbul, Turkey, July 3 – 6, pp.2306-2313.
- A.K.M. Asif Iqbal and Ahsan Ali Khan (2010) "Influence of Process Parameters on Electrical Discharge Machined Job Surface Integrity" American J. of Engineering and Applied Sciences, Vol. 3, No.2, pp. 396-402.
- 10. B. Sidda Reddy et al (2010) "parametric study of electric discharge machining of ASI 304 Stainless steel", Internationl journal of Engineering science and Technology, vol.2, No.8, pp.3535-3550.
- 11. Seung-Han Yang., et al (2009) "Optimization of electric discharge machining using simulated annealing", Journal of Materials Processing Technology, Vol.209, No.9, pp.4471–4475.
- 12. Pecas, P, Henriques E. (2008) "Electrical discharge machining using simple and powder-mixed dielectric: The effect of the electrode area in the surface roughness and topography", Journal of materials processing technology, Vol 200, No.1-3, pp.250–258.
- Prabhu, S.; & B.K. Vinayagam, B.K (2008) "Analysis of Surface Characteristics of AISI D2 Tool Steel Material Using Carbon Nano Tube", IACSIT International Journal of Engineering and Technology Vol. 2, No.1,pp.35-41.
- Ko-Ta Chiang, Chang F.P.; Tsai D.C. (2007) "Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology", Journal of Materials Processing Technology, Vol.182, No.1-3. Pp.525–533.
- 15. Kansal H.K., Singh H., Kumar P. (2007) "Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel", Journal of Manufacturing Processes, Vo.1 9 No.1, pp.13-22.
- 16. Zhang, Q.H., Du, R., Zhang, J.H., Zhang, Q. (2006) "An investigation of ultrasonic-assisted electrical discharge machining in gas", Int. J.Mach. Tools Manuf., Vol. 46, pp. 1582–1588.
- 17. Guu, Y.H, (2005) "AFM surface imaging of AISI D2 tool steel machined by the EDM process", Applied Surface Science, Vol.242, No.3-4. pp. 245–250.
- 18. Kansal, H.K, et al., (2005) "Parametric optimization of powder mixed electrical discharge machining by response surface methodology", Journal of Materials Processing Technology, vol.169, pp427–436.
- Guu Y.H.; Hocheng,H.; Chou, C.Y.; Deng, C.S. (2003) "Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel", Materials Science and Engineering, Vol 358, No.1-2, pp37-43.
- Ghoreishi, M., Atkinson, J., (2002): A comparative experimental study of machining characteristics in vibratory, rotary and vibrorotary electro-discharge machining, Journal of Materials Processing Technology, 120, pp.374–384.
- Wong, Y.S., Lim, L.C., Lee, L.C., (1995) "Effect of flushing on electro-discharge machined surfaces", Journal of Materials Processing Technology Vol. 48, pp.299–305.

www.iiste.org

Authers Biography

Er. Arjun Kumar is currently working as teaching personnel of Industrial & Production Engineering Department, College of Technology, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India. He received his B.Tech degree in Mechanical Engineering from Uttaranchal Institute of Technology, Dehradun (affiliated to U.T.U) in 2011 & M. Tech degree in Manufacturing Engineering and Management from G.B. Pant University of Agriculture & Technology, Pantnagar in 2014.

Dr. R.S Jadoun is Professor and Head of Industrial & Production Engineering Department, College of Technology, G.B. Pant University of Agriculture & Technology, Pantnagar, since 2010. He has served the Government of Bihar / Jharkhand as Dy. Collector. He has about 29 years of teaching, research and administrative experience. He has published more than 30 research papers in journals of national and international repute. His teaching & research area include manufacturing process, unconventional machining process, welding, Industrial Engineering etc.

Er. Sushil Kumar Choudhary is Pursuing Ph.D in the Department of Industrial & Production Engineering, College of Technology, G.B Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India; He received his B.Tech degree in Mechanical Engineering from UPTU, Lucknow, India, & M.Tech degree in Industrial & Production Engineering from Integral University, Lucknow, India. His teaching & research area include manufacturing process, unconventional machining process, welding, Industrial Engineering, etc. His publications include international journal, conference more than 20 technical research papers and one international book.

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: <u>http://www.iiste.org/journals/</u> All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

