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Abstract 

Free surface flow of a conducting Jeffrey fluid in a channel is investigated. The channel is bounded below by a 

finite deformable porous layer. The governing equations are solved in the free flow region and deformable porous 

layer. The expressions for the velocity field and solid displacement are obtained. The effects of the Jeffrey 

parameter, viscosity parameter, the volume fraction component of the fluid on the velocity displacement and mass 

flux are discussed. It is found that the velocity increases with the increase in the non-Newtonian Jeffrey parameter. 
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1. INTRODUCTION 

The study of flow through and past porous media has attracted the attention of many research workers because of 

its potential applications in industrial, physical biological and hydrological problems. The pumping of petroleum 

from oil wells can be improved with the knowledge of physics of flow through porous media. Also when we deal 

with blood flow in an artery, it will be appropriate to model the tissue region as finite porous layer. Hence 

mathematical modelling of porous flows plays vital role in understanding practical situations. 

 Rajesekhara [1] has investigated plane Couettee flow in the presence of a pressure gradient and found 

slight deviation between his theoretical and experimental results. Channabasappa et al. [2] investigated analytically 

the effect of the thickness of the porous material on the parallel plate channel flow when the walls are provided 

with non-erodible porous lining. Chikh et al. [3] performed an analytical study on fully developed forced 

convection in an annular duct partially filled with a porous medium. Some important studies on the forced 

convection heat transfer in a parallel plate channel partially filled with porous media are made by Kuznetsov 

[4,5,6,7]. Morosuk [8] investigated entropy generation due to flow in a pipe and parallel plate channel partially 

filled with porous medium. All these works are done assuming the porous media to be non-deformable. 

Nomenclature 

aµ   Apparent viscosity of the fluid in the     

        porous material. 

K   Drag coefficient. 

µ   Lame constant. 

fµ  Coefficient of viscosity. 

q    Fluid velocity in the free flow region  

u   Displacement in x -direction. 

0G  Typical pressure gradient. 

βφ   Volume fraction of component β and        

      ,s fβ = for the binary mixture of solid and     

       fluid phases with 1s fϕ ϕ+ = . 

0T  Temperature of the ambient fluid 

m   Temperature parameter ( ) ( )2 1 1 0
T T T T− −

 
 

dM Mass flow rate in the deformable porous 

        layer. 

rM  Mass flow rate in the non deformable 

        porous layer. 

M
  

Mass flow rate in the channel 

v     Velocity of the fluid in the deformable  

        porous layer. 

δ    Viscous drag. 

η    Viscosity parameter in porous layer. 

1λ   Jeffrey parameter.  

ε    Porous layer thickness. 

TK  
Thermal conductivity 

T    Temperature 

 The study of flow through deformable porous materials was initiated by Terzaghi [9] and later continued 

by Biot [9,10] into a successful theory of soil consolidation and acoustic propagation. Atkin and Craine [11], 

Bowen [12] and Bedford and Drumheller [13] made important contributions to the theory of mixtures. Similar 

theory was proposed by Mow et al. [14] for the study of biological tissue mechanics. Water transport in the artery 

wall is studied by Jayaraman[15] using theory of deformable porous media. Sreenadh et al. [16] analyzed the 

Couette flow of a viscous fluid in a parallel plate channel in which a finite deformable porous layer is attached to 

the lower plate. Sreenadh et al. [17] discussed the free convection flow of a Jeffrey fluid through a vertical 

deformable porous stratum.  
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Jeffrey  model  is  one  of  the  best non-Newtonian  fluid  models  used  by  researchers  to  explain  the  

biological  fluid  flow  in  living organisms. Nadeem et al. [18] examined the effects of thermal radiation on the 

boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Vajravelu et al. [19] studied the 

influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum.  Hayat et al.[20]  

investigated  the  boundary  layer  flow  of  a  Jeffrey  fluid  with  convective boundary conditions. Bhaskara Reddy 

et al. [21] studied the flow of a Jeffrey fluid between torsionally oscillating disks.  

Motivated by these studies, the effect of heat transfer on free surface flow of a Jeffrey fluid over a 

deformable permeable bed is investigated. The fluid velocities, the temperature, the displacement of the solid 

matrix and the mass flux are obtained. The effects of various physical parameters on the flow quantities are 

discussed through graphs. 

 

2.  MATHEMATICAL FORMULATION 

Consider  a  steady,  fully  developed  free surface flow  of a Jeffrey fluid in  a  channel  bounded below by a 

deformable porous layer of finite thickness L  (Fig.1.) the nominal surface of the porous layer is taken as 0y =

and the free surface is represented by y h= .The temperature at 0y = and y h= are 2T and 1 2( )T T<

respectively. The fluid velocity in the free surface flow region and the porous flow region are assumed to be 

( ), 0,0q and ( ),0,0v respectively. The displacement  due  to  the deformation  of  the  solid  matrix  is  taken  

as ( ),0,0u .  A pressure gradient 0

p
G

x

∂
=

∂
is applied, producing an axially directed flow in the channel.

 

 In  view  of  the  assumptions  mentioned  above,  the  equations  of  motion in  the  deformable porous 

region and energy equation  in the free flow region are [22,23] 
2

02
0,su

G K v
y

µ φ
∂

− + =
∂

                                                                                                (1) 

2

02

1

2
0

1

fa v
G K v

y

µ
φ

λ

∂
− − =

+ ∂
                                                                                          (2) 

2

02

1
1

f q
G

y

µ

λ

∂
=

+ ∂
                                                                                                             (3) 

22

2

1

0
1

T

T q
K

y y

µ

λ

 ∂ ∂
+ = 

∂ + ∂ 
       (4) 

The boundary conditions are  

at : 0, 0y L v u= − = =
                                                                                               

(5a)
 

at 0 : fy q vφ= =
 

              2
f

f a

dq dv

dy dy
φ µ µ=

                          

 

            f s

dq du

dy dy

µ
µ

φ
=

 

          2T T=
                                                                                                    

(5b)
 

at : 0
dq

y h
dy

= =
        

     1T T=
                                                                                                         

(5c)
 

 

3. NON-DIMENSIONALIZATION OF THE FLOW QUANTITIES 

It is convenient to introduce the following non-dimensional quantities. 

     

2 2 2

0 0 0 1

2 1

ˆ
垐 垐, , , , ,

f f

h G h G h G T TL
y hy u u v v q q

h T T
ε θ

µ µ µ

−
= = − = − = − = =

−
 

In view of the above dimensionless quantities, the equations (1) – (5) takes the following form after neglecting the 
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hats  ( )∧  are neglected. 

 2

2

sd u
v

dy
φ δ= − −                                                                                                            (6) 

2

1 12
(1 ) (1 )fd v

v
dy

δη λ φ λ η− + = − +                                                                                  (7) 

2

12
(1 )

d q

dy
λ= − +                                                                                                             (8) 

22

2

1

Pr
0

1

d Ec dq

dy dy

θ

λ

 
+ = 

+  
                                                                                                (9) 

where 
( )

2
2

0

2

0

0 1 0

ˆ, , , , ,Pr
2

ff p

f a p T

h G

cKh G dp
G G Ec

G dx c T T K

µµ µ
δ η

µ µ

 
  
 = = = = = =

−
 

we note that  δ  is a measure of the viscous drag of the outside fluid relative to drag in the porous medium 

and η is the ratio of the bulk fluid viscosity to the apparent fluid viscosity in the porous layer. 

The boundary conditions are 

at : 0, 0y v uε= − = =                                                                                               (10a)
 

at 0: fy q vφ= =                                                                

                             
1
f

dq dv

dy dyηφ
=                                                                                                     

                            
1
s

dq du

dy dyφ
=  .        

                             1 mθ = +                                                                                                  (10b) 

           at  1: 0
dq

y
dy

= =                                                                                                       

                           1θ =                                                                                                          (10c)      

 

4. SOLUTION OF THE PROBLEM 

Equations  (6)  -  (9)  are  coupled  differential  equations  that  can  be  solved  by  using  the boundary conditions 

(10).  The solid displacement in the deformable porous region and fluid velocities, temperature in the free surface 

flow region are obtained as: 

( )
2

1 2
5 62 2

( ) 0
2

a y a y
c e c e y

u y c y c y
a a

δ δ −

= − − − + + −∈≤ ≤
                                                  

(11)

 

( )1 2( ) 0
f

a y a yv y c e c e y
ϕ

δ
−= + + − ∈≤ ≤

                                                                   

(12)                                                                                                              

( )
( )

2

1

3 4

1
( ) 0 1

2

y
q y c c y y

λ+
= + − ≤ ≤

                                                                  

   (13) 

( ) ( )
2 4 4

7 8 1( ) Pr 1 0 1
2 12 2

y y y
y c c y Ec yθ λ

 
= + − + + − ≤ ≤ 

 
                                             (14) 

where 1(1 )a δη λ= +  . The constants 1c , 2c , 3c , 4c , 5c  , 6c  , 7c  and 8c  are  
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ε

ε

φ
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2

3 1 2

f

fc c c
φ

φ
δ

= + + , 

4 11c λ= + , ( ) ( )2 2

5 41 f
c c

c c
a

δ
φ

−
= − − ,

 

2
1 2

6 52
,

2

a ac e c e
c c

a

ε εδ ε
ε

− + = + +
7 1c m= +  and 

( )
2

1

8 7

Pr 1
1

12

Ec
c c

λ+
= − + . 

The  dimensionless  total mass  flow  rate M per  unit  width  of  the  channel in the deformable porous 

flow region and free  flow  region    is given by 

0 1

0

M vdy qdy
ε−

= +∫ ∫
( ) ( )1 21 1a ac e c e

a

ε ε−− − −
=

fφ ε

δ
+

( )14
3

1

2 6

c
c

λ+
+ − +               (15)

 

    

5. RESULTS AND DISCUSSIONS 

In this paper free surface flow of a Jeffrey fluid past a deformable finite porous permeable bed is investigated. The 

solutions for the fluid velocities ,q v  and temperature θ  in the free flow region and deformable porous region 

and solid displacement of solid matrixu  are evaluated numerically for different values of physical parameters 

such as the volume fraction of component
fφ , the viscous drag parameterδ , the viscosity parameterη  and the 

thickness of lower wallε , Jeffrey parameter 1λ , Eckert number Ec and Prandtl number  Pr . 

The variation of fluid velocities ,q v  solid displacement u  and temperature θ in the channel is 

calculated from equation (11) – (14) for different values of Jeffrey parameter 1λ
 
and is shown in figures 2, 3, 4 

and 5for fixed δ =2.0, η =0.5, 
fφ =0.5,ε =0.2, Pr 2Ec = and 2m = .We observe that the velocities ,q v  and 

solid displacement increases whereas the temperature θ  decreases with the increase Jeffrey parameter 1λ .
  

The variation of temperature θ  in the channel is calculated from equation (14) for different values of m

and is shown in figure 6 for fixed 1λ =1.0 and PrEc =2. We observe that the temperature θ  increases with the 

increasem .
  

The variation of temperature θ  in the channel is calculated from equation (14) for different values of 

PrEc and is shown in figure 7 for fixed 1λ =1.0 and m =2. We observe that the temperature θ  decreases with 

the increase PrEc .
 
 

The variation of fluid velocities in the channel q ,v  is calculated from equation             (12) – (13) for 

different values of viscosity parameterη and is shown in figures 8 and 9 for fixedδ =2.0, 
fφ =0.5, 1 0.5λ = and 

ε =0.2. We observe that the velocities ,q v  increases with the increase in viscosity parameterη .
  

The variation of fluid velocities in the channel q ,v  and solid displacementu  in the channel is calculated 

from equation (11) – (14) for different values of volume fraction of component 
fφ  and is shown in figures 10, 11 

and 12 for fixed δ =2.0, η =0.5, 1 0.5λ =  and        ε =0.2. We observe that the velocities q ,v  increase with the 

increasing 
fφ  whereas the solid displacement u decreases with the increase in

fφ .
 
 

 The variation of total mass flow rate for M in the free flow and deformable region is calculated from 

equation (15) for different values of Jeffrey Parameter 1λ
 
are shown in figure13 for fixed δ =2.0,η =0.5 andε

=0.2. We observe that the mass flow rate increases with increase in the Jeffrey parameter. 

 

6. CONCLUSIONS 

The present study deals with free surface flow of a Jeffrey fluid over a deformable porous layer. The results are 

analyzed for different values of the pertinent parameters, namely, Jeffrey parameter, viscosity parameter, volume 
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fraction component, Prandtl number, Eckert number, temperature parameter and the mass flux. The findings of the 

problem find applications in understanding the blood (modelled as Jeffrey fluid) flow behavior near the tissue 

layer (modelled as a deformable porous layer). Some of the interesting findings are as follows: 

1. The velocity of the fluid in the free flow region and the deformable porous layer and solid displacement 

increases with increase Jeffrey parameter whereas the temperature decreases with increasing Jeffrey 

parameter. 

2. The temperature in the free flow region increases with the increase in m whereas it will be decreases with 

increasing PrEc . 

3. An increase in the volume fraction component 
fφ is to enhance in free flow fluid velocity between the 

parallel plates. But opposite behavior is observed in the case of deformable fluid flow velocity and solid 

displacement. 

4. The total mass flux in the free flow and porous flow region increases with an increase in the Jeffrey 

parameter.   
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Fig.1. Physical Model 

 

Fig 2. Velocity profiles in free flow surface for different values of 1λ  

for fixed values of 
fφ =0.5, η =0.5, δ =2 andε =0.2. 
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Fig 3.Velocity profiles in deformable porous region for different values of 1λ  

for fixed values of 
fφ =0.5, η =0.5, δ =2 andε =0.2. 

 
 

Fig 4. Displacement profiles in deformable porous region for different values of 1λ  

for fixed values of 
fφ =0.5, η =0.5, δ =2 and ε =0.2.
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Fig 5. Temperature profiles for different values of 1λ  

for fixed values of PrEc =2 and m =2. 

 
Fig 6. Temperature profiles for different values of m  

for fixed values of 1λ =0.1 and PrEc =2. 
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Fig 7. Temperature profiles for different values of PrEc  

for fixed values of 1λ =0.1and m =2. 

 

 

 
Fig 8.Velocity profiles in free flow surface for different values of η  

for fixed values of 
fφ =0.5, 1λ =0.1, δ =2 and ε =0.2. 
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Fig 9.Velocity profiles in deformable porous region for different values of η  

for fixed values of 
fφ =0.5, 1λ =0.1, δ =2 and ε =0.2. 

 

Fig 10.Velocity profiles in free flow region for different values of
fφ  

for fixed values of η =0.5, 1λ =0.1, δ =2 and ε =0.2. 
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Fig 11. Velocity profiles in deformable porous region for different values of 
fφ

 

for fixed values of η =0.5, 1λ =0.1, δ =2 and ε =0.2. 

 

Fig 12. Displacement profiles in deformable porous region for different values of 
fφ  

for fixed values of η =0.5, 1λ =0.1, δ =2 and ε =0.2. 
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Fig 13.Total mass flux for different values of 1λ  

for fixed values of η =0.5, δ =2 and ε =0.2. 
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