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Abstract 

An investigation is performed to analyze thehomogeneous–heterogeneous reactions of water based Cu, Al2O3 

and SWCNTs on MHD stagnation-point over a permeable stretching/shrinking sheet with generalized slip 

condition. In this study we employed the refined model of a homogeneous–heterogeneous reaction in boundary 

layer nanofluid flow with equal diffusivities for reactant and autocatalysis. The governing PDEs in terms of 

continuity, momentum and concentration are transformed into ODEs and then solved numerically using fourth or 

fifth order Runge-Kutta Fehlberg method with shooting technique. The results show that for the shrinking sheet, 

the concentration of SWCNTs-water of heterogeneous reaction is stronger as compare with homogeneous 

reaction. Comparison of the present results with previously published work is given and found in good 

agreement. 

Keywords: Stagnation point flow, Nanofluids, Homogeneous-heterogeneous reaction, Shrinking sheet, 

SWCNTs-water, Slip condition. 

1. Introduction 

The study of the stagnation-point flow of a viscous fluid over a stretching/shrinking sheet has gained attention of 

many researchers due to its wide range of applications in many industrial manufacturing processes. These 

processes include glass blowing, aerodynamic extrusion of plastic sheet, continuous casting and spinning of 

fibers, the cooling and drying of papers and textiles, etc. Hiemenz [1], Paullet and Weidman [2],Sharma and 

Singh [3], Ishak et al. [4], Hayat et al. [5], Ali et al. [6], Subhashini et al. [7], Bhattacharyya et al. [8] and  Al-

Sudais [9].  Additionally, it is noted that flow due to a shrinking sheet was studied by Miklavčič and Wang [10], 

Wang [11],  Bhattacharyya and Layek [12], Bhattacharyya and Vajravelu [13], Ashraf and Ahmad [14], Rohni et 

al. [15] and Saleh et al. [16]. It is worth mentioning here that there are two conditions for the flow of a shrinking 

sheet to exist, namely, whether a sufficient suction is added on the boundary (Miklavčič and Wang [10]) or a 

stagnation flow is considered (Wang [11]) to maintain the velocity of shrinking sheet in the boundary 

layer.In fluid dynamics, the no-slip condition for viscous fluids states that at a solid boundary, the fluid will have 

zero velocity relative to the boundary,but in slip flow, the flow velocity is non-zero at the solid wall, Navier [17], 

Maxwell [18], Wang [19], Thompson and Troian [20], Mathews and Hill [21], Wang [22]and Sajid et al. [23].  

Chemical reactions can be classified as either homogeneous or heterogeneous process depending on whether 

they occur in bulk of the fluid (homogeneous) or occur on some catalytic surfaces (heterogeneous). 

Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity in 

a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. 

color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, 

architectural design, etc.); one that is heterogeneous is distinctly non-uniform in one of these qualities, [24-

26].The correlation between homogeneous and heterogeneous reactions associated with formation and 

consumption of reactant species at different rates both within the fluid and on the catalytic surfaces is usually 

very complex, Chaudhary and Merkin [27–29],  Merkin [30], Khan and Pop [31], Bachok et al. [32], Khan and 

Pop [33] and Kameswaran et al. [34]. Moreover, Kameswaran et al. [35] analyzed the impact of homogeneous–

heterogeneous reactions over a stretching sheet in a porous medium saturated with a nanofluid. Shaw et al. [36] 

investigated the role of homogeneous–heterogeneous reactions on a boundary layer flow of a micropolar fluid 

over a permeable stretching/shrinking sheet in a porous medium. 

Suspended nanoparticles in conventional fluids, called nanofluids, have been the subject of intensive study 

worldwide since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The 

enhanced thermal conductivity of these fluids with small-particle concentration was surprising and could not be 

explained by existing theories. Micrometer-sized particle-fluid suspensions exhibit no such dramatic 
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enhancement. Liu et al. [37], Ahuja [38] and Eastman et al., [39] investigated that the fluids with suspended 

large particles have little practical application in heat transfer enhancement.Some researchers tried to suspend 

nanoparticles into fluids to form high effective heat transfer fluids. Choi [40] is the first who used the term 

nanofluids to refer to the fluids with suspended nanoparticles. By suspending nanophase particles in heating or 

cooling fluids, the heat transfer performance of the fluid can be significantly improved. The vital reasons may be 

indexed as follows: (i) thesuspended nanoparticles enhance the surface area and the heat capacity of the fluid. (ii) 

the suspended nanoparticles raise the effective (or apparent) thermal conductivity of the fluid. (iii) the interaction 

and collision among particles, fluid and the flow passage surface are intensified. (iv)the dispersion of 

nanoparticles flattens the transverse temperature gradient of the fluid. 

The most important feature observed in nanofluids was an abnormal rise in thermal conductivity, far beyond 

expectations and much higher than any theory could predict. Nanofluids have been reported to be stable over 

months using a stabilizing agent [41, 42]. Bhattacharya et al. [43] also investigated that the Brownian dynamics 

simulation to determine the effective conductivity of nanofluids. The simulation results were within 3% of 

experimental data for Al2O3–ethylene glycol and in nearly full agreement with Cu–ethylene glycol. Recently, 

Xuan and Yao [44] developed a Lattice Boltzmann model to investigate nanoparticle distribution and flow 

pattern and found that the main flow and rising temperature of the fluid can improve nanoparticle distribution, 

which is beneficial to energy transport enhancement of the nanofluids. Nan et al. [45] have presented a simple 

formula for thermal conductivity enhancement in CNT composites that is derived from the Maxwell-Garnett 

model [46] by the effective medium approach. The model over predicts the enhancement in the thermal 

conductivity of CNT suspensions when calculated with typical values of CNT thermal conductivities. The same 

authors have also developed a new model [47] by incorporating interface thermal resistance with an effective 

medium approach. However, the model needs the thermal resistance value at the surface of CNTs, which is 

difficult to get for different types of CNTs and their combinations with different solvents. The researchers, led by 

Sivasankaran Harish et al. [48] found that their single-walled carbon nanotube (SWCNT) nanofluid exhibits an 

increase in conductivity of up to almost 15%; a value significantly higher than what has been achieved with 

nanoparticle-based nanofluids. 

The purpose of the current investigation is to study the effects of the water based Cu, Al2O3 and SWCNTs on 

MHD stagnation-point flow over a permeable stretching/shrinking sheet with homogeneous–heterogeneous 

reactions and generalized slip at the boundary. Numerical and analytical solution of transformed similarity 

equations are obtained for both stretching and shrinking sheet in terms of velocity and concentration profiles for 

several values of the governing parameters. The physical significance of the controlling nanofluid (water based 

Cu, Al2O3 and SWCNTs) parameters on the flow field and concentration profiles are analyzed graphically. 

2. Mathematical analysis 

 

We consider the steady two-dimensional MHD stagnation-point flow of an incompressible water based Cu, 

Al2O3 and SWCNTs over a horizontal linearly stretching/shrinking sheet in its own plane with a velocity 

proportional to the distance from the stagnation-point. The sheet is in the plane 0=y  and the stretched/shrunk 
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sheet is in the x - direction with the velocity varying linearly along it ie. mxxuw =)( , where 0>m  is for the 

stretching sheet, 0=m is for the static sheet and 0<m  is for the shrinking sheet, respectively. The free stream 

velocity is assumed as cxxue =)( ,where 0>c  is the strength of the stagnation-point flow. A uniform external 

magnetic field of strength 0B  is applied normal to the stretching/shrinking surface. Under the assumption of 

small magnetic Reynolds number, the induced magnetic field is negligible and external electric field is zero. We 

also assume a simple model for the interaction between a homogeneous (or bulk) and heterogeneous (on sheet) 

reactions involving the two chemical species A  and B  in a boundary layer flow as stated by Chaudhary and 

Merkin [29] and Merkin [30]:  

,32 BBA →+ 2
abKrate h= ,        (1) 

aKrateBA s=→ ,         (2) 

a and b  are the concentrations of the chemical species A and B , respectively whereas hK and sK are the rate of 

homogeneous and heterogeneous reactant. It is expected that both reaction processes are isothermal and far away 

from the sheet at the ambient fluid, there is a uniform concentration 0a  of reactant A  and there is no auto 

catalyst in reactant B . Under the boundary layer approximations and all the above mentioned assumptions, the 

governing equations can be written as:  
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u and v - the velocity components in x  and y  directions, fν - kinematic viscosity of the base fluid, nfσ - 

electrical conductivity of the nanofluid and, ( )
nfAD  and ( )

nfBD - diffusion coefficients of nanofluid. Following 

Thompson and Troian [20], we assume generalized slip boundary condition by the relation  

wwtu ττβα 5.0**
)1(

−−=         (7) 

tu - tangential velocity, *α -Navier's constant slip length, 
*β - reciprocal of some critical shear rate and wτ - 

shear rate at the wall. The boundary conditions for the problem under consideration are  
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m and c - constants having dimension ( ) 0,
1 >−

wvtime - constant mass transfer (suction) velocity and 0a - 

constant. nfρ - effective density of the nanofluid, nfµ - effective dynamic viscosity of the nanofluid and nfD - 

mass diffusivity of the nanofluid are defined by Magyari [55] and Mamut [56] as 
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ζ - Nanoparticle volume fraction, fµ  - dynamic viscosity of the base fluid, fσ  and sσ - electrical conductivity 

of the base fluid and nanoparticle, fρ  and sρ - density of the base fluid and nanoparticle, fD - mass diffusivity 

of the nanofluid, nfσ - electrical conductivity of the nanofluid.By using following similarity transformations, the 

governing equations take the non-dimensional form 
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As it was suggested by Aziz [47], for Equs. (10)–(12) to have a similarity solution, the quantities α and β must 

be constants and not functions of variable x as in Equ. (15). This condition can be met if β*(x  ) is proportional 

to 1−x . We therefore assume  

1****
)(,)(

−== xbxx βαα         (16) 

wherea* and b*are constants. With the introduction of (16) into (15), we have  

**, b
cc
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We mention that with α  and β  defined by Equ.(6), the solution of Equs. (10)–(12) yield the similarity 

solutions. However, with α  and β  defined by Equ.(15), the solutions generated are the local similarity 

solutions.Generally, in most applications diffusion coefficients of chemical species A and B  are to be of a 

comparable size, which undergo for further supposition that the diffusion coefficients ( )
fAD and ( )

fBD are 

equal ( 1=δ , see [30]). As a result of this assumption, we have a following relation  
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The physical quantity of interest here is the skin friction coefficient fC and wτ  is the shear stress at the surface 
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3.   Numerical solution 

Equs. (11) and(19) subjected to the boundary condition (14) are converted into the following simultaneous 

system of first order differential equations as follows: 
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The boundary conditions  
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where  τ  and γ are priori unknowns to be determined as a part of the solution. 

By using DSolve subroutine in MAPLE 18 we can get a solution for the system of Equs. (24)-(25) with 

conditions (26). This software uses a fourth-fifth order Runge–Kutta–Fehlberg method with shooting technique 

as default to solve the boundary value problems numerically using the Dsolve command. The values of  τ and 

γ   are determined upon solving the boundary conditions γτ == )0(,)0( pv  with trial and error basis The 

numerical results are represented in the form of the dimensionless velocity and concentration in the presence of 

water based SWCNT, Cu and Al2O3. 

4. Analytical solution using optimal homotopy asymptotic method (OHAM) 

 

Based on the optimal homotopy asymptotic method, the nonlinear ordinary differential equations (11) and (19) 

with boundary conditions (14) can be assumed as  
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where ]1,0[∈p  is an embedding parameter, pH is a nonzero auxiliary function, iC  are constants,Marinca and  

Herisanu[50]. 

 

4.1.Approximation of the momentum boundary layer problem 

 

Based on the optimal homotopy asymptotic method, Equ. (11) and the boundary conditions (14) can be written 
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L and N  be the linear operator and the nonlinear operator. After applied OHAM to the Equ. (8) with respect to 

Equ. (11), we have 

 

( )[ ] 















+′−+′−′′+′′′=′+′′− 1)1(

1

3.2
11 2 fM

A

AA
fffAfHffp p

   (28) 

The zeroth-order equation
0

p of the boundary condition  

 

( ) ( ) ( )  .10  ,0 ,0 ''
0

5.0''
0000

''
0 fffSfff

−′′ −+===+ βαλ      (29) 

The solution of the zeroth-order equation as 

 

( ) ( )
 

1

1
0

n

neenenee
f

+

+−−+−
−=

− ξξξξξ αα
ξ      (30) 

  The first-order equation
1

p : 

 

( ) ( ) 00   ,00 

,1)1(
1

3.2
1

11

'
0

2'
0

''
00

'''
010011

==

















+−+−+++=+

′

′′′′′′

ff

fM
A

AA
fffAfCffff    (31) 

  The second-order equation
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Solving the Equs. (31) and (32) with the boundary conditions with the help of Equ. (30), then the  

 

solution of Equ. (8) can be determined approximately in the form: 

( ) ( ) ( ) ( )  210 ξξξξ ffff ++=        (33) 
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Therefore the  residual equation become 
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The constants 1C  and 2C can be optimally identified from the conditions: 
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4.2.Approximation of the energy boundary layer problem 
 

Based on the OHAM, the Equ. (19) with the boundary conditions (14) can be applied as 
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Solving the Equs. (39) and (40) with the boundary conditions with the help of Equ. (38), the solution  

 

of Equ. (19) can be determined approximately as 
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The constants 3C  and 4C can be optimally derived from  
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5. Results and Discussion 

Calculations are performed by the OHAM method and the numerical method for different values of magnetic 

parameter, homogeneous and heterogeneous parameter, slip parameter,stretching/shrinking Schmidt number and 
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the nanoparticle volume fraction. Equations (11)and (19) subjected to the boundary conditions (14) have been 

solved numerically and analytically for some values of the governing parameters using computer algebra 

software Maple 18 (Numeric) and Mathematica 5.2 (Analytic). Throughout this calculation we have considered 

0.1=Sc  corresponds to nanofluids unless otherwise specified. In order to validate our method, we have 

compared the results of )0(f ′′  with those of wang [11], Bhatacharyya [53] and Abbas [54] and found them in 

excellent agreement, Table 2. 

 

 

It is predicted from the Fig. 2 that the agreement with the solution of velocity and concentration profile for 

various values of stretching/shrinking parameter is significantly correlates with Fig. 1 of  Mariam and Zaheer 

[51]. 
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Figs. 3 shows that the concentration profiles of the water based Cu, Al2O3 and SWCNTs in the presence of 

homogeneous and heterogeneous reaction. It is observed that the concentration of the nanofluids decreases with 
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increase of homogeneous and heterogeneous reaction while the diffusion boundary layer thickness for 

homogeneous reaction is stronger than heterogeneous reaction. It is interesting to note that the concentration of 

the water based Cu, Al2O3 and SWCNTs decreases and the rate of mass transfer of the nanofluids increases with 

increase of homogeneous reaction (exist the mechanism of diffusion properties) whereas the concentration and 

the rate of mass transfer of the nanofluids decreases with increase of heterogeneous reaction (abnormal to the 

mechanism of diffusion properties), Fig. 3 and Table 3. Both the homogeneous and heterogeneous reaction, it is 

also noticed that the rate of mass transfer of SWCNTs - water is stronger as compare with the water based Cu 

and Al2O3 because of the strength of density of the SWCNTs is lower than Cu and Al2O3, Table 1.  

Both 0.0=M and 0.5=M , it is predicted that the concentration of the nanofluids decreases and the rate of mass 

transfer of the nanofluids (water based Cu, Al2O3 and SWCNTs) increases with increase of homogeneous 

reaction,Fig. 4and Table 4 whereas the concentration and the rate of mass transfer of the nanofluids (water based 

Cu, Al2O3 and SWCNTs) decreases with increase of heterogeneous reaction, Fig. 5 and Tables 5. Both 

homogeneous and heterogeneous reaction, it is important to note that the concentration of the SWCNTs – water 

of 0.5=M  is stronger than 0.0=M whereas rate of mass transfer decreases with increase of magnetic strength. 

In the presence of 0.0=α and 2.0=α , it is noticed that the concentration of the nanofluids decreases and the 

rate of mass transfer of the nanofluids (water based Cu, Al2O3 and SWCNTs) increases with increase of 

homogeneous reaction,Fig. 6and Table 7 whereas the concentration and the rate of mass transfer of the 

nanofluids (water based Cu, Al2O3 and SWCNTs) decreases with increase of heterogeneous reaction, Fig. 7 and 

Tables 7. Both homogeneous and heterogeneous reaction, it is noted that the diffusion boundary layer thickness 

of the SWCNTs – water of 2.0=α  is higher than 0.0=α whereas rate of mass transfer decreases with increase 

of slip parameter. 

In the presence of 0.0=α and 2.0=α , it is interesting to predict that the concentration of water based Cu and 

SWCNTs is stronger than Al2O3– water for heterogeneous reaction whereas the concentration of water based 

Al2O3 and SWCNTs is stronger than Cu– water for homogeneous reaction.It is observed that the concentration of 

the nanofluids increases and the rate of mass transfer of the nanofluids (water based Cu, Al2O3 and SWCNTs) 

decreases with increase of nanoparticle volume fraction(exist the mechanism of diffusion properties) in the 

presence of homogeneous and heterogeneous reaction, Figs. 8and 9 and Tables 8 and 9. Both homogeneous and 

heterogeneous reaction, it is noted that the diffusion boundary layer thickness of the SWCNTs – water of 

2.0=α  is higher than 0.0=α with increase of the nanoparticle volume fraction.In the presence of 

heterogeneous and homogeneous reaction with slip factor, it is important to observe that the rate of mass transfer 

of water based SWCNTs – water is stronger than the water based Cu and Al2O3– water, Tables 8 and 9. 

The concentration of the nanofluids increases and the rate of mass transfer of the nanofluids (water based Cu, 

Al2O3 and SWCNTs) decreases with increase of suction in the presence of homogeneous and heterogeneous 

reaction, Figs. 10and 11 and Tables 10 and 11. Both homogeneous and heterogeneous reaction, it is found that 

the concentration of the SWCNTs – water of 2.0=α  is higher than 0.0=α with increase of suction.In the 

presence of heterogeneous and homogeneous reaction with slip factor, it is important to note that the rate of mass 

transfer of water based SWCNTs – water is stronger than the water based Cu and Al2O3– water, Tables 10 and 

11. It is also observed that the diffusion boundary layer thickness of homogeneous reaction is stronger as 

compare with heterogeneous reaction. 

6. Conclusion 

The outcome of generalized homogenous–heterogeneous reactions of the water based Cu, Al2O3 and SWCNTs 

on the boundary layer MHD stagnation point flow over a stretching/shrinking sheet with slip and uniform 

suction are investigated. The dimensionless governing ODEs of the problem are solved numerically and 

analytically usingfourth or fifth order Runge-Kutta Fehlberg method with shooting technique and OHAM. The 

importance of involving parameters on velocity and concentration profiles are graphically illustrated and 

analyzed in detail. The capital finding of this investigation can be summarized as: 

• The concentration of the nanofluids (water based Cu, Al2O3 and SWCNTs) decreases with increase of 

homogeneous and heterogeneous reaction while the diffusion boundary layer thickness for 

heterogeneous reaction is stronger than homogeneous reaction.  

• It is interesting to note that the concentration of the nanofluids decreases and the rate of mass transfer of 

the water based Cu, Al2O3 and SWCNTs increases with increase of homogeneous reaction (exist the 

mechanism of diffusion properties) whereas the concentration and the rate of mass transfer of the 
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nanofluids decreases with increase of heterogeneous reaction (abnormal to the mechanism of diffusion 

properties) in the presence of magnetic field and slip parameter. 

• The concentration and the rate of mass transfer of the SWCNTs - water is stronger as compare with the 

water based Cu and Al2O3with increase of homogeneous and heterogeneous reaction and suction of the 

surface in the presence of magnetic field and slip parameter whereas the rate of mass transfer of the 

nanofluids decreases with increase of magnetic strength and slip parameter.   

• It is important to predict that the concentration of the nanofluids increases and the rate of mass transfer 

of the water based Cu, Al2O3 and SWCNTs decreases with increase of nanoparticle volume fractionand 

suction parameter (exist the mechanism of diffusion properties) in the presence of homogeneous and 

heterogeneous reaction with slip parameter. The diffusion boundary layer thickness for 2.0=α is 

higher than 0.0=α with increase of nanoparticle volume fraction and suction of the surface in the 

presence of homogeneous and heterogeneous reaction with slip factor of the surface. 

• Homogeneous reaction on the water based Cu, Al2O3 and SWCNTs agree the physical significance of 

diffusion properties as comparedto the heterogeneous reaction. 

Reactions which are significantly affected by mass transfer of water based Cu, Al2O3 and SWCNTs are called 

mass-transfer limited or diffusion-limited reactions. It is also possible to distinguish the relative influence of 

internal and external mass transfer. Improvement of mass transfer of SWCNTs-water and the elimination of 

mass-transfer limitations are desired objectives in heterogeneous reactions as compared to the other mixture in 

the flow region. 

 

Nomenclature 

0B  Magnetic flux density, 12 −−
Askg

 

a  Concentration of the chemical species A, K  

b  Concentration of the chemical species B, K  

   ( )
fAD  Specific Diffusivity of the chemical species A, 12 −

sm  

( )
fBD  Specific Diffusivity of the chemical species B, 12 −

sm  

( )
nfAD  Specific Diffusivity of the chemical species A in base fluid, 12 −

sm  

( )
nfBD  Specific Diffusivity of the chemical species B in base fluid, 12 −

sm  

sh KK ,  First order rate of heterogeneous and homogeneous reaction, 1−
s  

M  Magnetic parameter, 
ef

f

u

xB

ρ

σ2
0

,












 Ω

−−

−−

31

2
0

11

mkgsm

mBm
(-) 

Re  Reynolds number, 
f

exu

ν
, 

12

1

−

−

sm

msm
(-) 

Sc  Schmidt number, 
( )

fA

f

D

ν
,

12

12

−

−

sm

sm
(-)  

yx,  Stream-wise coordinate and cross-stream coordinate, m  

vu ,  Velocity components in x and y direction, 1−
sm  

ew uu ,  Flow velocity of the fluid away from the plate, 1−
sm  
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Greek symbols 

fρ  Density of the base fluid, 3−
mkg  

sρ  Density of the nanoparticle, 3−
mkg  

nfρ  Effective density of the nanofluid, 3−
mkg  

σ  Electric conductivity, 11 −−Ω m  

fµ  Dynamic viscosity of the base fluid, 11 −−
smkg  

nfµ  Effective dynamic viscosity of the nanofluid, 11 −−
smkg  

K  Homogeneous reaction parameter, 
e

h

u

xaK
2
0

,
12

21

−

−

sm

ms
(-) 

cK  Heterogeneous reaction parameter,
( )

,
Re

5.0

fA

s

D

K
−

=
12

21

−

−

sm

ms
(-)  

fν  Dynamic viscosity of the nanofluid, 12 −
sm  

ζ  Nanoparticle volume fraction,(-)  

ψ  Dimensionless stream function, (-) 

η  Similarity variable, (-) 

f  Dimensionless stream function, (-) 
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