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Abstract
The present work focused on the dynamic and opditioia of a continuous biochemical reactor
using the glucose as a substrate. Simulated madeides the development of the process and
reducing the risk of experimental runs. The setbgi®cess variables are; dilution rate (D), feed
substrate concentration (Si), pH and temperatuyd i€ major effect of D was observed at Si
below 20 g/L. pH and T are affecting within Si @i §/L.Si is the effective process variable on
the dynamic characteristics of the reactor. Redsderagreement has found when compared the
simulated results with that obtained by the presiowork .Optimization technique guides the
decision maker to select the best operating camditStochastic genetic algorithm has found
suitable for the nonlinear reactor.Optimal resuitglicate that the maximum biomass
concentration (X) is 80.57 g/L at Si of 197.56 gfhd low D of 0.1(1/hr).Si was the sensitive
variable for changing of the objective X.

Keywords: Biochemical reactor; Dynamic model; Optimizati@imnulation.

1. Introduction

Lee [1] and Kapadieetal. [2] described the concept and applications of ii@chemical
reactors.The stirred-tank bioreactor is one of i@st commonly used types for large scale
production in industrial applications such as foptiarmaceuticals, various commodity and
specialty chemicals .It is used mainly in two modiége continuous mode and the fed-batch
mode.In the continuous mode, the limiting subssratee constantly added to the reactor, while
the output stream is simultaneously removed atd#me rate, to keep the reactor volume
constaniThe continuous stirred biochemical reactor is widesed in the treatment of liquid
wastes.Its process kinetic can be characterizatlfpllowing reaction scheme:

SubstrateBiomass +Gas
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Nomenclatures

D: Dilution rate, [1/hr]

F: Flow rate, [L/hr]

Km: Saturation constant, [g/L]

PH: Acidity [-]

rl: Rate of cell generation,[g/L.hr]

r2: Rate of substrate consumption,[g/L.hr]

S: Substrate concentration in the reactor,[g/L]
Si: Feed substrate concentration,[g/L]

T: Temperature, [C°].

t: Time, [hr]

V: Volume of the reactor,[L]

X: Biomass concentration in the reactor,[g/L]
Y: Yield, [-]

Greek Symbols

pmax: Maximum specific growth rate coefficient,[dl/h

K(s): Local specific growth rate coefficient, [I/hr

Henson [3] explained that as comparedadnventional chemical reactors, bioreactors
present unique modeling and control challengestdwemplexity of the underlying biochemical
reactions.

Karadag and Puhakka [4] and Garhyal.[5] studied the bioreactor performance using mixed
cultures influenced by several operational pararsetghich affect its static and dynamic
behavior such as: dilution rate, feed substrate@amation pH, hydraulic retention time, organic
loading rate and temperature. In particular, the od pH seems the most important parameter in
the regulation of enzymes pool production. Ruggéal. [6] indicated that the pH adjustments
validated the dynamics of the system.Charoendtai). [7] concluded that the temperature is a
variable that directly affects the growth rate cjamisms.

Annamalai and Doble [8] had found the mathematicadieling of fermentation process helps to;

elucidate the mechanism of production processmesti kinetic parameters such as specific
growth rate of biomass and product formation raeetbp the understanding between effects of
operational conditions on production, and reduberatory experiments thereby saving time and
resources.
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Alhumaizi and Ajbar [9] and Shimizu [10] proved th@logical processes are inherently very
nonlinear and had frequently been changing optimaparating conditions. Many available
mathematical models for biological reactions weot suitable for a control design since no
accurate biological law had been proposed.

Kapadiaetal [11] proposed a novel robust controller for a cambius stirred biochemical reactor
that controls the culture dilution rate into theag®r in order to maximize a cost function
representing the biomass vyield.

Genetic algorithm (GA) is global stodmasearch based on mechanics of natural selection
and natural genetics.GA is based on Darwin's thebtsurvival of the fittest’. There are several
genetic operators. Such as; selection, crossowernaustation...etc.Gupta and Srivastova [12]
concluded that the deterministic algorithms fordiion optimization are generally limited to
convex regular functions. However, many functions @ther not differentiable or needed a lot
of difficult mathematical treatment: decompositisensitivity computing...etc.

2. Scope of the Work

The present work focuses on the simulation andnmopdtion of the continuous biochemical
reactor using glucose as the substrate. Studyftbet ®f the process variables on the dynamic
behavior of the reactor .The selected processhiasaare; feed substrate concentration, dilution
rate, pH and temperature. The reliable simulatedehcan be used to generate the desirable data
for formulating the optimization equation. The altjee is to maximize the biomass
concentration in the reactor. Stochastic globe temdgorithm search is implementing to select
the best operating conditions of the reactor.

3. Dynamic model
Dynamic modeling for optimization and control re@si models that describe the essential
dynamic characteristics of the process under stddythe present work, the following
assumptions have been adopted for the model:
1. Homogenous liquid-phase system.
Non-isothermal conditions.
Acidity of liquid is changed.
First order irreversible reaction.
Constant hold-up.
Follow the Monod law.

o0k o

The component material balances for biomass(X)saibdtrate(S) are:
dx/dt = r1-(F/V) X 1)

dS/dt = (F/V) Si - (FIV) S- 12 )
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In addition, the reaction rate equations are:

ri=p(s) X1 3)
And,Y =r1/r2 4)
For Monod law;

H(s) = (umax *S)/ (Km+S) (5)
pmax = —40.5+ 11.78pH — 0.0691pH* + 1.65T + 0.003T° — 0.468pH.T (6)

Equations (1&2) can be simplified to:

dX/dt = (u(s) — D)X (7)
dS/dt = D (Si—S) — (X/Y)u(s) (8)
WhereD=F/V

Equation (6) was correlated depended on the expeatahdata of Lopez etal. [13].

The simulated model will implement for the wast&wa contains glucose with different
concentrations from 6.0 to 200.0 gm/L.Temperatdineater are varied from 20 to 30 C° and the
acidity are from pH2 to pH4.The kinetic parametefshe biological reaction are; maximum
specific growth rate coefficient (umax=0.3")ir saturation constant (Km=1.0 g/L) and vyield
(Y=0.4) depended on the results of Lopéal [13] ,Cutlip and Shacham][14].

4, Results and Discussion

4.1. Optimal operating Conditions

The initial optimal operating conditions of the ®m (Table 1) were estimated by the nonlinear
Levenberg-Marquardt method with the aid of the MAAB_computer program.

Table 1. Optimum initial operating conditions
X(gm/l)  Si(gm/l) D(hrY) Y(-) p(1/hr)

0.001 6.0 0.3 0.4 0.4

4.2. Unsteady State Conditions
The present bioreactor can be viewed as nonlingaardic system and the simulation is very
useful tool for model validation .The unsteady-testenodel (Equations 7 and 8) are solved
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numerically using 4th order Runge-Kutta method wit# aid of the MATLAB program, starting
from steady- state operating conditions (Tableiyufes (1-7) explain the behaviors of the
biochemical process under different operating ciors.

Dynamically, the system behaves as the first- olaisystem. The dynamic model appears that
the biomass concentration curves have S-shape amd stuggish when compared with the
substrate curves, which have an exponential shapaulse of the rate of consumed substrate is
more than the rate of biomass cell generation énréactor. The response speed of the biomass
and substrate curves increase with Si and decresglesD as shown in Figures (1-3).The
intersection point between two curves indicateghtlocal optimal point of the system, where

the concentration of the biomass equal to thabhefsubstrate. These points are various depended
on the operating conditions.
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Fig.1. Unsteady state concentration of biomasssabdtrate at Si=6 for :(a)D=0.3, (b) D=0.8.
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Fig. 2. Unsteady state concentration of biomasssabdtrate at Si=20 for ;(a) D=0.3, (b) D=0.8.

60

THH'HSH» T T T T T T
s —*— biomass mwﬁgﬁ% —*— biomass
35l v —+ — sustrate || + —+ — sustrate
+ 50 J& |
+ \
30t . T
¥ \
JK ~ 40+ ! g
i 1 E +
+ 2 \
c
20+ E\’ - -% 30+ 1 i
15 ] e o
8 20t 1
10+
10+ B
5,
0 0 NEENEEE
0 . 0 0.5 0.6 0.7 0.8 0.9 1
Time, (hr) Time, (hr)
(a) (b)

Fig. 3. Unsteady state concentration of biomasssabhdtrate at D=0.3fo(a) Si=40, (b) Si=60.

The concentration of the biomass in the reactoredses with increasing D (Figure 4a) for low
and high Si. In the contrast, the increasing ofinSieases the concentration of biomass in the
reactor as shown in Figure 4b.This is due to te that Si has a positive effect on the specific
growth rate constant (i) regarding to the Monod (&guation 5).While the increasing of D

tends to increase the dilution of the
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substrate which could moderate the growth rag@ tieduces the concentration of the biomass
in the biochemical reactor .The sensitivity of precess (steady- state gain) against Si (Figure 4b)
is more than that with D (Figure 4a).The effectSofis more pronounced at low D as shown in
Figure 4. Jarzebski [15] also concluded these hetav
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Fig.4. Biomass concentration as a function of (@)t@n rate, (b) Inlet substrate concentration.

The effect of temperature on the biomass growtk egipears in Figures (5 and 6) at the
temperature range from 15 to 3C.The simulated results explain that the increasifig
temperature enhances the growth rate of the bioraassw and high Si. This increases the
response speed of the biomass concentration. Téadyst state value of the biomass
concentration was unaffected with the rising ofpenature as shown in Figures (5and 6).
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Figures (7 and 8 ) explain the effect of the wateidity (pH) on biomass growth. The effect
studied for the available data ranged between poigH 4.The biomass growth is very slow at
low acidity (pH 2) and increased with increastagpH 4 as shown in Figures (7a and b).The

8
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concentration of the biomass in the reactor is venyw with the lower feed substrate
concentration(Si=6) and pH 2 of water as shown he Figure 7a.At high substrate feed
concentration(Si=60) ,the growth of biomass celluldoenhanced at low acidity(pH=2) when
compared Figure 7a with Figure 8 a. Si regardmthe Monod law directly affects the growth
rate coefficient (1). The final steady- state conidion of biomass is unaffected by the
increasing of pH at high Si as shown in Figure 8.
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Reasonable result can observe when compared thdas&th results with these obtained by
Cutlip and Shacham [14 ] as shown in the FigurelTh® deviation is about 8%.This indicates
that the proposed simulated model is agreed foptheent biochemical reactor. Therefore, the
reliable model could use to generate the desimdddia for formulating the optimization equation.
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4.3.Optimization problem

The available simulated data have been used telaterthe objective (concentration of biomass)
with the decision variables to facilitate the opaation scheme. The selected effective decision
variables are; dilution rate (D) and inlet concatin of substrate (Si). Nonlinear regression
(Levenberg-Marquardt) method was implemented whle @&id of the computer program
(Statistica version10).

The optimization equation is:

X=0.409 Si -0.575D-0.028DSi +0.02 (9)
Subject to inequality constraints:
6. Si< 200 (10)
0.kD<0.8

Equation 9 indicates that the dilution rate (D) hagative effect on the biomass concentration
while the inlet concentration of substrate (Si) pasitive effect.

10
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4.4. Optimization Technique

The objective is to maximize the biomass eom@tion in the reactor. The optimization
equation (Equation 9) is interacted and nonlinsarthat the deterministic search is unsuccessful.
GA has been found suitable for the present biocta@nprocess. GA is stochastic global search
based on mechanics of natural selection. Figutli§triates the results/solution of the algorithm
scheme. The parameters of the GA were adaptedihendelected operators are suitable for
solving the problem to obtain the best optimal ealuHybrid function implemented as the
combined search between genetic algorithm andrpasiarch to refine the values of decision
variables. 51 generations occurred regarding tonthr@inearity of the process. The adapted
operators of GA are explained in the Table 2.

Table 2.Adapted parameters of GA.

Population type Double vector
Population size 80

Creation function Feasible population
Scaling function Rank
Selection function Roulette
Crossover function Scattered
Crossover fraction 0.8

Mutation function Adaptive feasible

Migration direction Forward
Migration fraction 0.1

Hybrid function Pattern search
Number of generation 51
Function tolerance 1.0E-6

Table 2 explains the best operators of ghretic algorithms. Figure 10 illustrates the
outputs of the algorithms solutions/operators afgge algorithm.GA is implemented with the

11
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pattern search by using the hybrid function as show Table 2 to refine the decision
variables .The best fitness, best function andesh@togram as shown in Figure 10 illustrate that
the maximum biomass concentration is 80.57 g/L.fAilseogram of decision variables indicates
that the optimal values are; Si=197.56 g/L (vaeah) and D=0.1Rt (variable 2), which are
within the limit of inequality constraints (Equatid0). The histogram of the variables in Figure
10 indicate that Si (variable 1) is the effectivariable on X.Due to the nonlinearity of the
bioreactor process, the optimization equation(equa®) was solved by (51) generations as
shown in Figure 10.

Best: -80.5763 Mean: -80.5757 g Current Best Individual
20 =200
‘_>° o Bestfitness -g
o S0 o Meanfiness 5100
T -100 ‘ =
0 50 100 = 1 2
Generation Sm Number of variables (2)
Best, Worst, and Mean Scores <_§ Score Histogram
0 2 20
-50u ;§10 I
10— S
20 40 60 80 100 £-80.578 -80.576 -80.574 -80.572
Generation =

Score (range)
Fig.10. Solution/results of GA search.

The optimal sets of the decision variables arestitated in Figures (11a, and 11b) corresponding
to the objective X.The scattering and stochastidlté results are appeared in these figures as a
results of natural selection by GA .It is foundtttiee optimal values

of the dilution rate (D) is approximately constavithin its lower bound as explained in Figure
1la.Inlet substrate concentration (Si) is more ifeasto the optimal objective change(X) as
shown in Figure 11b .This is because of that $aeseffective variable on X as shown in Figure
10.Si is changed within its upper bound (Figurellliyse behaviors are because of Si has
positive effect while D has negative effect on Xsaswn in the Equation 9. Optimal values of
the two decision variables are stayed within optireue of X, which equal to 80.57 g/L as
shown in Figure 11.

12
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Optimization technique is a powerful tool to obtaime desired operating conditionhat

improves the performance of the reactor. This reduces the risk of experimental runs and cos
consumed for design and operation. However, thahiéty of the search depends on; the best
selection of decision variables, formulation of thigective function and the selection of the
proper optimization technique.Palonetel. [16] was indicated to this conclusion.

5. Conclusions

1. Simulated model helps the study of dynamic charesties of the biochemical reactor.
Reliable model could use to generate extra datthéncase of unavailable experimental
results.

2. Effect of dilution rate was observed at low feedgrate concentration that is below 20 g/L.
The effect of pH and temperatures were appearddnatite concentration of 60 g/L.

3. Feed substrate concentration was found the efieqiecess variable on the growth rate of
the biomass cell in the reactor.

13
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4. Maximum concentration of the biomass cell could di®ained at high concentration of

substrate and low dilution rate. Optimal feed st#tstwas more sensitive to the variations of
the objective biomass concentration.

Reasonable agreement was obtained when comparsdrthited results with that obtained

by the previous work.

Simulation and optimization provide the developmahe process, and reducing the risk of
experimental runs and consumed cost for desigropadation.

Stochastic genetic algorithm has found the suitaiglarch for the nonlinear biochemical

reactor process.
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