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Abstract 

In this study, we investigated the heat and mass transfer characteristics of the MHD Casson fluid flow over a 

vertical plate in the presence of thermal radiation, chemical reaction and heat source/sink with buoyancy effects. 

The aligned magnetic field is applied along the flow direction. The governing partial differential equations are 

transformed as non-dimensional ODE’s using suitable transformation and resulting equations are solved using 

Perturbation technique. The effects of various non-dimensional governing parameters, namely thermal radiation, 

chemical reaction, heat source/sink, Prandtl number, Grashof number, magnetic field parameter, inclined angle 

parameter and slip parameter on the flow, mass and heat transfer is analyzed for both Casson and Newtonian 

fluid cases. Also the friction factor, the local Nusselt number and Sherwood number are discussed and presented 

graphically. It is found that aligned magnetic field parameter has tendency to control the flow and thermal field. 

Keywords: MHD, Casson fluid, thermal radiation, heat source/sink, buoyancy effect, chemical reaction. 

 

1. Introduction 

Fluid dynamics mainly deal with the study of flow behavior in different channels. The effect of radiation on 

MHD flows have numerous applications in power generators and also it plays a special role in the field of 

geophysics and astrophysics. Reddy et al. [1] investigated the Casson fluid flow past an upper surface of a 

paraboloid  of revolution in the presence of magnetic nonoparticles. Through this paper, they discern that Nusselt 

number increases effectively through higher values of Biot number. Sandeep et al. [2], analyzed 3D-Casson fluid 

flow over a stagnation point in the presence of cross diffusion. In this study, they used Runge-Kutta method with 

shooting technique. The effect of  3D MHD Casson fluid flow past a stretching sheet in the presence of 

thermophoresis and Brownian motion was deliberated by Sulochana et al. [3]. The researchers [4-9] investigated 

the heat and mass transfer nature of the Newtonian and non-Newtonian fluids by considering various flow 

geometries.  

Ali and Sandeep [10], analyzed the effects of radiative heat transfer in MHD Casson-ferrofluid through 

different geometries and found that the heat transfer rate is greater in the flow over a cone when compared with 

the flow over a plate and a wedge. The heat and mass transfer behavior of  MHD Newtonian and non-Newtonian 

flows past a cone or plate with Diffusion was deliberated by the researchers [11, 12]. The flow and heat transfer 

behavior of liquid film flow of non-Newtonian nanofluids in the presence of grapheme nanoparticles was 

investigated by Sandeep and Malvandi [13]. Hayat et al. [14] analyzed the flow of Casson fluid with nanoarticles. 

In this article they found that when the strength of the Brownian motion enhances the temperature decreases. 

Hayat et al. [15] elaborated the concept of mixed convective stagnation point flow of Casson fluid under the 

effect of convective boundary conditions. The Heat and Mass transfer behavior of non-Newtonian fluid through 

stretching sheet was studied by Nadeem et al. [16]. Pramanik [17] analyzed the concept of Casson fluid flow and 

heat transfer over a porous exponentially stretching sheet in the presence of thermal radiation. Sarojamma et al. 

[18] discussed the heat and mass transfer behavior of a MHD Casson fluid over a parallel plate with stretching 

walls. In this paper they used Runge-Kutta fourth order shooting method. Arthur et al. [19] investigated Casson 

fluid flow past a vertical porous surface in the presence of a magnetic field.  

The heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two 

different geometries was studied by Sandeep et al.[20]. Harinath Reddy et al. [21] elaborated the study of MHD 

Casson fluid flow over an oscillating vertical plate in the presence of radiation absorption. In this study, they 

found that when chemical reaction parameter enhances the concentration of the Casson fluid decreases. Haritha 

and Sarojamma [22] analyzed the influence of thermal radiation on heat and mass transfer in MHD Casson fluid 

flow past a stretching sheet. Sathies Kumar and Gangadhar [23] discussed the effects of viscous dissipation and 

partial slip on three dimensional MHD flow of Casson fluid through a permeable sheet. In this study they used 

shooting technique and concluded that when convective parameter increases thermal boundary layer thickness 

increases significantly.Sharada and Shankar [24] elaborated the study deals with the MHD mixed convection 

flow of a Casson fluid past an exponentially stretching sheet with Soret and Dufour. In this study, they resulted 

that the temperature enhances with enhancing values of the Dufour number and radiation parameter. Peristaltic 

transport of a Casson fluid in an inclined channel was investigated by Nagarani [25]. Ganesh et al. [26] discussed 

the two-dimensional flow of a Casson fluid between parallel plates. Mixed convection stagnation point flow of 
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an incompressible Casson fluid past a stretching sheet with the convective boundary condition was analyzed by 

Mahanta and Shaw [27].  Two-dimensional flow of a Casson fluid past a stretching sheet was studied by 

Kirubhashankar et al. [28] . Mahdy and Chamkha [29] discussed the unsteady two-dimensional flow of a non-

Newtonian nanofluid through a contracting cylinder using Buongiorno’s model. Vedavathi et al. [30] 

investigated the Dufour and radiation effects in MHD Casson fluid flow past a vertical plate with heat 

source/sink. In this article they used perturbation technique and discussed the effects of different physical 

parameters. Afikuzzaman et al. [31] exhibited the study of Casson fluid flow over a parallel plate with Hall 

Current. The steady Squeezing flow of Casson fluid between parallel plates was analyzed by Ahmed et al. [32]. 

Very recently, the researchers [33-36] analyzed the heat and mass transfer behavior of magnetohydrodynamic 

flows.  

With the help of the above studies, in this study, we investigated the heat and mass transfer 

characteristics of the MHD Casson fluid flow over a vertical plate in the presence of thermal radiation, chemical 

reaction and heat source/sink with buoyancy effects. The aligned magnetic field is applied along the flow 

direction. The governing partial differential equations are transformed as non-dimensional ODE’s using suitable 

transformation and resulting equations are solved using Perturbation technique. The effects of various non-

dimensional governing parameters, namely thermal radiation, chemical reaction, heat source/sink, Prandtl 

number, Grashof number, magnetic field parameter, inclined angle parameter and slip parameter on the flow, 

mass and heat transfer is analyzed for both Casson and Newtonian fluid cases.  

 

2. Formulation of the problem 

Consider a 2D unsteady flow of Casson fluid over a semi-infinite vertical plate. Here the plate is placed along x

-axis and y axis is normal to it. An inclined magnetic field of strength 0B is considered as depicted in Fig.1. 

Internal heat source/sink, thermal radiation and chemical reaction effects are taken into account. Suction velocity 

is considered as ( )0 1 ,ntv V Aeε= − +  where A >0, ε  and Aε  are small quantities less than unity and 

0 0V > . We ignored the induced magnetic field and viscous dissipation effects. With the assumptions made 

above, the governing conservative equations are as follows: 

 

 
Fig.1 Physical model and the coordinate system. 
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where the velocity components along x  and y directions are u and v .  The radiative heat flux is defined as 

follows  
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= −
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In Eq. (2) applied pressure gives 

2
201

sin ,
BdUd p

U
d x dt

σ
α

ρ ρ
∞

∞− = +         (7) 

Now, we introduce the dimensionless variables as follows 
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Using (8), the governing Eqs. (2) to (4) reduce as: 
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The transformed boundary conditions are 
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              (12) 

Solution of the problem 

To solve the equations (9) to (11), we assume the solution in the following form: 

( ) ( ) ( )2

0 1
,ntu f y e f y Oε ε= + +                (13) 
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( ) ( ) ( )2

0 1
,ntg y e g y Oθ ε ε= + +                 (14) 

( ) ( ) ( )2

0 1
,nth y e h y Oφ ε ε= + +                 (15) 

Substituting Eqs. (13) to (15) into the equations (9) to (11) and equating the harmonic and non-harmonic terms, 

neglecting the coefficient of ( )2O ε , we have 

'' ' 2 2

0 0 0 0sin sin ,oBf f M f M Grg Gchγ γ+ − = − − −                      (16) 

( )'' ' 2 ' 2

1 1 1 0 1 1
( sin ) sin ,Bf f M n f Af Grg Gch M nγ γ+ − + = − − − − +                       (17) 

'' '

0 0 0Pr Pr( ) 0g g F S g+ − + =                            (18) 

'' ' '

1 1 1 0Pr Pr( ) Prg g F S n g A g+ − + + = −               (19) 

'' '

0 0 0 0,h Sch KrSch+ − =                 (20) 

'' ' '

1 1 1 0( ) ,h Sch Sc Kr n h Sch+ − + = −                                      (21) 

The corresponding boundary conditions are 

' '

0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1

, , 1, 0, 1, 0 0,

0, 1, 1, 0, 1, 0 ,

k k
f U f f U f g g h h at y

f f g g h h as y

α α


= = = = = = = 


= = → → → → →∞ 

          
(22) 

The solution of equations (16)-(21) with the boundary conditions Eq. (22) are  
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Substituting the equations (23) - (28), in Eqs. (13) to (15), we obtain the velocity, temperature and concentration 

distributions as follows: 
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Where 
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Skin friction at the wall is given by 

( ) ( )
0 0 0

3 3 2 1 7 4 4 3 5 2 6 1

w
fx

y

nt

fx

u
C

U V y

C D m D m e D m D m D m D m

τ
ρ

ε

=

∂
= =

∂

= − + − + + +

 

Nusselt number is given by 

( )
0

1 1 2 1

Re

Re

w
x x x

w y

nt

x x

T

y
Nu x Nu

T T y

Nu m e D m m

θ

ε

∞ =

∂
∂ ∂

= ⇒ =
− ∂

= − + −
 

Sherwood number is given by 
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Where 
0Re

x

V x

v
=  is the Reynolds number. 

 

3. Results and Discussion 

The obtained results show the effects of the various non-dimensional governing parameters namely, Chemical 

reaction, Thermal radiation, Heat source/sink, Prandtl number, Grashof number, Schmidt number, Porosity 

parameter, inclined angle parameter and Magnetic field parameter on the flow and heat transfer for both 

Newtonian and Casson fluid cases. Also discussed the local Nusselt number, friction factor and Sherwood 

number for both cases. For graphical results we used the non-dimensional parameter values as Gr=5, Pr=6, 

Kr=0.2, Sc=0.6, M=3,K=1,S=0.5, F=1, n=1, t=1, Ɛ=0.2,
 1
φ  =0.3. These values are kept as common in the entire 

study except the Variations displayed in respective figures.  

Fig.2 exhibits the effects of Magnetic field parameter M on velocity profiles. It is noticed that 

increasing the Magnetic field parameter enhances the velocity profiles of both fluids. The effect of Prandtl 

number Pr on velocity profiles is displayed in Fig.3. It is evident that increasing values of Prandtl number 
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decrease the velocity profiles of both non-Newtonian and Newtonian fluids. 

Fig.4 which shows that the rising value of time t implies the increase in velocity profiles of both fluids. 

The effect of Grashof number Gr on velocity profiles is displayed in Fig.5. The result shows that increasing 

values of Grashof number enhances the velocity profiles of both fluids. Fig.6 represents the effect of radiation 

parameter F on velocity profile. It is observed that rising values of radiation parameter F lead to a decrease in the 

velocity profiles of both fluids.Fig.7 shows that the effect of slip 1
φ  parameter on velocity profiles. The result 

shows that the rising value of slip parameter increases the non-Newtonian fluid and decreases the Newtonian 

fluid. 

Fig.8 depicts the effect of heat source parameter S on velocity profile. We noticed that  an increasing 

value of heat source parameter S decreases the velocity profile for both Newtonian and non-Newtonian fluids. 

The velocity profile for several values of   are shown in Fig.9. It is observed that an increase in the   value  
enhances the velocity profiles of both Newtonian fluid and non-Newtonian fluid near the boundary. The effect of 

inclined angle parameter γ on velocity profile is displayed in Fig.10. It is evident that increasing values of 

inclined angle parameter γ lead to a decrease in the momentum boundary layer. 

Fig.11 illustrate the temperature profile for different values of ε. It is noticed that  the rising value of  ε 

decreases the temperature boundary layer. Fig.[12-14] are plotted to depict the variation of temperature profiles 

for different values of radiation parameter F, Prandtl number Pr and heat source parameter S. This shows that, an 

increase in the radiation parameter F, Prandtl number Pr and heat source parameter S imply the decrease in 

temperature profile. 

Fig.15 represents the effect of heat source parameter S against the magnetic field parameter M on the 

skin friction coefficient. The result shows that rising the heat source parameter against the magnetic field 

parameter enhance the skin friction coefficient. Fig.16 and Fig.18 shows the variation in friction factor with the 

increase in heat source parameter S and slip parameter 1
φ  against the radiation parameter F. It is observed that 

rising values of  heat source parameter S and slip parameter 1
φ  with increasing values of F tend to gradual 

decrease in the skin friction coefficient. 

Fig.17 shows the effect of Prandtl number Pr against the heat source parameter F on the skin friction 

coefficient. The result shows that increasing the Prandtl number against the heat source parameter F decreases 

the skin friction coefficient.  Fig.19 and Fig.20 depicts the effect of Prandtl number Pr against the radiation 

parameter F and heat source parameter S on Nusselt number. It is observed that increasing the Prandtl number Pr 

against the radiation parameter F and heat source parameter S decreases the Nusselt number. Fig.21 illustrates 

the effect of radiation parameter F against the heat source parameter S on Nusselt number. This figure results 

that rising values of  radiation parameter F against the heat source parameter S reduces the Nusselt number. 

The effects of Chemical reaction parameter Kr and Schmidt number Sc on concentration profiles are 

shown in Fig.22 and Fig.23. It is noticed that increasing values of Chemical reaction parameter Kr and Schmidt 

number Sc leads to a gradual decrease in the concentration profiles. Fig.24 represents the effect of Chemical 

reaction parameter Kr against the Schmidt number Sc on Sherwood number. It is observed that the rising values 

of Chemical reaction parameter Kr against the Schmidt number implies the decrease in Sherwood number. 

 
Fig .2 Velocity profiles for different values of Magnetic field parameter. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

u

M=3,6,9,12

Solid : Non-Newtonian

Dashed: Newtonian



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.49, 2017 

 

20 

 
Fig .3 Velocity profiles for different values of Prandtl number. 

 

 
Fig .4 Velocity profiles for different values of time. 

 
Fig .5  Velocity profiles for different values of Grashof number . 
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Fig .6  Velocity profiles for different values of radiation parameter. 

 
Fig .7  Velocity profiles for different values of Slip parameter. 

 
Fig .8  Velocity profiles for different values of Heat Source parameter. 
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Fig .9  Velocity profiles for different values of   

 
Fig .10  Velocity profiles for different values of inclined angle parameter. 
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Fig .11  Temperature profiles for different values of  .  

 

 
Fig .12  Temperature profiles for different values of radiation parameter. 
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Fig .13  Temperature profiles for different values of Prandtl number. 

 

 
Fig .14  Temperature profiles for different values of Heat Source parameter. 
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Fig .15  Variations in skin friction coefficient for different values of S with M. 

 

 
Fig .16  Variations in skin friction coefficient for different values of S with F. 
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Fig .17  Variations in skin friction coefficient for different values of Pr with F. 

 

 

Fig .18  Variations in skin friction coefficient for different values of 1
φ  with F. 
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Fig .19  Variations in Nusselt number for different values of Pr with F. 

 
Fig .20  Variations in Nusselt number for different values of Pr with  S. 
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Fig .21  Variation in Nusselt number for different values of F with S. 

 

 
Fig .22 Concentration profiles for different values of Chemical reaction parameter. 
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Fig .23 Concentration profiles for different values of Schmidt number. 

 

 
Fig .24  Variations in Sherwood number for different values of Kr with Sc. 

 

4. Conclusions 

Heat and mass transfer characteristics of the MHD Casson fluid flow over a vertical plate in the presence of 

thermal radiation, chemical reaction and heat source/sink with buoyancy effects are analyzed theoretically. The 

aligned magnetic field is applied along the flow direction. The governing partial differential equations are 

transformed as non-dimensional ODE’s using suitable transformation and resulting equations are solved using 

Perturbation technique. The effects of various non-dimensional governing parameters on flow, thermal and 

concentration fields are discussed and analyzed. The observations of the present study are as follows: 

• Aligned angle controls the applied magnetic field strength and hence the flow field. 

• Buoyancy effects enhance the heat transfer rate. 

• Slip effect declines the velocity field of Casson fluid and enhances the flow field of regular fluid.  

• Rising values of heat source/sink parameter depreciate the temperature filed and enhances the heat 

transfer rate. 

• Increasing values of chemical reaction and Schmidt number declines the concentration filed and 

enhances the mass transfer rate. 
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