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Abstract 
In this study, we analyzed the effects of nonlinear thermal radiation and non-uniform heat source/sink on an 
unsteady three-dimensional flow of Carreau and Casson fluid past a stretching surface. The transformed 
governing equations are solved numerically using Runge-Kutta based shooting technique. We obtained better 
accuracy of the present results by comparing with the already published literature. The influence of 
dimensionless parameters on velocity and temperature profiles along with the friction factors, local Nusselt and 
Sherwood numbers are discussed with the help of graphs and tables. We presented dual nature solutions for the 
flow over a Carreau and Casson fluid cases. It is also found that the non-uniform heat source or sink is control 
the thermal boundary layer for both the Casson and Carreau fluid cases.   
Keywords: MHD, unsteady, nonlinear thermal radiation, Carreau fluid, Casson fluid, 3D. 
 
Introduction  
Convection boundary layer flow over a kinetic stretching sheet has relevance in many engineering processes 
such as drawing of plastic films, tinning and annealing of copper wires and electrolyte paper production etc. Due 
to these applications Sakiadis [1] started the flow past a stretching sheet. After, the many researchers are studied 
under various interesting aspects in [2]-[6]. On the other hand flow past a non-Newtonian fluid flows are 
encountered in several large-scale industrial applications including blood flows in micro-circulatory system, food 
and polymer processing, magma and ice flows. Casson fluid is also a non-Newtonian fluid, which shear thinning 
liquid and exhibits the yield shear stresses. If a yield stress is greater than the shear stress it acts as a solid, 
whereas if a yield stress is lesser than shear stress is applied, the fluid would be starts to move. For example 
honey, tomato sauce, fruit juices and human blood. It has various applications in fibrinogen, cancer homeo-
therapy, protein and red blood cells form a chain type structure. Due to flow diversity in the environment a single 
mathematical model is not overcomes all the rheological fluid properties associated with non-Newtonian fluids. 
Thus various constitutive equations for such fluids are available in already existing literature [7-12]. Additionally, 
the Power-law Carreau fluid is also one of the non-Newtonian fluid model. Carreau fluid model is valid for 
viscous, high and low shear rates. Because of this it has benefitted in many technological and manufacturing 
flows. By taking this into inspiration the authors [13-14] studied the non-Newtonian fluid with two geometries 
(asymmetric channel and cone).   

Magnetohydrodynamic (MHD) is the mechanical property of fluids, which describes the motion of 
highly conducting fluid with existing of magnetic field. The conducting fluids are generates an electric current in 
the fluid flow and this force can be boost up the mechanical properties of fluid flow. Due to these applications 
the more researchers are concentrating on this field. The motivated by the above application the more 
investigated are done in this area. Which are given in ref. [15-20]. Recently, heat transfer in the flow over a 
stretching sheet with non-uniform heat source or sink effect have major role in metallurgy and chemical 
engineering industries, such as polymer production and food processing. Moreover, coupled heat and mass 
transfer problems in the presence of homogeneous-heterogeneous reaction are of importance in many processes, 
and have therefore it is a considerable amount of attention in recent days. Therefore some of the possible 
applications can be found in processes such as drying, damage of crops due to freezing, distribution of 
temperature and moisture over agricultural fields and groves of fruit trees, evaporation at the surface of a water 
body and energy transfer in a wet cooling tower. The three dimensional flow through stretching has great 
attention due to its importance in various fields like MHD accelerators, Generators, pumps and flow meters, 
design of cooling systems these are given by [21-28].  

Motivation of above studies, In this study we proposed a mathematical model for the effects of 
nonlinear thermal radiation and non-uniform heat source/sink on an unsteady three-dimensional flow of Carreau 
and Casson fluids past a stretching surface. The transformed governing equations are solved numerically using 
Runge-Kutta based shooting technique. We obtained better accuracy of the present results by comparing with the 
already published literature. The influence of dimensionless parameters on velocity and temperature profiles 
along with the friction factors and local Nusselt number are discussed with help of the graphs and tables.  

 
Formulation of the problem 
In this article we present a mathematical model for 3D an unsteady convection flow of a Carreau fluid flow in 
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the presence of nonlinear thermal radiation and non-uniform heat source/sink. The flow is restricted 
to z −direction. In this study we skip the induced magnetic field. The flow is due to stretching surface. The extra 
stress tensor for the proposed Carreau fluid is given by 

( )22
0

( 1)1 ,
2

ij ij

n
τ η γ γ

− = + Γ  
& &              (1) 
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2 2ij ji

i j

γ γ γ= ∑∑ = Π& & &                                          (2) 

in which ijτ is the stress tensor, 0η is the zero viscous shear rate, n  is the power-law index, Γ  is the time 
constant, Π is the invariant second strain tensor, according to our assumption the Carreau model is given by: 
   
Flow Analysis: 
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Where , andu v ware the velocity components along the , andx y z directions respectively. ν is the kinematic 
viscosity coefficient, β is the Casson fluid parameter, Γ is the time constant, ρ is the density of the fluid 
andσ is the electric conductivity.  
With the boundary conditions 
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w w
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Here andw wu v are the stretching velocities near the surface.  To convert the nonlinear partial differential 
equations for velocities, we are now introducing the similarity transformations are given by: 
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Here in Equation (7) , andu v ware automatically satisfy the continuity equation, by using equation (7), the 
equations (3) to (5) are given by: 
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The transformed boundary conditions are:  
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here A is the unsteadiness parameter, We is the Weissennberg number, M is the magnetic field and λ is the 
stretching ratio parameter.  
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Heat Transfer analysis:   
The boundary layer thermal energy equation with nonlinear thermal radiation and non-uniform heat source/sink 
effect is given by 
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With the boundary conditions are  
,   at  0,  ,  as   z ,wT T z T T∞= = → →∞           (13) 

The non-dimensional temperature is given by 
( ) , (1 ( 1) )w wT T T T T Tθ θ θ∞ ∞ ∞= + − = + −           (14) 

Where T is the fluid temperature, ,wT T∞ are the near the fluid temperature and the far away from the fluid 

temperature, k is the thermal conductivity of the fluid, 
pc is the specific heat capacitance at constant pressure, 

sc is the concentration susceptibility and *σ is the Stefan-Boltzmann constant.  

The time dependent non-uniform heat source/sink '''q defined as   
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 The above equation positive values of * *,A B corresponds to heat generation and negative values are 
corresponds to heat absorption.  
By substituting the equation (14) into (12) and conditions (13) the equations are reduced to 
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With the transformed boundary conditions are 

(0) 1, ( ) 0,  θ θ= ∞ =            (17) 

Where  Pr is the Prandtl number, A is the unsteadiness parameter, R is the thermal radiation parameter, wθ is 
the ratio of temperatures which are given by 
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For physical quantities of interest the friction factor coefficients along ,x y directions, local Nusselt numbers are 
given by 
After using the boundary layer approximations wall shear stress

wτ is given by  
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The skin friction is defined by 
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Where 
( )Re wxu x

ν
= is the Reynolds number. 

Results and Discussion 
The set of nonlinear ordinary differential equations (8), (9) and (16) corresponding to the boundary conditions 
(10) and (17) are solved numerically using Runge-Kutta based shooting technique. Results display the influence 
of non-dimensional governing parameters on velocity and temperature profiles along with the friction factors and 
local Nusselt numbers. For numerical values we considered the non-dimensional parameter values as 

* *0.2, 2, 5, 3, 0.2, 0.3, 0.1, 0.2, 0.3, 1.1,Pr 6.2.wA M n We A B Rη β θ= = = = = = = = = = =  These values are kept as 
common in entire study except the variations in respective figures and tables. In graphical results red color 
profiles indicates the flow over a Carreau fluid stretching surface while green color profiles indicates the flow 
over a Casson fluid stretching surface.  

The Figs. 1-3 presents the effect of stretching ratio parameter on velocity and temperature variations for 
both the Carreau and Casson fluid cases. The temperature field is suppressed and velocity field is improved with 
an increasing value of stretching ratio parameter. Basically, the stretching keeps more pressure on the sheet due 
to this the temperature field is reduced and velocity fields are encouraged. Figs. 4-6 depict the influence of 
Weissenberg number on velocity fields and temperature fields for both Carreau and Casson fluid cases. It is 
found that an increasing in the Weissenberg number enhances the thermal boundary layers and decreases the 
momentum boundary layer on the flow over a stretching surface for both the cases. Physically, Weissenberg 
number is directly proportional to the time constant and inversely proportional to the viscosity. The time constant 
to viscosity ratio is higher for larger values of Weissenberg number. Hence, higher Weissenberg number causes 
to enhance the thermal boundary thickness. 

The dimensionless temperature distribution for different values of radiation parameter R is shown in Fig. 
7 for both Carreau fluid Casson fluid cases.  It reveals that the greater values of radiation parameter show an 
enhancement in the temperature boundary layer thickness. Generally, the greater values of radiation parameter 
produce more heat to working fluid that shows an enhancement in the temperature field. It is evident to mention 
here that we have noticed enhancement in the temperature profiles for both Carreau and Casson fluid stretching 
cases. The ratio of temperature on temperature profiles are shown in Fig. 8 for both Carreau and Casson fluid 
cases. It is clear from that an increasing value of temperature ratio parameter improves the temperature profiles. 
The effect of the magneticfield on velocity and temperature fields are displayed in Figs. 9-11 for both Carreau 
fluid and Casson fluid cases. We observed that the velocity, concentration fields are reduced and boots up the 
temperature field. This proves the general physical behavior ofM  that an improved values of M  depreciates 
the velocity fields. Generally, the drag force increase and as a result depreciation occurs in the velocity field. The 
influence of an unsteadiness parameter on velocity, temperature and concentration fields is exhibit in Figs. 12-13 
for both Carreau fluid and Casson fluid cases. We detect from the figure that the velocity fields are enhanced and 
reducing the temperature field with an increasing values of unsteadiness parameter. An increasing unsteadiness 
the less heat would be transferred to the sheet there may be due to this the temperature field is decreased. 

Figs. 14 and 15 demonstrate the effect of non-uniform time dependent heat source/sink parameter on 
temperature distribution of the flow for both Carreau and Casson fluid cases. It is clear that an increasing value 
of space and temperature dependent heat source/sink parameters enhances the thermal boundary layer thickness 
of the flow over a stretching sheet for both Carreau fluid and Casson fluid cases. Generally, the non-uniform heat 
source/sink parameters acts as heat generators, which releases the heat energy to the flow and enhances the 
temperature profiles. Table 1 displays the Validation of the present results with the existed literature under some 
limited case. We found a better agreement of the present results with the existed literature. This proves the 
validity of the present results along with the accuracy of the numerical technique we used in this study. Tables 2 
and 3 display the variations in the friction factors and local Nusselt numbers for Carreau fluid and Casson fluid 
cases for various values of non-dimensional governing parameters. It is noticed from the table that hike in the 
values of an unsteadiness parameter enhances the friction factor coefficients and heat transfer rate for both 
Carreau and Casson fluid cases. But we observed an interesting result that an increase in unsteadiness parameter 
enhances the friction factor for both Carreau and Casson fluid cases. We have seen exactly opposite results are 
observed in the presence of magneticfield parameter and Weissenberg number for both Carreau and Casson fluid 
cases. The rise in the values of non-uniform heat source/sink parameter does not influence the friction factor and 
it reduces the nusselt number for both Carreau and Casson fluid cases. We have observed same type of results 
with an increase in thermal radiation parameter. 
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Table.1 Validation of the Nusselt number with some limited case for different values of 
* *, 0, 1.wWe R A A B nβ η θ→∞ = = = = = = = =  

                  Pr 0.7=                  Pr 1=                 Pr 10=  

λ ↓  '(0)θ−  
Anilkumar and 
Roy[21] 

'(0)θ−  
Present 

'(0)θ−  
AnilKumar  
and Roy[21] 

'(0)θ−  
Present 

'(0)θ−  
AnilKumar  
and Roy[21] 

'(0)θ−  
Present 

0 0.4305 0.4305 0.557294 0.5572 1.4042 1.4042 
1 0.6127 0.6004 0.721982 0.7219 1.5885 2.0911 
10 1.0175 1.0172 1.170983 1.1709 2.3528 2.7734 
 
Table.3 the physical parameter values of (0), ''(0)and '(0)f g θ′′ − for Casson and Carreau fluid cases different 
values 
of * *5, 0.2, 0, 5, 0.3, 0.2, 0.2, 0.1, 0.1,M We R A A Bβ η λ= = = = = = = = = 1.1,Pr 6.2.wθ = =  

M  R  A  We  λ  wθ  
*A  

*B  Skin  Nus 
Casson Carreau Casson Carreau 

1        -0.27540 -0.234429 0.805253 0.848403 
2        -0.42189 -0.354917 0.709147 0.767788 
3        -0.61227 -0.478409 0.630938 0.701860 
 1       -0.91227 -0.478409 0.762170 0.630469 
 2       -0.91227 -0.478409 0.564206 0.525606 
 3       -0.91227 -0.478409 0.495495 0.472131 
  1      -0.35005 -0.281248 0.790376 0.822788 
  2      -0.21155 -0.198141 0.897563 0.879240 
  3      -0.17077 -0.162777 0.951181 0.907927 
   1     -5.92220 -0.865536 0.411890 0.580487 
   3     -8.09415 -1.453479 0.353705 0.536758 
   5     -10.6972 -2.553512 0.308190 0.499935 
    0.2    -2.35482 -0.354917 0.698757 0.769758 
    0.4    -9.61557 -1.409036 1.099698 1.226592 
    0.6    -12.0837 -4.205586 1.407654 1.545336 
     0.2   -1.25649 -0.328418 1.459806 1.742124 
     0.4   -1.25649 -0.328418 1.315956 1.597801 
     0.6   -1.25649 -0.328418 1.124242 1.303902 
      1  -0.26848 -0.935648 0.648340 0.555206 
      2  -0.26848 -0.935648 0.547861 0.504005 
      3  -0.26848 -0.935648 0.447312 0.452794 
       0.2 -1.36482 -0.372454 0.586801 0.748906 
       0.3 -1.35642 -0.372454 0.481475 0.680504 
       0.4 -1.35642 -0.372454 0.339267 0.603163 
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Fig.1 Velocity field for different values of stretching ratio parameter 
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Fig.2 Velocity filed for different values of stretching ratio parameter 
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 Fig.3 Temperature filed for different values of stretching ratio parameter 
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Fig.4 Velocity filed for different values of Weissenberg number 
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Fig.5 Velocity filed for different values of Weissenberg number 
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Fig.6 Temperature filed for different values of the Weissenberg number 



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 
Vol.52, 2017 
 

18 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η) R=1,2,3

Red    : Carreau Fluid
Green : Casson Fluid

 
Fig.7 Temperature field for different values of radiation parameter 
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Fig.8 Temperature field for different values of ratio of temperature parameter 
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Fig.9 Velocity field for different values of magneticfield parameter 
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Fig.10 Velocity field for different values of Magneticfield parameter 
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Fig.11 Temperature filed for different values of magneticfield parameter 
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  Fig.12 velocity filed for different values of an unsteadiness parameter 



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 
Vol.52, 2017 
 

21 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

A=1,2,3

Red    : Carreau Fluid
Green : Casson Fluid

 
  Fig.13 Temperature filed for different values of an unsteadiness parameter 
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Fig.14 Temperature filed for different values of non-uniform heat source/sink parameter 
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 Fig.15 Temperature filed for different values of non-uniform heat source/sink parameter 
 
Conclusions: 
In this study, we proposed mathematical model for the effects of nonlinear thermal radiation on three-
dimensional flow of Carreau and Casson fluid flow past a stretching surface with non-uniform heat source/sink. 
The transformed governing equations are solved numerically using Runge-Kutta based shooting technique. We 
obtained good accuracy of the present results by comparing with the exited literature. The influence of 
dimensionless parameters on velocity, temperature and concentration profiles along with the friction factors and 
local Nusselt numbers are discussed with the help of graphs and tables. We presented dual solutions for the flow 
over a Carreau and Casson fluid over a stretching sheet. The conclusions are as follows: 
1. The heat transfer rate is more on Carreau fluid flow over stretching sheet when compared with Casson fluid 

over a stretching sheet. 
2. Non-uniform heat source/sink and radiation parameters are help to reducing the nusselt number for both 

Carreau fluid Casson fluid cases.  
3. The Weissenberg number and magneticfield parameters are improves the mass transfer rate. 
4. An unsteadiness parameter increases the friction factor coefficients as well as heat transfer rate for the 

Casson and Carreau fluid cases. 
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